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Abstract

We discuss two fundamental aspects of Fokker-Planck equations that are nonlin-
ear with respect to probability densities. First, we show that evolution equations
of this kind describe processes involving stochastic feedback and interpret stochas-
tic feedback processes in terms of hitchhiker processes and path integral solutions.
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1 Introduction

Nonlinear Fokker-Planck equations have found applications in areas such as
plasma physics [1-3], surface physics [4-6], population dynamics [7], biophysics
[8-13], engineering [14,15], neurosciences [16-24], nonlinear hydrodynamics
[25—29], polymer physics [30-32], laser physics [33], pattern formation [34-36],
psychology [37] and marketing [38]. They have been used to describe systems
that exhibit power-law distributions, cut-off distributions, quantum distribu-
tions, or anomalous diffusion [39-65]. In particular, it has been suggested to
regard them as evolution equations for probability densities of systems char-
acterized by nonextensive [66—68] and general entropies, e.g., [39,55,61,65,69].
In spite of the increasing interest in this topic, a theory of nonlinear Fokker-
Planck equations has not yet been established. Likewise, a definition of the

term "nonlinear Fokker-Planck equation” has not been given so far.

In the present manuscript, we will discuss general aspects of nonlinear Fokker-
Planck equations. We will focus on two questions. What is the physics of
systems that can be described by means of nonlinear Fokker-Planck equations
and what is the mathematics of stochastic processes that can be described
by means of nonlinear Fokker-Planck equations? In order to elaborate these
questions, we will consider families of stochastic processes. Let X(¢) denote a
M-dimensional time-dependent random variable defined on the phase space €2
and the interval ¢ € [tg, 00). Let us assume that X(¢) is distributed like u(x)

at an initial time ¢3. Then, we denote the probability density of X by

P(x,tu) = (6(x — X(1))) (1)

with P(x,%;u(x)) = u(x), where (---) denotes an ensemble averaging. Like-
wise, joint probability densities can be defined such as P(xq, to; X1, t1; u(x)) =
(0(x1 — X(t1))d(x2 — X(t2))). A family of stochastic processes can then be

described by means of the hierarchy of joint distributions



P(X7 ta U(X)) ?
P(xa,t2; X1, t15u(x)) ,

P(xn, tn; -5 X1, ts u(x))

(2)

for ¢t > ¢ty and ¢, > t,—1 > ... > t; > tg. We can now define an evolution

equation for the single time-point probability density P(x,t;u) by

0
D;(x,t, P)P(x,t;u)
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+ % > Dk (x,t, P)P(x,t;u) (3)
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with ¢ > t;. We refer to Eq. (3) as a nonlinear Fokker-Planck equation because
for D;(x,t, P) = D;(x,t) and D (x,t, P) = Dy (x,t) it reduces to the form of
the conventional linear Fokker-Planck equation [70,71]. In particular, we refer
to D; and Dy, as drift and diffusion coefficients, respectively. Likewise, we call
Y] the drift term and Y5 the diffusion term. Note that we do not claim that Eq.
(3) represents the most general form of a nonlinear Fokker-Planck equation.
However, a large variety of nonlinear Fokker-Planck equations that have been
discussed in the literature can be cast into the form (3). In the univariate case,
Eq. (3) reads

2P(a:,t; u) = —iDl(x,t, P)P(z,t;u) + a—2D2(:16,t, P)P(z,t;u) (4)

ot Ox 0x?
with ¢ > ty. Note that in the following sections we will address constraints that
may be imposed on the coefficients Di(z,t, P), Do(z,t, P), D;(x,t, P), and
Dy (x,t, P). While Sec. 2 is concerned with the physics of systems described
by nonlinear Fokker-Planck equations, Sec. 3 is about the mathematics of
processes described by nonlinear Fokker-Planck equations. In particular, in

Sec. 3 we will distinguish between strong and weak nonlinear Fokker-Planck



equations and linear and nonlinear families of Markov processes.

2 On the physics of nonlinear Fokker-Planck equations

2.1 Stochastic feedback, hitchhiker processes, and path integral solutions

2.1.1 Stochastic feedback

We refer to a system described by a state variable X(¢) that satisfies the

evolution equation

d

th( ) =D(X,t) + G(X,t)-T'(t) (5)

as a system with a feedback because the evolution of X depends on the state
variable X. Here, D is given by D = (Ds,..., Dy), G describes a M x M
matrix of noise amplitudes, and T" describes a fluctuation force. For appropri-
ately defined GG and T', the stochastic evolution of X can be described in terms

of the linear Fokker-Planck equation [71]

Q
<

2
= P(x,t; t: Dix(x,8)P(x, ;) .
p (x,t;u) 2 P(x,t;u +Z;1 9z.00, k(X 1) P(x,t;u)

(6)

In this picture, the dependency of the coefficients D;(x,t) and D;x(x,t) on the
state vector x reflects the fact that we deal with a feedback system for which
the actual state of the system affects the dynamics of the system. Now, let us

write Eq. (3) as

o M
8_P X, t;u) (x,t;2) P(x,t;u)
t i=1 z=P
5?
+ Z (x,1; 2) P(x,t;u) . (7)
Fy 18:L'Z8xk P




Here, the drift and diffusion coefficients depend on an ensemble measure,
namely, the probability density P. Consequently, not only depends the evolu-
tion of the system described by Eq. (7) on the state of the system but also on
stochastic properties of the system. Both the state variable and the probability
density are fed back into the evolution equation that determines the stochastic
behavior of the system. In analogy to the deterministic feedback loop involved
in Eq. (5), we may say that systems described by Eq. (7) exhibit a stochastic
(or statistical) feedback loop [42,57,72,73]. Next, we will show that stochastic
feedback processes may be interpreted in terms of hitchhiker processes and

path integral solutions.

2.1.2  Hitchhiker processes

Let us consider Eq. (3) for coefficients D; and Dy that do not explicitly depend

on time:
0
Y P(x.t:u) =
TR
52
— P(x,t; t; i P(x,t;u))P(x,t;u) .
Zaxz (x; P(x,t;u)) P(x, U+Z;13$333k k(X P(x,t;u))P(x, t;u)

(8)

By means of the coefficients D;(x,-) and D;x(x,-) we can also define a linear

Fokker-Planck equation for the probability density W:

0
EW(Xa ta u)to —
M 0 M 92
_ ’L:ZI a—xzDz (X; U)W(X, t; u)to + i,kz_l axzaxk Dik (X, U)W(X, t, U’)to . (9)

Eq. (9) defines for every initial distribution u a time-dependent probability
density W (x, t; u);, satisfying W(x, z;u), = u. Note that we require now that
Eq. (9) indeed corresponds to a linear Fokker-Planck equations, which im-

plies, for example, that D;; can be interpreted as the second Kramers-Moyal



coefficient of a stochastic process and, consequently, describes a symmetric
and semi-positive definite matrix [71]. In Fig. 1 we have plotted schematically
three solution W* = W (x, t;u*)y,, W' = W(x,t;u1)s,, and W2(x, t;ug)y, of
Eq. (9) for the initial distributions u*, uy, and us.

Insert Figure 1 about here

Comparing Egs. (8) and (9) we realize that the equivalence

%P(x, tyu) = %W(x, t; P)y (10)
holds. Integrating Eq. (10) with respect to ¢, gives us
[0
P(x,t;u) = u(x) + / %W(X’S; P(x,s;u))sds . (11)
to

Egs. (8,...,11) can be interpreted as follows. On the one hand, we deal with
Markov processes B¢ described by the transient probability densities W (x, t; u;);,
for different initial distributions u; and initial times ¢;. On the other hand, we
have a process A described by the nonlinear Fokker-Planck equation (8) for
a particular initial distribution, say, u*. Then, let us observe A stroboscopi-
cally at times t; = ty + At. We find that at every instance ¢; the process A
evolves like the Markov process W* = W (x, ¢, u;);, with the initial distribu-
tion u; = P(x,t;,u*). However, at every instance ¢; we deal with a different
initial distribution u; and, consequently, with a different Markov process W*.
In other words, the process A jumps from the Markov process B* with proba-
bility density W = W (x, t, u;), and u; = P(x,t;, u*) at time ¢; to the Markov

process B! with distribution W' = W (x, t; u;11)s,., and initial distribu-

tig1
tion w;11 = P(x,t;41,u*) at time t;,1. The stochastic process A described by
the nonlinear Fokker-Planck equation (8) evolves within the family of Markov
processes with probability densities W (x, ¢; u;);, defined by the linear Fokker-
Planck equation (9). We may also say that the process A "rides on the back”

of the Markov processes B’. Since A permanently changes its host processes



B, the behavior of A resembles the one of a hitchhiker, which is the reason
why one may refer to processes with stochastic feedback as hitchhiker pro-
cesses. From Fig. 1 we can also read off that the change AP(x,t;u) of P can
approximately compute from AW (x,¢; P); for a small interval A¢. This ap-
proximation becomes exact in the limit of At — 0, which is expressed by Egs.

(10) and (11).

2.1.83 Path integral solutions

Hitchhiker processes can also be described in terms of path integral solutions of
nonlinear Fokker-Planck equations. Let us illustrate this issue for a univariate
nonlinear Fokker-Planck equation. For ¢ > t; and small time steps 7 the
evolution of P can approximately be determined by means of the integral
equation

Pla,t+7u) ~ [ Gla,a'st,m, PP, tu) da (12)
Q

where G(x,2';t,7; P) is called short time propagator and is defined by [74]

G(z,2';t,7;P)
0 /g, /g, 2
:\/ 1 exp{—[m ' — 71Dz’ t; P(', t; u)]| } '

2w Dola!  t; P(2!,t; u)) 21 Dy[z!, t; P(2', t; u)]

(13)
Taking infinitesimal small time steps 7 into account, we obtain
N
P(z,t;u) N—)léoni—m / P(zq,t1;u ),:1_[1 {G($i+1,l‘i;ti,7—, P) dxi}
(14)

with 7N = t — t;, where x corresponds to the final chain element xx,; in
the limit N — oo. Eq. (14) is the path integral solution of the nonlinear

Fokker-Planck equation (4) [74], which can in particular be used for numerical



computations [74,75]. Eq. (14) generalizes the path integral approach for the
linear Fokker-Planck equation which can be found, for example, in [70,76-78].
The path integral solution (14) tells us that the evolution of a stochastic pro-
cess described by the nonlinear Fokker-Planck equation (4) is governed at time
t; and for a small time step by a short time propagator G; = G(z,z'; t1, 7, P)
that belongs to the distribution P of that process at the time ;. At an en-
suing moment %, the evolution is governed by another short time propagator
Gs = G(x, 2';ts, 7, P) belonging to the process distribution P at time t5. That
is, the process permanently switches between different short time propagator
which is in line with the notions of hitchhiker processes. Moreover, the sys-
tem is characterized by a probability-dependent short-time propagator which

reflects the fact that it exhibits a stochastic feedback structure.

3 On the mathematics of nonlinear Fokker-Planck equations

3.1 Linear versus nonlinear families of Markov processes

Although the nonlinear Fokker-Planck equation (3) defines the evolution of
the probability density P(x,t;u) it cannot be used to define the hierarchy
of probability densities shown in Eq. (2). That is, from Eq. (3) we cannot
compute a stochastic process [46]. Taking a mathematical point of view, our
objective now is to derive stochastic processes that are consistent with the
nonlinear Fokker-Planck equation (3). To this end, it is useful to distinguish

between linear and nonlinear families of Markov processes.

To begin with, let us define conditional probability densities for families of

stochastic processes by

P(Xp, tp;. .5 %1, 115 u)

(15)

P(xp, tp|Xp_1,tn—15...;X1,t1;u) = Pty bors. Xt )
n—1ly Yn—1y === b b



If the conditional probability density (15) satisfies

P(Xn, tn|Xn71a tnfl; - X, tl; U) = P(Xn, tn|Xn71a tnfl; U) (16)

for all n, then we deal with a family of Markov processes. It is important
to realize that every member of this family of conditional probability densi-
ties depends only on two time points. For example, let us consider a family
of stochastic processes characterized by the initial distributions w1, us, us and
so on. Then, we deal with the set of Markov transition probability densities
given by PY(x,, tn|Xn 1,tn 15 ;X1,t1) = P(Xp, tn|Xn 1, tn_1)- Next, we dis-
tinguish between linear and nonlinear families of Markov processes. For linear

families there is a unique transition probability density

P(x,t|x',t';u) = P(x,t|x',t) (17)

that describes the evolution of all members of the family. In other words, if
the transition probability density of a family of Markov processes does not
depend on the initial distribution u, we deal with a linear family. If Eq. (17)
is not satisfied, we referred to the family as nonlinear, see also Table 1.

Insert Table 1 about here

3.1.1 Linear families of Markov processes

For linear families of Markov processes the integral equation

P(x,t;u) = /P(x,t|x',t')P(x',t';u) aMa’ (18)

and, in particular, the propagator relation

P(x,t;u) = / P(x, t]x, to) u(x') dMa! (19)



are satisfied for t > ¢’ > t;. Let us assume that the integral equation (18) can

be transformed into a partial differential equation of the form

0

aP(x, t;u) = A[P], (20)

where A denotes a differential operator that involves derivatives with respect
to x. In line with a pervious study [79], we can then show that the operator A
is linear with respect to P, which implies that the evolution equation (20) is
linear with respect to P. That is, linear families of Markov processes are related
to linear partial differential equations of the form (20). Consequently, processes
described by nonlinear Fokker-Planck equations such as Eq. (3) cannot be
interpreted in terms of linear families of Markov processes. Furthermore, for

linear families of Markov processes we obtain Fokker-Planck equations of the

form [71]

0
EP(X, t, U)
M 0 M 82
- DZ ) P s Uy DZ ) P ) Uy 3
z:zl o (x,t)P(x,t;u) +i,kz_1 02,0, k(x, 1) P(x,t; u)
%P(x,ﬂx',t') =

(21)

and solutions P(x,t;u) that satisfy the superposition principle

pP(x,t,u1) + (1 — p)P(x,t,us) = P(x,t,pus + (1 — p)us) (22)

with p € [0,1].

10



3.1.2 Nonlinear families of Markov processes

For nonlinear families of Markov processes, from Eq. (16) it follows that the

Chapman-Kolmogorov equation reads

P(x3,t3|x1,t1;u) = /P(x3,t3\X2,t2;u)P(Xg,t2|x1,t1;u) dMz, . (23)
Q

Consequently, the Kramers-Moyal expansion [71] gives us

0
—P(x,t)x',t';u) =

ot

S 3 o " 24
—-1)" A A Dinein (55 0) P(X, 8, 15

SOV Y s Dl tP i ] (24)

with the Kramers-Moyal coefficients defined by

M, (X 8t u) = /(yil —zi)) -+ (yi, —3,) Py, t|x, ¢ u) dMy

Q
1 M, ; t t:
Dil,...,in (X, t; u) = ﬁ 11_{% i1,eenyin (X;— + 7, aU:) ’
1 .
= Hm [ (yi, —xs) - - (yi, —xs,) Py, t + 7|x, t;u) dMy (25)
n'! r—0

Q
In contrast to a linear family of Markov processes, the Kramers-Moyal coeffi-
cients now depend on u. The Pawula theorem [71,80] applies to any transition
probability density and, consequently, to the transition probability density
(16) as well. Therefore, nonlinear families of Markov processes with a finite
number of nonvanishing Kramers-Moyal coefficients are described by
0

aP(x, tu) =
M 2

M

0
- DZ :ta P ata D'L ata P ,ta ;
izzlaxi (x,t;u)P(x u)+i7kZ:1 92000 k (%, t;u) P(x, t; u)

2P(x tix' t'su) = —g: 0 D;(x,t;u)P(x,t|x', t'; u)
at ) 7 7 Z:1 axz 2 ] 7 Y I
M 82
+ > Dy (x, t;u) P(x, t]x', t'; u) . (26)

i k=1 0x; 0y

11



The stochastic processes defined by Eq. (26) can then be described in terms

of hierarchies of probability densities given by

P(x,t;u) = /P(x,t\x’,to;u) u(x') dMz' |
Q

P(Xnatn;"';xlatl;u)
= P(Xp, tn[Xn—1,tn—1;u) - - - P(Xa, ta[ X1, t1; u) P(x1, t15u) - (27)

Note that the evolution equation (26) for P(x,t,u) is nonlinear with respect
to u. Consequently, the superposition principle (22) does not necessarily hold.

3.2  Markov embedding of nonlinear Fokker-Planck equations

We are now in the position to define stochastic processes on the basis of the
nonlinear Fokker-Planck equation (3). To this end, we define for t > ¢’ > t; a

family of transition probability densities by

0 Moo
—P(x,t]x',t;u) = = > =—Di(x,t, P(x, t;u)) P(x, t|x, t'; u)
ot im1 8.Z‘Z
ul 9 1oyt
Di ataP atu P at ,ta 3 28
5 g PO L P E PO I, i) (29

where P(x,t;u) corresponds to the solution of Eq. (3). Note that Egs. (3) and
(28) have the same drift and diffusion coefficients. If for solutions P(x,t;u)
the coefficients D;(x,t, P(x,t;u)) and D;(x,t, P(x,t; u)) describe the first and
second Kramers-Moyal coefficients of a nonlinear family of Markov processes,
then we will refer to Eq. (3) as a strong nonlinear Fokker-Planck equation.
Otherwise, we will call Eq. (3) a weak nonlinear Fokker-Planck equation. For
strong nonlinear Fokker-Planck equations a family of stochastic processes can

be defined by means of Egs. (3), (27) and (28).

Let us attack this issue from another perspective. Egs. (3) and (28) can equiv-

alently be expressed as

12



8 M
Gl tiu)==3_ mD;(x,t,to,u))P(x,t;u)
i=1
D;k X, t, to, u) P(x,t;u) (29)
and
a ! ! M a ! 1 4l
EP(XaﬂX 1 atO) = _Z ax.Di(Xata tO,U))P(X,t|X,t ,U)
i=1 OLi
+ D;,(x,t,to, u) P(x, t|x', t";u 30
Zkzlamkk 0 W) P, 1, ') (30)
with

Di(x,t,to,u) = D;(x,t, P(x,t,u)) ,
D;,.(x,t,to, u) = Dig(x,t, P(x,t,u)) . (31)

If Egs. (29,...,31) define for solutions of Eq. (3) a nonlinear family of Markov
diffusion processes then Eq. (3) is referred to as a strong nonlinear Fokker-
Planck equation. Otherwise, we consider Eq. (3) as a weak nonlinear Fokker-
Planck equation. A weak nonlinear Fokker-Planck equations primarily defines
the evolution of a probability density P(x, t;u) of a stochastic process but does
not provide us with information about other members of the hierarchy (2). In
contrast, strong nonlinear Fokker-Planck equations can be used to construct
well-defined stochastic processes for which all members of the hierarchy (2)

can be determined.

A sufficient condition that Egs. (29,...,31) define a nonlinear family of Markov
diffusion processes is that Eq. (30) has a fundamental solution, that is, it
has solutions satisfying P(x,t[x’,t';u) > 0, [, P(x,t|x',t";u)d™z = 1, and
lim ¢ P(x,t|x',t';u) = d(x — x'), see, for example, [81, Sec. 2.3.5] or [82,
Sec 5]. In other words, in order to prove that we deal with a strong nonlin-
ear Fokker-Planck equation of the form (3) we need to show that for transient

solutions of Eq. (3) the solutions of Eq. (28) (or Eq. (30)) indeed describe tran-

13



sition probability densities. A necessary condition that Eqs. (29,...,31) define
a nonlinear family of Markov diffusion processes and that Eq. (3) represents a
strong nonlinear Fokker-Planck equations is that the diffusion coefficient D;;
corresponds to a symmetric and semi-positive definite matrix (which are the

conditions satisfied by second Kramers-Moyal coefficients).

3.8 Langevin equations for strong nonlinear Fokker-Planck equations

It is clear that if we can define Markov diffusion processes by means of the
nonlinear Fokker-Planck equation (3) then we can also assign a Langevin equa-
tion to Eq. (3). We first need to define a matrix G with elements G (x, ¢, P)
that satisfies

M
Z G’il(x, t, P)le(x, t, P) = Dzk (X, t, P) (32)

=1

(for an explicit derivation of G;; see, for example, [71]). Then, stochastic tra-
jectories X(t) of P(x,t;u) defined by Egs. (29,...,31) are described by the

Ito-Langevin equation

%X() DX, t, to, u) +ZG (X, t;u)T(t) ,

Di(x,t,tg,u) = D,-(x, t, P(x,t;u)),
(X, 1 to, u) = Gi(x,t, P(x,t;u)) (33)

where P denotes a solution of Eq. (3). Just as in the univariate case, a closed
description can be found due to the equivalence between the probability densi-
ties P obtained from the Ito-Langevin equation (33) and the nonlinear Fokker-
Planck equation (3). In line with earlier suggestions [39,46], this closed descrip-

tion reads

d

th() Di(X, t,to, u) +ZG (X, t,to, u)Tk(t) ,

14



Dj(x,t,to,u) = Di(x,t, (6(x — X(t)))) ,
(Xt to,u) = Gi(x, t, (0(x — X(1)))) - (34)

3.4 Transition probability densities versus transient probability densities

One of the key issues that advances our understanding of nonlinear Fokker-
Planck equations is the relationship between transition probability densities
and transient probability densities. Let us first elucidate this relationship for
linear Fokker-Planck equations. To this end, we consider a Markov diffusion

process described by

0
aP(x,t;u)
M a M 82
- —Dz :tat P atu 7DZ atat P atu ’
> g DA )P )+ 3 5Dt )Pl 1)
2P(x tx',tu) = —% 0 D;(x,t,t0)P(x, t|x',t';u)
(915 ) s Uy pt (9:13, ACRIRZRI] 3 s Uy
M 2
Dj(x,t,t0)P(x,t|x', t'; 35
A 8$Za$k k(xa ) 0) (X |X U) ( )

for t > t' > t;. Note that here the drift and diffusion coefficients depend explic-
itly on the parameter ¢y which corresponds to the initial time of the process. As
a simple example we may think of a periodically driven overdamped motion of
a particle given by dX (¢)/dt = —yx+ Asin[Q(t —t)] ++/ QL' (¢) for t > to. It is
important to realize that the fact that D; and D;; depend on ¢y, does not violate
the requirement that we deal with a Markov process (see also the example).
In a similar vain, we would like to emphasis that from Eq. (35) it follows that
P(x,t;u) and P(x,t|x',t';u) depend on the parameter ¢, such that we could
also write P(x,t;u) = P(x,t;u,ty) and P(x,t|x',t';u) = P(x,t|x',t;u,t) or
alternatively P(x,t;u) = P(x,t;u), and P(x,t|x',t';u) = P(x,t|x',t';u)y,.
We prefer the notation P(x,t|x’,t';u);, (and likewise P(x,t;u);,) because the

term P(x,t|x',t;u,ty) could wrongly be interpreted as a non-Markovian con-
g

15



ditional probability density P(x,t|x',t';xy,,%0). Just to avoid confusion: for
every initial condition u the solution P(x,t|x',t';u),, of Eq. (35) describes a
Markov transition probability density. However, P(x,t|x’,t';u);, depends in
general on all parameters that occur in D; and D;; and, consequently, on the

parameter tg.

By comparing the evolution equations for P(x,¢;u) and P(x,t|x’,t';u) of Eq.

(35), we can verify that the equivalence

P(x,t;6(x — x0))t, = P(x,t|x0,10;0(x — X)) (36)

holds. In words, the transient probability density P(x,¢;d(x —xX)) with initial
distribution (x —xg) can be computed from the transition probability density
P(x,t|xg, to; §(x — xg)). However, if D; or D;; depend explicitly on t, then for

t >t >ty we have

P(x,t|x',t";6(x — x')) # P(x,t;0(x — X0))1, | (37)

xo=xto=t! *
This relation tells us that if we determine the transient probability density
P(x,t;6(x — xg))s, of the stochastic process given by Eq. (35) and then re-
place xy and ¢y by x’ and #' then we do not obtain the transition probability
density P(x,t|x',t';6(x — x')). That is, for the linear Fokker-Planck equation
(35) with coefficients that explicitly depend on t; the transition probability
density P(x,t|x’,t';u) does not correspond to the transient probability den-
sity P(x,t;u) for u = 0(x — xg) and ¢’ > . In a nutshell, transient solutions
with delta-distributed initial distributions are not necessarily equivalent to

transition probability densities.

This difference between transient solutions and transition probability densities
becomes crucial for strong nonlinear Fokker-Planck equation because strong
nonlinear Fokker-Planck equations can be mapped to linear Fokker-Planck

equations with drift and diffusion coefficients that depend on P(x,t;u). Since
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P(x,t;u) depends on the initial time ?y, strong nonlinear Fokker-Planck equa-
tions can be mapped to linear Fokker-Planck equations with drift and dif-
fusion coefficients that depend on ty. For this reason, transient solutions of
nonlinear Fokker-Planck equations cannot be considered as transition prob-
ability densities of Markov diffusion processes and do not necessarily satisfy
the Chapman-Kolmogorov equation. This can conveniently be illustrated for

transient solutions that can be written in the form a Gaussian distribution

P(z,t;0(x — x9)) = mexp {—

[z — zom(t, to)]?
Kt 1) } (38)

with limy_,4, K (,%9) = 0. For example, in a pervious study [79] for two nonlin-
ear Fokker-Planck equations explicit time-dependent solutions satisfying Eq.
(38) have been derived and it has been shown that they violate the Chapman-
Kolmogorov equation. We would like to point out that in [79] from this finding
the conclusion has been drawn that nonlinear Fokker-Planck equations cannot
describe Markov processes. As illustrated in Sec. 3.2 this conclusion needs to
be revised: nonlinear Fokker-Planck equations cannot describe linear families
of Markov processes but they can describe nonlinear families of Markov pro-
cesses. In sum, transient solutions of strong nonlinear Fokker-Planck equations
that describe Markov processes can violate the Chapman-Kolmogorov equa-
tion because they do not correspond to the transition probability densities of

the Markov processes. Let us illustrate this point by an example.

3.5 Example: Shimizu-Yamada model

In line with work by Shimizu and Yamada [83,84] and others [85], we consider
the mean field Fokker-Planck equation

9 Platiu) = -2 b+ vlo = (X)) P+ Qg P (39)
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for k > 0,7 > 0, and t > t;. For Kk = 0 Eq. (39) reduces to the linear
Fokker-Planck equation of an Ornstein-Uhlenbeck process. In what follows,
we will consider the case k > 0. For the mean field model (39) an exact

time-dependent solution can be found [79,85]:

YN SR ) k. Q)
Plntsite =) = e (IS,
with
m(t)=exp{—(t —to)} , (41)
K(t) e [1 — e 20#R)(tt0)] (42)

For v > 0 the time-dependent Gaussian distribution converges to the station-
ary one in the long time limit. As shown in Sec. 3.2 the stochastic processes
described by the mean field Fokker-Planck equation (39) can equivalently be
expressed in terms of a nonlinear family of Markov diffusion processes with

transition probability densities given by

a !4l _ a 1oyt
o P tla 5 u)= 2= [ya 4+ k(@ = (X) pg )] Pla,tla’, 5 0)

82
—P ") . 4

From Eq. (43) it is clear that Eq. (39) corresponds to a strong nonlinear
Fokker-Planck equation because the effective drift and diffusion terms are con-
tinuous functions with respect to = and ¢. In particular D’ reads D} (z,t,t0) =
—vx — k(x — My(t)) with M;(t) satisfying dM;(t)/dt = —yM;(t). For the
time-dependent probability density (40) we obtain M (t) = xgexp{—"(t—1p)}
which leads to
%P(x, tlx' 5 6(x — xg)) = % [(’y + k)T — /ixoe_”’(t_t"))] P+ Q;—;P :
(44)
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Eq. (44) is a linear Fokker-Planck equation describing an Ornstein-Uhlenbeck
process subjected to a time-dependent driving force f(t—ty) = kzgexp{—7(t—
to) }. By means of a moving frame transformation, one can show that Eq. (44)

is solved by

1oy, _ _ 1 . [.’E - g(t, tla tO) — J)’m(t, tl)]Q
Pz, t|z',t";0(x — x0)) = KT exp 2K (L, 1)
(45)
with
m(t, ') =exp{—(y + £)(t — 1)}, (46)
Q _ L
K(t.t) = 1 — ¢ 20(r+R)(t=t)
)= l (a7
9(t, ', to) = o [exp{—y(t — to)} —exp{—(y + k)t +vto + Kt'}] . (48)
Comparing Egs. (40,...,42) with (45,...,48), we realize that
P(x,t|z',t';8(x — x0)) # P(z,t;6(x — xo))t0|z0:$,7t0:t, (49)

for t' > ty. That is, for t' > t; transition and transient probability densi-
ties differ from each other, see Sec. 3.4. However, for ¢ = ¢, the expression

g(t,t', t) + zem(t,t') becomes

9(t, to, to) + zomi(t, to)

= o [exp{—y(t — to)} — exp{—(7 + K)(t — to) }] + zo exp{— (7 + &) (t — 10)}

= zoexp{—(t — to)} = zom(t) (50)
leading to

P(z,t|zg,t0;0(x — x9)) = P(x,t;5(x — 0))4, - (51)

It has been shown that the transient solution given by Egs. (40,...,42) vi-
olates the Chapman-Kolmogorov equation if it is interpreted as a transition

probability density [79]. In contrast, the transition probability density given
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by Egs. (45,...,48) satisfies the Chapman-Kolmogorov equation (which can be
shown explicitly by a detailed calculation, see e.g. [86]). With Eqs. (40) and
(45) at hand, we can explicitly describe Markov diffusion processes defined by
Egs. (39) and (43) for initial distributions u(z1) = §(z1 — xo):

P2, tn; .. .5 71, t15u) =
P(T, tp|p_1,tno15u) -+ - P, to|z1, tr; u) P(w1, ti5u) - (52)

While Eq. (52) describes the stochastic processes under consideration in terms

of distribution functions, the Langevin equation

d

X (1) = —(y +R)X (1) + K (X (D) + Q) (53)

for t > ty and X(ty) = =xo describes the very same processes in terms of
stochastic trajectories. In particular, from Eqs. (40) and (45) we can compute
the probability density P(z,t;2',t';6(x — x0)) and the correlation function
(X (t)X(t')). Thus, we obtain

(XWX () = g(t,t, 1) Mi(t) + e TOUDK () + M(t)?] (54)

with M;(t") = zgexp{—7(t — ty)} and K and g, respectively, defined by Egs.
(42) and (48). We solve numerically Eq. (53) and compute (X (¢)X(¢')) by
means of (X (#)X(#)) = L' Y r_, X'(t)X'(#') for large L, where X'(t) are re-
alizations of X (¢), and compare the result with the analytical expression (54).
Fig. 2 shows M;(t) and (X (¢)X(¢')) as predicted by the theory of nonlinear
Fokker-Planck equations versus the corresponding quantities as obtained from
a simulation of Eq. (53).

Insert Figure 2 about here
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4 Conclusions

Common properties of nonlinear Fokker-Planck equations

We have discussed a generic nonlinear Fokker-Planck equation that includes
as special cases a variety of nonlinear Fokker-Planck equations that have been
examined in the literature. We have found that a system described by the
nonlinear Fokker-Planck equation is characterized by a stochastic feedback:
the stochastic behavior of the system depends on the stochastic properties of
the system. Processes with stochastic feedback may be regarded as hitchhiker
processes defined on families of Markov diffusion processes. These hitchhiker
processes permanently switch from one member of the family to another. The
choice of a family member depends on stochastic properties which reflects
the feedback structure. In addition, following Wehner and Wolfer we have
demonstrated that path integral solutions of nonlinear Fokker-Planck equa-

tions nicely illustrate the impact of stochastic feedback.

Taking a mathematical point of view, we have shown that under particular
circumstances solutions of nonlinear Fokker-Planck equations can correspond
to Markov processes. To this end, we have considered nonlinear families of
Markov processes. We have shown that nonlinear Fokker-Planck equations
can be used to define nonlinear families of Markov processes. In this case,
we deal with strong nonlinear Fokker-Planck equations, Kramers-Moyal coef-
ficients that depend on single time-point probability densities, and transition
probability densities that depend on initial distributions. This interpretation
of nonlinear Fokker-Planck equations seems to be consistent with the Kramers-
Moyal expansion for nonlinear Fokker-Planck equations proposed by Borland
[39]. Furthermore, we would like to point out that the hitchhiker processes
discussed in Sec. 3.2 are related to a special case of our embedding procedure:
for nonlinear Fokker-Planck equations with coefficients that do not explicitly

depend on t we obtain Egs. (9) and (10) from Egs. (28,....31).
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Finally, we have demonstrated that in the context of nonlinear Fokker-Planck
equations we carefully need to distinguish between transition probability den-
sities and transient probability densities. This issue should be considered as
a crucial one because the literature abounds with derivations of exact time-
dependent solutions for nonlinear Fokker-Planck equations. Our point here
is that without a careful discussion these solutions should exclusively be re-
garded as transient solutions and not be interpreted as transition probability

densities.

How nonlinear can nonlinear Fokker-Planck equations be?

The nonlinear Fokker-Planck equations that have been considered in the pre-
vious sections are nonlinear with respect to single time-point probability den-
sities. In order to assign Markov processes to these nonlinear Fokker-Planck
equations, we have used nonlinear evolution equations for single time-point
probability densities but linear evolution equations for transition probability
densities. As we have argued in Sec. 3.2, we can then transform for every initial
distribution a nonlinear Fokker-Planck equation into a linear Fokker-Planck
equation. A different kind of nonlinear Fokker-Planck equation has been dis-
cussed by Borland [38]. Borland considered a nonlinear Fokker-Planck equa-
tion given by a nonlinear evolution equation for a transition probability den-
sity. Nonlinear Fokker-Planck equations of this kind have not been addressed
in the present study. They may be considered as Fokker-Planck equations that
are more nonlinear than the one considered in this manuscript. The study of
nonlinear evolution equations as suggested by Borland can be regarded as a
new challenge that will most probably lead us to stochastic processes different

from those discussed here.
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Table 1

Linear and nonlinear families of Markov processes.

P(Xp, tn|Xn—1,tn—1;u) type of family

Vu : P(Xp,tn|Xn—1,tn—1) | linear

otherwise nonlinear




Figure captions:

Fig. 1: Hitchhiker behavior of a stochastic process defined by a nonlinear

Fokker-Planck equation.

Fig. 2: M, (t) and C(t,t") = (X (¢)X(t')) as functions of ¢. Solid lines represent
analytical results obtained from Egs. (41) and (54). Diamonds represent results
obtained from a simulation of Eq (53). (X (¢) X (')) is given for ¢t > t'. For ¢t < ¢/
we have put (X (¢)X (¢')) = 0. Parameters: Q = 2, o = 1,y = K = 1, and
t'=0.4.
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