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Abstract. We report on the experimental detection of a drift bifurcation for
dissipative solitons, which we observe in the form of current filaments in a
planar semiconductor–gas-discharge system. By introducing a new stochastic
data analysis technique we find that due to a change of system parameters the
dissipative solitons undergo a transition from purely noise-driven objects with
Brownian motion to particles with a dynamically stabilized finite velocity.
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1. Introduction

Brownian motion of particles is a well known phenomenon in physical, chemical and biological
systems. The motion of these particles is overdamped in the absence of external forces, such that
they would remain stationary without the driving force of fluctuations. On the other hand there
are synergetic objects which, under the conditions given above and depending on the system
parameters, may stay at rest or propagate with a dynamically stabilized velocity. Well known
examples of these objects are non-equilibrium Ising–Bloch fronts in the one-dimensional case or,
in one- and higher-dimensional systems, localized dissipative structures, so-called dissipative
solitons [1, 2]. These particle-like structures are commonly observed in biological systems
as nerve pulses [3], in chemical systems as concentration drops [4] and in physical systems as
current filaments [5]. In this context it can be shown for a system with continuous symmetries that
the transition from stationary to travelling objects or patterns occurs due to a drift bifurcation,
which breaks the symmetry of the structures [6]–[15]. Experimentally this effect has been
observed in the case of periodic structures, e.g. for the Faraday instability [16], Rayleigh–Bénard
convection [17], the printer’s instability [18]–[20] and cellular flame patterns [21]. However, in
the case of dissipative solitons, this effect has been theoretically predicted [13, 14, 22]–[26], but
has not been experimentally verified.

In this paper we report on an experiment in which we observe the theoretically predicted
drift bifurcation [14, 22]–[26] for dissipative solitons in the form of localized current filaments
in a semiconductor–gas-discharge system. In particular, we detect the transition from noise-
driven dissipative solitons behaving like Brownian particles to dissipative solitons moving with
an intrinsic velocity, so-called active Brownian particles [27]. The basis of this investigation
is a new stochastic data analysis technique for the separation of deterministic and stochastic
dynamics which is applicable under quite general assumptions and therefore can be used for a
large class of systems. This enables the investigation of the dynamics of localized objects in
experimental systems, in which quantitative studies were not possible due to large fluctuations.
In the case of the discussed experiment the presented results give the first experimental evidence
for the existence of the theoretically predicted drift bifurcation of dissipative solitons and show
that the bifurcation can be hidden by noise.

2. Experimental observations

The investigated dc gas-discharge system consists of a high ohmic planar semiconductor cathode
(GaAs〈Cr〉) and a transparent, low ohmic planar anode consisting of a glass substrate coated with
indium tin oxide (ITO). Both electrodes are separated by a narrow gas-discharge space of width
d = 0.25–0.75 mm filled with nitrogen (figure 1). The active discharge area has a diameter of
D ≈ 17 mm. The specific resistivity of the semiconductor is controlled by an external light
source via the internal photo effect. During the preparation of the experimental set-up, great
care is taken to ensure the spatial homogeneity of the system. For appropriate parameters, well
localized current filaments, or dissipative solitons, can be observed through the transparent anode
as bright spots of high luminance being emitted from the discharge gap [28, 29]. While in general
several filaments can be generated in the active area of the system due to a Turing destabilization
of the homogeneous discharge [29, 30], we have chosen the experimental parameters for the
following investigations such that only one filament exists at a given time.
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Figure 1. Schematic plot of the experimental set-up. It mainly consists of a
high ohmic semiconductor electrode, contacted with a gold layer, a discharge
gap filled with nitrogen and a transparent ITO electrode. The resistivity of the
semiconductor is controlled by homogeneous illumination with visible light. The
maximum global current of the discharge is restricted due to a series resistor R0.
The discharge can be observed with a CCD camera system through the transparent
ITO electrode.

In this case we observe that the single filament moves on an irregular path, indicating a
strong influence of noise, which might be related to noise in the semiconductor (generation–
recombination, 1/ f noise), thermal fluctuations in the gas and noisy processes of charge
transportation through the semiconductor–gas-discharge interface [31]. Depending on the
parameters of the system, the motion of the filaments exhibits qualitative differences. In order
to illustrate these differences, we choose a threshold value φT for the luminance distribution
φ(�x, t) in order to distinguish between the dissipative soliton and the background discharge.
Starting from this definition the trajectory �p(t) ∈ R

2 of the dissipative soliton can be defined
and calculated as

�p(t) =
∫

�x:φ(�x,t)≥φT
�x φ(�x, t) d�x∫

�x :φ(�x,t)≥φT
φ(�x, t) d�x . (1)

Two typical trajectories �p(t) for different system parameters are presented in figures 2(a)
and 3(a), in which the differences in the dynamics of the dissipative solitons become clearly
visible. Both figures show a snapshot of the luminance distribution φ(�x, t) emitted from the gas
discharge and the corresponding trajectories �p(t). While the trajectory depicted in figure 2(a)
shows that the current filament moves with frequent random changes of its direction of motion,
resembling the typical motion of a Brownian particle, the trajectory of the current filament in
figure 3(a) looks much smoother. These observations give rise to the question of whether the dif-
ferent dynamics is related to a qualitative change of an intrinsic property of the dissipative solitons.

3. Stochastic data analysis

In order to separate the stochastic part of the dynamics from the deterministic part, we assume,
using a particle approach, that the dynamics of the current filament located at �p(t) ∈ R

2 can be
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Figure 2. The dynamics of a dissipative soliton exhibiting purely Brownian
motion. (a) Trajectory of a current filament and snapshot of the luminance
distribution in false colour representation. The overall recording time was 72 s,
from which a section of 31 s is depicted. The aspect ratio between the diameter
of the dissipative soliton and the diameter of the active area is approximately 20.
(b) Result of the stochastic data analysis technique for the trajectory. Crosses
mark the deterministic part hv(v) of the dynamics for the respective velocity
intervals of width �v = 2 mm s−1. A linear fit to hv(v) is shown as a grey
curve. Parameters: supply voltage U0 = 3600 V, specific resistivity of the
semiconductor ρSC = 2.02 × 106 � cm, series resistor R0 = 10 M�, pressure
p = 282 mbar, temperature T = 105 K, width of gas gap d = 550 µm, exposure
time texp = 0.02 s, global current I = 116 µA.

described by a Langevin equation

�̈p(t) = �̇v(t) = �h(�v(t)) + R(�v)��(t), (2)

which is interpreted according to the Itô calculus. Here the terms �h(�v(t)) and R(�v)��(t) denote
the deterministic and stochastic parts of the dynamics, as R(�v) is a velocity-dependent noise
amplitude and ��(t) is a vector of noise forces with vanishing mean. Concerning the noise force,
we assume that its autocorrelation decays on a smaller timescale than the characteristic timescale
of the dynamics of the filaments. Furthermore, we use the fact that �h(�v) possesses rotational
symmetry (i.e. �h(�v) = hv(v)�v/v with v = |�v|) due to the O(2) symmetry of the experimental
system, if the finite size of the system is neglected. Note that no further details about the function
hv(v) have to be known. From this, we deduce the following projection technique for the analysis
of two-dimensional particle trajectories:

hv(v) ≈ 1

�t

〈
(�v(t + �t) − �v(t)) · �v(t)

v(t)

〉∣∣∣∣
v(t)≈v

, (3)

whereby the velocity �v(t) is calculated in first-order approximation from two successive filament
positions �p(t) and �p(t + �t). The projection technique (3) holds as long as the time interval �t
is small enough to resolve the investigated dynamics [32] and large compared to the correlation
time of the fluctuations [34]. In principle, it is also possible to estimate the fluctuation strength
in a similar way [32], which is not the topic of this investigation. Note that an interpretation of
equation (2) according to the Stratonovich calculus would lead to an additional spurious drift
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Figure 3. The dynamics of a dissipative soliton with a finite intrinsic velocity.
(a) Trajectory of a current filament and snapshot of the luminance distribution in
false colour representation. The overall recording time was 62 s, from which a
section of 39 s is depicted. (b) Result of the stochastic data analysis technique
for the trajectory. Crosses mark the deterministic part hv(v) of the dynamics
for the respective velocity intervals of width �v = 0.5 mm s−1. A cubic fitting
function referring to the deterministic dynamics of equation (4) is shown as a
grey curve. Parameters: U0 = 2740 V, ρSC = 4.95 × 107 � cm, R0 = 20 M�,
p = 280 mbar, T = 105 K, d = 250 µm, texp = 0.02 s, with I = 46 µA.

term on the left-hand side of equation (3), which vanishes for additive noise. The same holds if
a generalized Stratonovich integral is used [33].

In order to test the presented technique, we use an equation taken from a particle model for
dissipative solitons in a related model system [35], which we heuristically extend to a Langevin
equation with appropriate additive noise terms

�̇v(t) = a1�v(t) − a3|�v(t)|2�v(t) + R ��(t), (4)

where a constant noise amplitude R has been chosen for the purpose of simplification.
Concerning the deterministic dynamics of (4) two generic cases are known, which depend on
the sign of a1, since a3 is always positive, so that the cubic term can be interpreted as a velocity
dependent friction. Therefore, the case a1 > 0 describes the dynamics of a dissipative soliton
which would propagate with a finite dynamically stabilized intrinsic velocity v0 = √

a1/a3 if
no noise was present in the system. On the other hand the case a1 ≤ 0 describes the dynamics
of an overdamped and purely noise-driven filament. On the basis of model equation (4), data
series have been numerically generated using a stochastic integration method [36, 37] and have
afterwards been analysed using (3). It turned out that the data analysis technique reproduces the
deterministic dynamics of the model equation (4) very well for sufficiently long time series. In
detail this means that, for the deterministic dynamics considered here, the average in equation (3)
should be computed from at least 20 events v(t) ≈ v in order to get a useful result for the
corresponding value hv(v).

After validating the efficiency of the presented analysis technique, it can be applied to
experimentally recorded trajectories. For this task all data points of the trajectories are taken
into account for the analysis, since it has been tested that the improvement of the statistics due
to the gain on data points rules out possible deviations at the boundary.
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Figure 4. Experimental results for the square of the intrinsic speed v0

as a function of the bifurcation parameter ρSC and exemplary trajectories for
parameters below and above the bifurcation point with circles denoting the active
discharge area. Parameters: U0 = 3700 V, R0 = 10 M�, p = 286 mbar,
T = 105 K, d = 750 µm, texp = 0.02 s, with I = 107 µA.

The analysis reveals the existence of two qualitatively different dynamical states which are
discussed on the basis of the trajectories shown in figures 2(a) and 3(a) for which the respective
results of the analysis are depicted in figures 2(b) and 3(b). In the example presented in figure 2,
the motion of the current filament is purely damped with a damping constant of (37.6±1.5) s−1,
which can be computed from a linear fit (grey curve) to the acceleration (crosses) resulting
from the data analysis (figure 2(b)). In this case the filament behaves like a classical Brownian
particle as the fluctuations are the driving force of the movement. In contrast to this finding is
the example presented in figure 3, where the data analysis reveals the dynamics of a particle
with finite, dynamically stabilized velocity v0 (figure 3(b)). This velocity can be estimated to
be 11 mm s−1 using a cubic fitting function (grey curve), which has been chosen corresponding
to the deterministic dynamics of the model equation (4). Here, the internal drive, causing an
intrinsic velocity, dominates the dynamics and the fluctuations only play the role of a disturbance.
This case is referred to as active Brownian motion [27].

4. Drift bifurcation

Motivated by these findings, systematic measurements have been made which show that a
transition between the two different dynamical states can occur due to a change of the specific
resistivity ρSC of the semiconductor. Plotting the square of the intrinsic velocity v0 as function
of the control parameter ρSC reveals the course of a supercritical pitchfork bifurcation (figure 4)
with a bifurcation point at ρc = 1.35 M� cm. We identify this transition as a drift bifurcation,
which is theoretically predicted for a large class of different dissipative systems with continuous
symmetries where dissipative solitons are observed [11, 14, 22, 23, 26]. The importance of the
stochastic data analysis technique becomes clear by comparing the trajectories of the dissipative
solitons (plotted within figure 4) with the naked eye. For the chosen set of parameters the
qualitative difference in the dynamical behaviour of the dissipative solitons is not obvious as in
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figures 2(a) and 3(a). In the case of figure 4 the transition between the different dynamical states
can only be uncovered by using the discussed data analysis technique.

In the context of modelling dissipative solitons with systems of reaction–diffusion
type the drift bifurcation typically occurs due to an increase of a time constant over a
critical threshold [14, 22]–[26]. These theoretical predictions can be related to the presented
experimental findings by referring to an early phenomenological equivalent circuit model for the
investigated experiment [38]. This approach shows that an increase of the specific resistivity of
the semiconductor leads among other things to an increasing time constant and therefore enables
the drift bifurcation of dissipative solitons. We would also like to note that the deterministic
dynamics of equation (4) is characteristic for parity breaking bifurcations and therefore has
theoretically been discussed for a huge class of systems.

5. Conclusion and outlook

The transition from stationary to travelling objects due to a change of system parameters is a well
known phenomenon for non-equilibrium systems with continuous symmetries. Although this
drift bifurcation has been theoretically predicted for dissipative solitons in systems of reaction–
diffusion type, it has not been experimentally verified. In the case of planar semiconductor–gas-
discharge systems this discrepancy is related to the strong influence of noise. By describing the
dynamics of the observed dissipative solitons on the basis of a particle approach we are able to
introduce a new stochastic data analysis technique for the separation of the deterministic and the
stochastic parts of the dynamics. The application of this analysis technique to experimentally
recorded trajectories of dissipative solitons reveals that the dissipative solitons are either purely
noise driven or move with a stabilized finite velocity. Systematic investigations show that the
transition between these different dynamic states can occur due to a change of the specific
resistivity of the semiconductor. Identifying this transition as a supercritical drift bifurcation,
we give for the first time experimental evidence for the theoretically predicted transition.

Furthermore, the presented results demonstrate that the observed dissipative solitons can be
effectively described by a particle approach naturally motivating an extension of the presented
technique towards the investigation of interaction phenomena of dissipative solitons. This is a
topic of current research. Due to the practicability of the introduced data analysis technique
and due to the underlying general assumptions the presented technique can be applied to a large
class of systems for which the deterministic dynamics of localized structures has not yet been
experimentally investigated.
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