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Abstract

Stochastic processes of dynamic mean field models are studied in terms of non-
linear Fokker-Planck equations. We show that H-theorems for single time-point
distributions can be used to derive H-theorems for hierarchies of joint distributions.
In doing so, we prove the convergence of transient stochastic processes to station-
ary ones. For multistable systems we furthermore determine the basins of attraction
of these stationary processes. Our results are illustrated by means of a mean field

model exhibiting bistability.

PACS: 05.20.-y, 05.40.+j

1 Introduction

Dynamic mean field models described by nonlinear Fokker-Planck equations
have found applications in various fields such as plasma physics [1-3], sur-

face physics [4,5], astrophysics [6-8], physics of polymer fluids [9] and particle
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beams [10,11], theory of electronic circuitry and laser arrays [12,13], human
movement sciences [14,15], biophysics [16-24], and neurophysics [25-29]. The
reason for this is that, on the one hand, they illustrate the convergence of
many-body systems to stationary states in the long time limit and, on the
other hand, they can account for equilibrium and nonequilibrium phase tran-
sitions of systems and the emergence of collective phenomena. The approach
to stationary states is usually proven by means of H-theorems for particle
distribution functions [7,8,30-33]. Phase transitions are often observed in the
context of multistability [34]. Taking a microscopic point of view, nonlinear
Fokker-Planck equations are often regarded as limiting cases of N-dimensional
linear Fokker-Planck equations for N — oo [17,27,35,36], mean field approx-
imations of functional Fokker-Planck equations [37], and diffusion equation
approximations to nonlinear master equations [38]. Note that the nonlinear
Fokker-Planck equations thus obtained typically involve nonlinear order pa-

rameter equations.

Although it seems that we have achieved a sound understanding of mean field
models given by nonlinear Fokker-Planck equations, there are two key issues
that have not been clarified up to now. First, if we are able to prove that
particle distribution functions P(x,t) become stationary in the long time limit,
does this imply that the underlying stochastic processes become stationary
as well? That is, can we conclude from the asymptotic behavior P(z,t) —
Py (x) that joint probability densities P(z,t;z',t"), P(x,t;2',t'; 2",t"), ... and
in particular autocorrelation functions such as (X (¢) X (#')) become stationary?
Second, if there are multiple stationary states described by a set of stationary

distributions, say, PL, P2

s Pags - - -» then what are the basins of attraction of these

distribution functions? In what follows, we will discuss these two issues both
from a general perspective and in application to a bistable mean field model

that can be treated analytically.



2 General case

Let X(t) denote an univariate random variable that describes a stochastic
process for t > ty defined on a phase space Q2. Let P(x,t;u) = (6(x — X (%))
denote the time-dependent probability density of X (¢) subjected to the initial
condition P(z,ty; u) = u(x). We assume that P satisfies the nonlinear Fokker-

Planck equation
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where D; and D, are referred to as drift and diffusion coefficients. Eq. (1) can

be written as a continuity equation
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J = Di(z,t, P)P(x,t;u) — %Dg(aﬁ,t, P)P(z,t;u) (2)

J,

that involves a probability current J. If for solutions of Eq. (1) the coeffi-
cients D(x,t;u) = Di(z,t, P) and Dj(x,t;u) = Do(z,t, P) correspond to
Kramers-Moyal coefficients of transition probability densities P(x,t|2’,t';u)
of Markov diffusion processes, then we can embed the solutions P(x,t;u) of
Eq. (1) into these Markov diffusion processes [39]. Accordingly, P(x,t|2’,t'; u)

can be computed from
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and the Markov diffusion processes can be described in terms of hierarchies of

the distribution functions such as

Pz, t;u)
Pz, t;2' ' u) = Pz, t|2', t';u) P(a' t';u)
Pla, @ 032, ¢ 0) = Pla, t, 5 0) P, £ o 2 0) P, ')

(5)

Alternatively, one may consider the Ito-Langevin equation
d
X0 = Di(X,tu) + /Dy(X, 5 u)D (1) (6)

with D} (z,t;u) = Di(z,t, P) and Dj(x,t;u) = Ds(z,t, P) (see above) or the

Ito-Langevin equation

d a——
EX(t) = Dl(l’,t, P)|$:X(t) + DQ(I,t, P)

L), (7)

z=X(t)

see [39,40]. Here, I'(¢) denotes a Langevin force with (I'(¢)I'(¢')) = 2d(t — t')
[41,42]. While in Eq. (6) the drift and diffusion coefficients D] and D, are
obtained by solving simultaneously the Fokker-Planck equation (1) and sub-
stituting P into D; and Dy, in Eq. (7) the probability density P is computed
from P(z,t;u) = (6(x — X (t)). Therefore, we refer to Eq. (6) as a two-layered
Ito-Langevin equation, whereas Eq. (7) is referred to as a self-consistent Ito-

Langevin equation. From the Ito-Langevin equations the distribution functions

Pz, t;u)={0(x — X
P(z, ;2 u) = (6(z — X (?))
Pz, t; o' ;2" " u) = (6(z — X

can be computed and, of course, are equivalent to those listed in Eq. (5).
We will refer to nonlinear Fokker-Planck equations whose solutions can be

embedded in the aforementioned way into Markov diffusion processes as strong



nonlinear Fokker-Planck equations [39]. In what follows, we will assume that

we deal indeed with strong nonlinear Fokker-Planck equations.

2.1 H-theorem for stochastic processes

Let us assume that for a particular choice of the drift and diffusion coefficients
there is a H-theorem that states that solutions of Eq. (1) satisfy the limiting
case

lim P(z,t;u) = Py(z) . 9)

t—o0

That is, they become stationary in the long time limit. Then the question
arises: does a stochastic process described by Egs. (5) and (8) converge to a
stationary one? In fact, we will answer this question in the affirmative and

shown that if Eq. (9) holds, then the limiting case

lim P(z, t|a’,#;u) = Py(x, Atla’; Py) (10)

holds with At = t—t' which implies that the stochastic process under consider-
ation becomes stationary. Let us consider systems with D, (z,t, P) = Dy(z, P)
and Dy(z,t, P) = Dy(x, P). Then, we first note that on account of Eq. (9) in

the limit t — oo Eq. (4) can be written as

0 0
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Using the Fokker-Planck operator
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and ¢t = t' + At, the formal solution of Eq. (11) under the initial condition
limaso Pz, t' + Atz t';u) = 6(x — 2') reads

P(z,t' + At|z', t'; u) = exp{Lrp(z,0/0x, Py )At}d(z — z)
= Py (x, At|z'; Py) - (13)

As indicated, we can read off from this formal solution that P(z, t'+At|z', t'; u)
depends only on the time interval At =t — ¢’ and, consequently, can be cast

into the form Py (x, At|z'; Py).

Our next objective is to show that stationary transition probability densities of
strong nonlinear Fokker-Planck equations converge to stationary distribution

functions in the limit At — oo. That is, we will prove that the limiting case

Altiinoo Py (z, At|x'; Py) = Py(z) (14)

holds. In order to derive Eq. (14), we confine ourselves to systems with sta-
tionary distributions Py that are defined by vanishing probability currents J.
For J =0, Dy(z,t, P) = Dy(z, P), Dy(x,t, P) = Dy(x, P), and P = Py from
Eq. (2) it follows

0 0
Dl(.’L',PSt) = a—ng(iE,Pst) +D2($’P3t)8_xlnPSt . (15)
In this case, Eq. (11) for P(z,t|z',t';u) = Py(z, At|2’; Py) can be written as

[43]
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Using Eq. (15), we obtain Eq. (11). Next, we write Eq. (16) as

0
—— Py(z, At|z'; Py)

0At
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(18)

and introduce the Kullback measure

Py (z, At|z'; Py)
Pst (.'L')

K(At,z') = / Py (2, Atlz'; Py) In dz>0  (19)
Q

which is semi-positive definite [44,45]. Differentiating K (At,z') with respect

to At, using Eq. (18), and integrating by parts, we obtain

0
% K(At, ) =
DAL (At, z")
0 . Psl(x,Atlz'; Py) 2

_h/DQ(x.Pst)Pst(xa At‘x’;PSt) %ln Pst(m)

dz <0. (20)

It is clear from Eq. (20) that 0K/0At = 0 implies Py (z, At|z'; Py)/ Py(z) =
C(z', At), where C is independent of z. From Eq. (16) it then follows that
0Py (x, At|z'; Py)/0At = 0 holds which means that Py(z, At|z'; Py) is in-
dependent of At. This in turn implies that C'(z', At) is independent of At.
Thus, we obtain the intermediate result: 0K/0At = 0 = Py (z, At|z'; Py) =
C(2") Py (x). Integrating this result with respect to z and taking the normal-
ization condition into account, we see that C'(z') = 1 holds. In sum, K(At, z")

satisfies the relations:

K(At,z') >0,
0
——K(At,z') <
%K(At, 7') =0 Py(x, At|z'; Py) = Py(x) . (21)

Consequently, K (At, ') is a Lyapunov functional for Py(z, At|z'; Ps) and we
conclude that Eq. (14) is satisfied.



2.2  Basins of attraction

In order to determine the basins of attraction for stationary distributions, we
assume the nonlinear Fokker-Planck equation (1) exhibits multiple stationary
distributions that can be written in terms of Py, = Py (z; g5 ), where gy, denotes
the stationary value of an order parameter g. Then the question arises to which
one of the stationary solutions does a transient solution converge. In other
words: what are the basins of attraction of the stationary distributions. We
will not answer this question in general. However, there is a simple answer to
this question for Fokker-Planck equations for which closed evolution equations
for order parameters can be derived that read

Salt) = f(a) (22)

For every time-dependent distribution P(z,t; u) with initial distribution u(x)
and order parameter value ¢(t,) we obtain the corresponding stationary value
gsy by solving Eq. (22), which, in turn, gives us the corresponding station-
ary distribution. In other words, from P(z,tp;u) = u(z) we get q(ty). From
q(to) we get gy, by means of Eq. (22) and from ¢y we get Py (z, g5 ). Thus, we
can determine the basins of attraction of stationary distributions and write
down a mapping u(x) — ¢t — Pe(, gst)- In the context of nonlinear Fokker-
Planck equations nonlinear order parameter equations of the form (22) have
been derived in many fields such as chemistry [38], electronic circuitry [46],
synchronization [17,47-49], surface physics [4], population dynamics [23], neu-
rophysics [50], and have been used to study basic properties of many-body
systems with long-range interactions [14,35,51-54], see Table 1.
Insert Table 1 about here

Now, let us assume that the coefficients Dy (z,t, P) = D;(x, P) and Dy(z,t, P) =

Dy(z, P) in Eq. (1) depend on P by means of an order parameter ¢ = (A). In



this case, Eq. (1) reads

9] 0 0?
&P(ac,t; u) = _8_3:D1( (A))P(x,t;u) + WDQ( (A))P(z,t;u) . (23)

We may further assume that there are multiple stationary distributions of the

form Py = Py(x; (A),,) and that the order parameter (A) evolves like
d
3 0 =f((4) . (24)

Then, the initial value of (A) determines completely which stationary distri-
bution out of all possible stationary distributions is selected in the long time

limit.
2.3 Free energy Fokker-Planck equation with Boltzmann statistics

The evolution of probability densities P(z,t;u) of systems with free energy
measures F[P] = U[P] — QS[P] may be described by the free energy Fokker-

Planck equation

%P(aj,t; u) = %P%g—i (25)
that can, for example, derived from linear nonequilibrium thermodynamics
[33,55], the kinetical interaction principle [31] or alternative methods [8]. Here,
U[P] is a measure for the internal energy and in general is nonlinear with re-
spect to P. The variable S denotes a general entropy measure. If F' is bounded
from below, then there is a H-theorem that states that P(x,t;u) becomes sta-
tionary in the long time limit [33] (see also [7,8,30-32]). If S is given by the
Boltzmann entropy S[P] = — [ PIn P dx, then Eq. (25) can equivalently be

expressed as

0 0 00U 82



By comparison with Eq. (1), we find that D;(z,P) = —(0/0z)0U/6P and
Dy(z, P) = Q. In the special case U[P] = [,V (z)P(z) dz+ [q Bo(z)P(x)dz+
B((A)) Eq. (26) reads

0 d dB((A)) dA(x) 0?

0
aP(x,t; u) = (9_3:P ﬁ[V(aj) + By(z)] + 1(4) dz + Q@P
(27)

and involves a drift coefficient D;(z, P) = D;(z, (A)). If the expression given
by Jo Bo(x)P(z)dz + B({A)) is bounded from below, one can show that F is
bounded from below [56]. Note that in this case B(z) must not be bounded
from below. In sum, nonlinear Fokker-Planck equations that can be cast into
the form (27) are globally stable in the sense that transient solutions converge
to stationary ones. In addition, Eq. (27) can exhibit multiple stationary states
because of the nonlinear drift term D (z, (A)))P(z,t;u). Therefore, Eq. (27)
can be used to illustrate the issues discussed in sections 2.1 and 2.2 — as we

will show next.

3 Example

The evolution of the magnetization M (t) of an Ising ferromagnet is often

described by the differential equation

%M(t) = —a; M(t) + a tanh(az M (t)) (28)
with a1,a9,a3 > 0 [57-59]. Our objective now is to illustrate the results of
the previous sections by means of a nonlinear Fokker-Planck equations whose
solutions satisfy Eq. (28). Just as in the case of the Desai-Zwanzig model, we
can then regard symmetric stationary solutions with M = 0 as some kind
of paramagnetic phases and asymmetric stationary solutions with M # 0 as

some kind of ferromagnetic phases.

10



To begin with, let us consider Eq. (27) with

B(z) = —Incosh(y/cz) (29)

for ¢ > 0, A(z) =z, V(z) = y2%/2, and By(z) = y2?/2:

%P(m,t; u) = % [(7 +¢)x — /c tanh(v/c (X))] P+ Q;—;P . (30)

The first moment of the solutions P(x,t;u) satisfies

d dV;
M =—(y+ )M, + Vetanh(VeMy) = —dAZ : (31)
where V' is defined by
_ T 2, ¢ 2
Vi (z) = PEAR i In cosh(y/cz) . (32)

~ v

~~

Ve(2)

We realize now that for a; = y+¢, as = y/c and a3 = v/c Eq. (31) corresponds
to Eq. (28). In addition, Eq. (30) can be regarded as a free energy Fokker-
Planck equation (25) with F' defined by

Cc

FIP = 2 (X?) +3

(X?)+ B((X)) - QS[P]. (33)
We can verify that the expression Y = B(z) + (¢ + 7)2%/2 is bounded from
below for v > —c (hint: for large |z| we have B o —|z|). Consequently, it
can be shown that F' is bounded from below [56] and that the H-theorem
for free energy Fokker-Planck equations applies which means that we have
lim; o, OP(x,t;u)/0t = 0. Moreover, one can show that V,(z) vanishes at z =
0 and increases monotonically with |z| both for z > 0 and z < 0. Consequently,
the potential (32) is monostable for v > 0 and bistable for v < 0 (and v > —c,
see below), see Fig. 1. That is, for v € (—c,0) the potential V,; describes a

double-well potential and there are multiple stationary solutions of M;.

11



Insert Fig. 1 about here

Eq. (30) belongs to a class of nonlinear Fokker-Planck equations (27) that has
been studied in detail in [60]. Accordingly, stationary distributions satisfy the
implicit equation

_ frte (y+¢) Ve i
Py(z) = 0 &P {— 20 lﬂﬁ - mtanh(\/é <X>st)] } , (34)

(see Eq. (25) in [60]) and the stationary values of the order parameter (X)

can be obtained from the self-consistency equation

(X = B({(X)g) (35)

with R(m) given by

R(m) = Ve tanh(y/cm) (36)

c+vy

(see also Eq. (31) for the stationary case). It is clear that R(0) = 0 holds and,

consequently, a stationary solution is described by

) = [ {050 o

In view of the antisymmetry property R(m) = —R(—m), we conclude that

if m # 0 is a solution of the self-consistency equation m = R(m) then —m
corresponds to a solution as well. Now, let us discuss under which conditions
the self-consistency equation has nonvanishing solutions. First, we note that

R(m) is a monotonically increasing function with

because of 1 — [tanh(z)]? > 0. It is clear that if dR/dm < 1 holds for all m,

then m = R(m) is only solved by m = 0. The reason for this is that if R(m)

12



with R(0) = 0 is smaller than m for m > 0 and larger than m for m < 0,
then m = R(m) is only solved by m = 0. Since 0 < 1 — tanh?(2') < 1 for
z' € R, for v > 0 we have Vm : dR/dm < 1 and the self-consistency equation
has a unique solution given by m = 0. In contrast, for —c¢ < v < 0 we have
dR(0)/dm = ¢/(c +v) > 1 and we find that the self-consistency equation

exhibits solutions with m # 0, see Fig. 2.

The stability of stationary distributions can be determined by means of self-
consistency equations, Lyapunov’s direct method, and linear stability anal-
ysis [30,60]. For v > 0 we have dR(0)/dm = c¢/(c + ) which implies that
the symmetric probability density (37) is asymptotically stable (because of
dR(0)/dm < 1), whereas for v < 0 the distribution (37) becomes unstable
(because of dR(0)/dm > 1 for v < 0). Moreover, from Fig. 2 we read off that
for —¢ < v < 0 we have dR(m)/dm < 1 at solutions m # 0 of m = R(m).
Consequently, the asymmetric probability densities (34) with (X), # 0 are
asymptotically stable if they exist. The mean values M; i, = m computed from
m = R(m) for several values of v are shown in Fig. 3. For v | —c the station-
ary mean values Mg # 0 behave like M) — +o00. For v < —c stationary
solutions cease to exist.

Insert Figures 2 and 3 about here

3.1 Illustration of the H-theorem for stochastic processes

As shown in Sec. 2.1 the limiting case (10) holds. Our aim now is to il-
lustrate this asymptotic behavior by means of the autocorrelation function
C(t,t') = (X (t) X (t')) defined for t > ' > t,. From Eq. (31) it follows that for
every initial distribution u(z) the first moment M; corresponds to a continu-

ous function of time: M; = M;(t;u) Therefore, Eq. (30) can equivalently be

13



expressed as

0 0 0?

aP(m, t;u) = P [(7 + ¢)x — v/c tanh(y/c M (¢; u))] P+ Q@P (39)
involving the drift coefficient D} (z,t;u) = —(v + ¢)z + \/c tanh(y/cM;(t;u)).
Since D/ can be regarded as the first Kramers-Moyal coefficient of a Markov
diffusion process, Eq. (30) is a strong nonlinear Fokker-Planck equation and
the transition probability density of the Markov diffusion process of interest

satisfies

2P(aﬁ,t|:1:',1§';u) = 68

ot or [(’Y +c)x — Ve tanh(\/E <X)P(J:,t;u))] P(z, t|ac', ¢ w)

0 1oyt
oY ju) - 4
+an2P(x,t\x,t,u) ( 0)

From Eq. (40) we obtain the evolution equation

%C’(t, t') = —(v + ¢)C(t, ") + /cM,(t') tanh (/e M, (t)) (41)
which has to be solved under the initial condition C'(¢,¢') = My (t') = (X?(t')).

Thus, we get

C(t, 1) = My(t') exp{—(y + ¢)(t — 1)}

t

/My () / exp{—(7 + ¢)(t — 2)} tanh(veMy (2)) dz . (42)

tl
We need to determine now the unknown second moment M,. From Eq. (30)

it follows that

%Mg(t) = Z9(y+ ) Ma(t) + 2Q + 2/eMy (¢) tanh (M, (1) . (43)

Note that in the stationary case this equation reduces to Mog = Q/(7+¢) —
M7, which gives us the variance Ky = Q/(v+c) of the stationary distribution

(34) again. In sum, solving the evolution equations for M;(t) and M, () given

14



by Egs. (31) and (43) and substituting the result into Eq. (42) we can obtain

for all pairs (¢,%') the autocorrelation function C(¢,t).

Now let us show that the autocorrelation function becomes stationary in
the stationary case: lim; o0y 500 C(1,t') = Cys(t — t'). To this end, let us
first note that if z € [t',t] and ¢,¢' — oo holds then we can draw the
(somewhat trivial) conclusion that z — oo. Consequently, the integral in
Eq. (42) becomes \/cM, g tanh(y/cM, &) [4 exp{—(7 +¢)(t — 2)} dz. If we use
Vetanh(y/eMig) = (7 + ¢) My 4 (see Eq. 31)), we obtain

lim C(t,t) = M}, + Kgexp{—(y+c)(t —t')} = Cu(t — t') . (44)

t—o00,t —00

That is, C'(¢,t') indeed becomes stationary in the stationary case. Furthermore,

Eq. (44) satisfies the special cases Cg(0) = M and limas oo Cst(AL) = Mﬁst.

3.2 Basins of attraction

As mentioned earlier the potential Vj,(2z) given by Eq. (32) is bounded from
below for v > —c. It is monostable for v > 0 and bistable for —c < v <
0, see Fig. 1. For —¢ < v < 0 we conclude from Eq. (31) that probability
densities P(z,t;u) with M;(0) > 0 converge to the asymptotically stable,
asymmetric stationary distribution (34) with M; ¢ > 0, whereas P(z,t;u)
with M;(0) < 0 converge to Eq. (34) with Mg < 0. Probability densities
P(z,t;u) with a vanishing first moment converge to the unstable solution (37).
Consequently, in the function space of probability densities the distributions
u(z) with [ zu(x)dz = 0 describe some kind of separatrix. We would like
to point out that not only converge all distribution functions P(z,;u) with
Jozu(x) dz # 0 to the stationary distribution (34) with My ¢ > 0 or My ¢ <0
but also all stochastic processes described by Egs. (5) and (8) converge to

two kinds of stationary stochastic processes exhibiting either M; > 0 or

15



Mg < 0.

3.8 Langevin equation

The self-consistent Langevin equation (7) that corresponds to the strong non-

linear Fokker-Planck equation given by Egs. (30) and (40) reads

LX(1) = —(y + X + vetanh(vVe (X)) + QT (1) (45)

dt

We can compute now the autocorrelation function C(¢,¢') from Egs. (31),
(42), and (43) obtained from the Fokker-Planck description or alternatively
from the Langevin equation (45). As shown in figures 4 and 5 both methods
yield the same results. In particular, Fig. 5 illustrates the convergence of the
stationary autocorrelation function Cg(At) to the limit value Mﬁst in the
limit At — oo. In order to illustrate the basins of attraction, we solved the
Langevin equation (45) for several initial values of M;, see Fig. (6). Again,
we solved also the corresponding evolution equation (31) obtained from the
Fokker-Planck description and found consistent results.

Insert Figures 4,5, and 6 about here

4 Top-down versus bottom-up approach

In the introductory part of Sec. 2 we have briefly addressed the embedding of
solutions of strong nonlinear Fokker-Planck equations into Markov diffusion
processes as suggested in [39]. This embedding procedure should be regarded
as a top-down approach because our departure point is a nonlinear Fokker-
Planck equation of the form (1) and we assume that we do not have any further
information at our disposal. In contrast, various studies have been concerned

with the derivation of nonlinear Fokker-Planck equations by means of bottom-

16



up approaches, see, for example, [17,27,35,36]. We would like to show next that
for nonlinear Fokker-Planck equations with drift and diffusion coefficients that

depend on an order parameter both approaches yield the same result.

We start off with a many-body system composed of subsystems that can be
described by the state variables X (t) with & = 1,..., No. We consider the
thermodynamic limit: Ny — oco. In order to deal with the limit Ny — oo, in
what follows, we will focus on finite subsets of the subsystem ensemble. Let
I, = {i1,...,i} denote a set of L different indices with 4; > 1. Then, we
assume that for all L > 1 and all possible index-sets I;, the dynamics of the

subsystems can be described by the L-dimensional [to-Langevin equation

No

1

d
dt

= | Dy (Xik,t, lim —ZA ) (t) (46)

071

for i, € I, and (I';, (¢)[y, (t)) = 2d,,0(t — t'). Note that Eq. (46) accounts for
the impact of all ensemble members on an individual subsystem i, (i.e., the
sum runs from one to infinity and does not run from 1 to L). Let us describe
the sub-population of ensemble members I; by means of the state vector
X, = (X4, .., X;,). We will prove now that the subsystems are statistically-
independent for all times ¢t > t* if they are statistically-independent at time ¢*
and are distributed according to the same law. Consequently, we assume that

there is a time t* for which

mh

P(z,t")| (47)

* —_—
XL,t = w%

k=1
holds for all L > 1 and all index-sets I;. Here, P(x;,t*) denotes the mul-
tivariable probability density P(xr,t*) = (§(xr — X (¢*))), while P(xz,t) de-
notes a single subsystem probability density. From Eq. (47) it is clear that
limy oo NPXN, A(X;(#9)) = (A) (t*) = [ A(x) P(z,t*) dz holds. To proceed
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further, we assume (just as in the top-down approach) that the coefficients

Di(x,t) = Di(,1,(A) (1)) , Dj(z,t) = Da(x,t, (4) (t)) (48)

denote first and second order Kramers-Moyal coefficients of a Markov diffusion
process at time t*. Consequently, from Eq. (46) we obtain the L-dimensional

Fokker-Planck equation

il e ) =
LT 9 \ oy, O ) ; )
3 [ 2D ) () + Dl )] Poxt) (49

k
for all L > 1 and all sub-populations I, (note that the partial derivatives also
act beyond the squared bracket). From Eqs. (47) and (49) we read off that P
at time t* evolves like

0 = = 0

—P(xp,t*) = > II PG — P(z,t" )| (50)

ot k=1 | \I=1,lk ot
with

2

%Hmﬂ %%&@@MﬂW+§#MxHM@WP@Q.@)

As a result, for infinitesimal small time steps At we find that

~

P(xp,t" + At) = [[ P(z, t* + At)l,, (52)
k=1

holds for all L > 1 and all index-sets I1. Eq. (52) states that the many-body
system described by Eq. (46) evolves from a state of statistically-independent
subsystems in such way that we obtain again a state of statistically-independent
subsystems. Therefore, we draw the conclusion that if for solutions P(z,1)

of Eq. (51) the drift and diffusion coefficients defined by Eq. (48) corre-

spond to Kramers-Moyal coefficients and if all subsystems at time t; are
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statistically-independent and distributed according to the same law, then Eq.
(46) can equivalently be described by means of the strong nonlinear Fokker-
Planck equation (51). Likewise, in this case P(xr,t) is given by P(xp,t) =
[T, P(x;,,t). Moreover, from Eqs. (46) and (48) it follows that the transition

probability density P(xy,t|x},t') satisfies the evolution equation

9p

ot

L 0?

Z l__Dl 2,6, (A) p(a) + @Dz(l‘:ta <A>P(x,t))] P(xg,t|x,t') , (53)

xik

which, in turn, can be solved by P(xp,t|x},#) = [T}, P(x,t|x’,t’)|xik and

0
_-p Iy —
g L@ tla’, 1)
2

0 0
l—a—xDl(ac, t, <A>P(sc,t)) + @DQ(:I;, t, <A>P(w,t))] P(.{E, t‘x” t’) . (54)

Now let us write down the self-consistent Ito-Langevin equation (7) for Dy (z,t, P) =

D (z,t,(A)) and Dy(z,t, P) = Dy(x,t,{A)) in terms of the realizations X* of
X(t):

d k _ k : 1 al i

Dy | X*,t, lim <% A(X7) r*(t) . (55)
| (00

i=1
Since realizations of random variables are by definition statistically-independent
quantities, by comparison of Eqs. (46) and (55) we find that we may inter-
pret the realizations of random variables defined by nonlinear Fokker-Planck
equations as the state variables of the statistically-independent (but interact-
ing) subsystems of many-body systems. In symbols, we may put Ny = N and
X, = XF*. In this sense, the bottom-up approach is consistent with the top-
down approach proposed in [39]. Let us conclude these considerations with

two remarks.
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First, in the derivation above we have required that the coefficients D! (z,t; u) =
Dy (z,t, P) and Dj(z,t;u) = Dy(x,t, P) in general and the coefficients (48) in
particular correspond to Kramers-Moyal coefficients. This requirement should
be regarded as a severe one. For example, we may consider systems with order
parameters like (X?) (which e.g. denote intensities of electric or magnetic field
variables). If we study such systems for initial distributions that decay like a
power law 1/|z]° with § < 3 (e.g. Lévy flights) then the order parameter (X?)
is infinite which means that the coefficients Dy (z,t, (X?)) and Dy(z,t, (X?))

are not well-defined and do not correspond to Kramers-Moyal coefficients.

Second, we have shown above that if Eq. (47) holds then the subsystems are
statistically-independent for all times ¢ > ¢*. This phenomenon is also called
the propagation of chaos and has, for example, proven in previous studies
by means of the path integral representation of solutions of Fokker-Planck
equations [36]. In this context, it should be pointed out that the propagation
of chaos occurs in an even larger class of systems as discussed here, for example,

in many-body systems that involve fluctuating system parameters [36].

5 Conclusions

We have shown that stochastic processes defined by strong nonlinear Fokker-
Planck equations converge to stationary stochastic processes in the long time
limit when the corresponding single time-point distributions converge to sta-
tionary distributions. This implies that several H-theorems that have been
proposed for nonlinear Fokker-Planck equations can now in fact be applied
to describe the asymptotic behavior of complete stochastic processes. Our re-
sult also holds for multistable systems. The stochastic trajectories converge to
different kinds of stochastic trajectories depending on the initial distribution
of the systems under consideration. In this context, for simple systems we

have shown how to identify the basins of attraction of stationary stochastic
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processes or stationary distributions. Most interesting we have found for a
particular bistable mean field model that the separatrix in the function space
of distribution functions is given by those probability densities that converge
to unstable stationary distributions related to free energy maxima. We also
have elucidated the power of the embedding of solutions of strong nonlinear
Fokker-Planck equations into Markov diffusion processes as proposed in [39].
We have been able to determine autocorrelation functions in terms of semi-
analytical solutions of nonlinear Fokker-Planck equations, one the one hand,
and full numerical computations involving Langevin equations, on the other
hand. In addition, we have shown that the proposed Markov embedding is con-
sistent with conventional bottom-up approaches to nonlinear Fokker-Planck

equations.
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Tables:

Table 1

Nonlinear order parameter equations related to nonlinear Fokker-Planck equations

Systems/Phenomena f(q) Ref.

Chemical reactions a(N — (1 + kpexp{—nq/N}) [38]

Josephson junctions —2roq cosh(Ag + o(t)) + 2rpsinh((Ag + o(t)) | [46]

Synchronization Aq —gqlq|? [17,47-49]

Roughening exp{—q3/t3} [4]

Collective motion of (1—-30 —q¢%q [23]

swarms

Noise-induced first-order h(q) + 0.502g(q)dg(q)/dq [51,52]

phase transition

Pitchfork bifurcation of Mg —C)—28(qg—0C)3 [14]

variance

Coupled van der Pol c1q — c2g® [53]

oscillators

Desai-Zwanzig model dg;/dt = fi(q1,...,qn) fori=1,--- N [35]

Desai-Zwanzig model dg1/dt = (1 — ¢?)q1 — 3q1o, [54]
dgy/dt = 2(1 — 6 — 3¢2)ga + 2D

Coupled FitzHugh-Nagumo | d¢i/dt = h(q1) — cg2 + I(1), [50]

neurons

dge/dt = bg1 — dg1 + e




Figure caption:

Fig. 1: V() for ¢ = 1 and several values of the parameter v: v = 0.5 (dotted
line) and v = —0.5 (solid line).

Fig. 2: Illustration of the self-consistency equation m = R(m) with R(m) given
by Eq. (36). Solid lines: R(m) for ¢ = 1 and v = —0.5 and 7 > 0.5. Dashed
line: diagonal of the (m, R)-plane.

Fig. 3: Bifurcation diagram for the order parameter (X)_, of the dynamic mean

field model (30).

Fig. 4: M;(t), My(t), and C(t,t") = (X (¢)X (¢')) as functions of ¢ for a stochas-
tic processes with u(x) = d6(x — xo). Solid lines represent results obtained
from the Fokker-Planck approach (31), (42), and (43). Diamonds represent
results obtained from a simulation of the Langevin equation (45). (X (¢)X (')
is given for ¢ > t'. For t < t' we have put (X (¢) X (¢')) = 0. Parameters: Q = 1,
xg=-3,vy=-0.5,c=1,and t' =2, t, = 0.

Fig. 5: As in Fig. 4 but for ¢’ = 12. As shown by the first and second moments
in this case we are in the stationary regime. The thin horizontal line describes

2
M -

Fig. 6: M;(t) as a function of ¢ as obtained from a simulation of Eq. (45)
(diamonds) and from solving numerically Eq. (31) (solid lines) for delta dis-
tributed u(x) and different M;(0) (¢, = 0). For distributions with M;(0) > 0
(< 0) the stochastic processes converge to M; g &~ 2 (—2). Parameters: ) = 1,
c=1,v=-0.5,and M;(0) = 3, M;(0) = 0.2, M;(0) = —0.2, and M;(0) = -3
(from top to bottom).
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