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Abstract. Among others, Uhling and Uhlenbeck, Kaniadakis and Quarati, and
Kadanoff have suggested to describe the evolution of quantum systems exhibiting
Fermi-Dirac and Bose-Einstein statistics by means of classical but nonlinear evolution
equations for density measures such as generalized Boltzmann equations and nonlinear
Fokker-Planck equations. We use this approach in order to derive classical Langevin
equations for quantum systems and apply the Langevin equations thus obtained to two

fundamental quantum systems, namely, the free electron gas and blackbody radiation.
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1. Introduction

In line with early studies by Uhling and Uhlenbeck [1, 2|, several authors have been
suggested to describe the evolution of quantum systems exhibiting Fermi-Dirac and
Bose-Einstein statistics by means of Fokker-Planck equations that are nonlinear with
respect to density measures [3, 4, 5, 6, 7, 8, 9]. The nonlinearities reflect the quantum
mechanical constraints on Fermi and Bose systems. So far, however, this approach to
quantum systems is incomplete with respect to two issues. First, the approach ignores
the degeneracy of energy levels. Second, the approach has not been applied to quantum
mechanical benchmark systems such as the free electron gas and blackbody radiation.
In this letter, we address both issues within the framework of Langevin equations related

to nonlinear Fokker-Planck equations of quantum systems.

2. Generalized Fokker-Planck and Langevin equations

2.1. Free energy principle

Let us consider a system with N energy levels €1,...,ex. Let p; denote the mean
occupation number of the energy level i. Finally, let g; > 0 describe the number of
different quantum states that belong to the same energy level ¢;, that is, the degeneration

of the energy level i. Then the quantum entropy for Fermi and Bose particles reads [10]

N N N
FD’BES(Ph ey PN) = —Zﬂi lnpi+zgi lngi:FZ(gi:Fpi)ln(gi:sz’) (1)

i=1 =1 i=1

Note that here and in what follows the upper sign refers to Fermi systems, while the
lower sign refers to Bose systems. In the case of Fermi systems we require that the
inequality p; < g¢; holds for temperatures 7" > 0. For 7" = 0 we have p; = g; up to
the Fermi energy er and p; = 0 for energy states ¢ with ¢; > ep. Studying systems
with continuous energy levels € € Q = [0,00), we replace g; by a function g(e¢) > 0.
The expression g(€) de describes the number of states in an energy range between e and

€ + de. That is, g(e) describes the density of states with respect to the energy scale e
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[11]. Using g(e), we modify Eq. (1) in order to become

FD,BES[p] /p( )1In p(e de—i—/ €)Ing(e) de

F | 19(6) F p(e)] Inlg(€) F p(e)] de 2

Here, p(e) describes the mean occupation number density on a continuous energy scale.
In the case of Fermi systems the constraint p(e) < g(e) for 7 > 0 holds. Now, let us

consider the free energy
Flp] = Ulp] = T"™""S[p] (3)
with
= ) 4
Ule = [ eple)de (4)

In order to derive stationary distributions py, from the free energy principle 6 F/dp = p,

we need to compute the variational derivatives of U and ¥PBES. They read

sU

o € (5)
and

O ropEg _ iy <L> | (6)

op gFp

From §F/6p = pu and Eqgs. (3), (5), (6), we obtain the Fermi-Dirac and Bose-Einstein

distributions for quantum systems with degenerated energy levels:

9(€)
)= Sl T E "

2.2. Fokker-Planck equation

In line with recent studies on nonlinear Fokker-Planck equations, we assume that p(e, t)

satisfies the free energy Fokker-Planck equation

0 0 06F
ap(e, t) = apag ; (8)

see (3,4, 5,6,7,9,12, 13, 14, 15, 16, 17] in general and [8] in particular. The benefits
of Fokker-Planck equations of the form (8) are at least twofold. First, equilibrium

distributions obtained from §F/dp = p correspond to stationary solutions of Eq. (8).
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Since for solutions of Eq. (8) we have dF/dt < 0 (see Eq. (9) below), (stable) stationary
solutions correspond to free energy minima. This is tantamount to say that in the
stationary case we deal with maximum entropy distributions of canonical ensembles.
Second, transient solutions of Eq. (8) converge to stationary ones in the long time limit
provided that entropy measures are concave [5, 8, 9, 13]. The reason for this is that for

transient solutions of Eq. (8) the functional F satisfies

%F[p]:—/ﬂpl%(;—irdego. (9)

By definition of the functional F[p], we have dp/dt = 0 = dF/dt = 0 and from Eq. (9) it
is clear that dF'/dt = 0 = §F/dp = const, which implies that dF/dt = 0 = dp/dt = 0.
Furthermore, let us write S as S[p] = [, s(p, ) de with g = g(e). If 8%s/dp* < 0 for all
€, then s satisfies the concavity inequality s(p, g) < s(¢', g) + (p— p')ds/0p’ for all € and
S is a concave functional. From the concavity of S, in turn, it follows that F[p] > F[pg)]
[18, 19]. In fact, evaluating Eq. (2) we find that 9%s/0p®> = —g/[p(9F p)]- In particular,
for fermions we have 0?s/0p> = —g/[p(g — p)]. Due to the constraint p(e,-) < g(e),
we obtain §%s/0p* < 0. For bosons we get 9%s/0p* = —g/[p(g + p)] < 0. Therefore,
S is concave and F' is bounded from below for arbitrary density of state functions g

satisfying g(e) > 0. In sum, we have shown that the relations

d d )
—Flp| <0, —Flp]=0&

o = 2P = 0, F bounded from below  (10)

hold. From these relations we read off that F' is a Lyapunov functional and conclude

that transient solutions converge to stationary ones in the limit £ — oo.

2.3. Langevin equation

Substituting Eqgs. (3), (5) and (6) into Eq. (8), we obtain

0 _Op o 0 p
Y

Let us evaluate the expression Y. First, we note that

o p dg d
S A R = .
e d€[ + n(gﬂFp)]ﬂFde [gIn(g F p)] (12)
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Then, Eq. (11) becomes

9 dp 9 2

dg 0
FPlet) =5 o {E 1 +1n(g¥p)]} FT559n(gFp) - (13)

Eq. (13) is well-defined in the limit p — 0 because Eq. (13) is homogenous with
respect to p. That is, p = 0 is a solution of Eq. (13). In order to obtain a semi-
positive definite diffusion coeflicient, we write the term gln(g F p) in Eq. (13) as
gIn(g F p) = gln(1 ¥ p/g) + gIn(g), which gives us

8815 (e,t) = (;96“ 1ZFZ%IH<1:FS>]p}:FTg—;gln(liFg> . (14)
Note that we have a reflective boundary at e = 0 with p(0,¢) = 0. The drift and diffusion

coefficients read

B T dg(e) p
di(e,p) = —1F 5 " de In (1 F /@) (15)
g(€) ( p )
dole,p) = FTEY I (15 2= 16
such that Eq. (14) can be written as
0 0 0?
o6 t) = = di(e.p)p+ 5 (e p)p (17)

The diffusion coefficient dy is positive definite which can be seen if we distinguish
explictly between Fermi and Bose systems. For Fermi systems we obtain dy =
Tgln(1/(1 — p/g)) > 0 for 0 < p(e) < g(e). For Bose systems we have dy =
Tgln(l + p/g)) > 0 for p(e) > 0. By similar reasonings, we see that the drift term
is composed of an attractive and repulsive part: d; = di(—) + di(+). The attractive
part is given by di(—) = —1 and drives particles to states of the ground state energy
equal to zero. The repulsive part reads di(+) = FTp 'dg/deln(1 F p/g) > 0 and
drives the quantum particles away from the ground state energy provided that the
density of energy states increases with the energy (i.e., we have dg/de > 0). Due to the
interplay of these two forces, stable stationary distributions can be established. If the
occupation number density p is normalized to My with My = [, p(€) de, we can substitute

P(e,t;u) = p(e,t) /My into Eq. (14) and thus obtain a nonlinear Fokker-Planck equation
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for the probability density P. We proceed now under the hypothesis that the Fokker-
Planck equation thus obtained is a strongly nonlinear Fokker-Planck equation such that
solutions of the nonlinear Fokker-Planck equation can alternatively be computed from
an appropriately defined Langevin equation [20, 21]. This self-consistent Ito-Langevin

equation reads

ie o T dg(e) ; My (5(e — er(?)))

itV = 1¢Mwm—qw»delQ$ 9(c >mmn
g(e€) 0 My (6(e — €L (2)))

i JJFTMO Gle—a (t)»l <1 T e ) e_eLmF(t) (18)

and is related to p by means of the ensemble average p(e,t) = My (0(e — €1(t))). Let us
apply now the Ito-Langevin equation (18) to describe the quantum statistics of electron

gases and blackbody radiation.

2.4. Free electron gas

The electrons of the conduction band of metals can be regarded as a gas of fermions
that are distributed over a continuous energy scale. In what follows we consider a free
electron gas for which the density of states is given by g(¢) = ay/e with a > 0 [11].
Consequently, we have dg/de = a/(2/€) and the Fermi Fokker-Planck equation (14)

(upper sign) becomes

boun=- {2

—aT55 \/_ln<1 - W) (19)

The corresponding Ito-Langevin equation (18) reads

4o T o1 - o= ()

dtr 2My/€(0(e — er(t))) ay/e e=es (!
~ av/e (1~ Mold(e —er(®))
+ J T RO 1 <1 e ) e—em)r(t) . (20)

Eq. (20) is subjected to the constraint p(e¢) < ay/e for T > 0. In the case of the free

electron gas the stationary solution (7) reads

ay/e
pst( ) exp{(e _ )/T} +1 (21)
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Insert Figure 1 and 2 about here

0.14-
0.12-

01
008 /

p(e)

Figure 1. Stationary solution of the Fermi Fokker-Planck equation (19). Solid
line: analytical result (21). Diamonds: numerical results obtained by solving the Ito-
Langevin equation (20). Dashed line: stationary solution in the limiting case T' — 0.

Parameters: p =ep =2, T =1.0,a=0.1.

for T' > 0, where p corresponds to the Fermi energy er. In the limit 7" — 0 we obtain
pst(€) = ar/e for € < p = ep and pg(e) = 0 for € > p = ep. In order to simulate the
electron gas by means of the Ito-Langevin equation (20) for a particular Fermi energy
€r, we first compute My by means of My = [, psi(€) de and substitute the result into Eq.
(20). We then solve Eq. (20) by means of an Euler forward scheme that is described
in detail in [22]. Figure 1 shows the stationary distribution of the free electron gas as
obtained from Eq. (21) and from a simulation of the Ito-Langevin equation (20). The
dashed line describes the Fermi distribution at 7' = 0. In order to solve the Ito-Langevin
equation (20) numerically it is important to choose an initial distribution that satisfies

the constrain p(e) < g(€) = av/e, see Fig. 2.

2.5. Blackbody radiation

The electromagnetic radiation in a black body cavity exhibits a frequency distribution
p(v) given by a Bose-Einstein statistics [11]. Let us describe the radiation field as a

photon gas composed of photons with frequencies v and energies ¢ = hv, where h is
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Figure 2. Stationary solution as in Fig. 1 (solid line and diamonds). In addition,
the initial distribution that was used to solve the Ito-Langevin equation numerically is
shown. The initial distribution corresponds approximately to a uniform distribution

in the range between ¢ = 1 and € = 4 and satisfies the constraint p(e) < g(e).

Planck’s constant. For the sake of conveniency, we put A~ = 1 such that ¢ = v. The

2

density of states of the photon gas is given by g(v) = av? with a > 0, which implies

dg/dv = 2av. Consequently, the Bose Fokker-Planck equation (14) (lower sign) for the

photon gas is given by
0 0 2aTv p 0? p
—p(v,t) = —={|-1 1 (1 —) T—1°1 (1 —) 22
(9tp(y ) 81/{[ * p " +al/2 ]p}-i—a a2’ " +al/2 (22)
and the Ito-Langevin equation (18) reads

d 2aTv
EVL(t) = -1 -+

(1 My (o — vy (1)
Mo (30 — v 0)) <1+ )

av®T 0 My (0(v — vi(2)))
" JMO B0 — @) <1 R )

Since the chemical potential u of photons equals zero, the stationary solution (7) reads

v=vr(t)

T'(t) . (23)

v=vr, (t)

av?

O ety 1 0

The spectral energy density u(v) of a cavity with volume V' = 1 is defined by

u(v) = vpg(v) [23]. Using Eq. (24), we obtain Planck’s radiation formula

u(v) = exp{v/TT—1° (25)
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Insert Figure 3 and 4 about here
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Figure 3. Stationary solution of the Bose Fokker-Planck equation (22). Solid line:
analytical result (24). Diamonds: numerical results obtained by solving the Ito-

Langevin equation (23). Parameters: T' = 1.0, a = 0.1.
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Figure 4. Illustration of Planck’s radiation formula. Planck’s formula as obtained
from Eq. (25) (solid line) and as obtained by solving numerically the Ito-Langevin

equation (23) (diamonds). Parameters as in Fig. 3.

From Eq. (24) and v € Q = [0,00) it follows that the total mass M; of the photon
gas for a particular temperature 7" is given by My = [;° pst(v)dv. If we substitute
this My-value into Eq. (23), we obtain a closed description of the stochastic evolution

of the photon frequencies v. In particular, p(v,t) and u(v) can be computed from

p(v,t) = My (6(v — vi(t))) and u(v) = Mov (6(v — vi(t))),,. see Figs. 3 and 4.
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3. Conclusions

We have studied a classical Fokker-Planck equation describing both the relaxation
of Fermi and Bose systems to stationary states and the quantum statistics in these
stationary states. In addition, the corresponding Langevin equation describing the
motion of single quantum particles has been derived. In contrast to several previous
studies, we included in our considerations the density of quantum states. In doing so,
we have been able to apply our approach to the free electron gas of metal electrons and
the blackbody radiation. Finally, we would like to point out that the results obtained
here might be applied to classical systems that behave like Fermi systems. For example,
it has been suggested that vortices of turbulent flows and grains of granular matter can

be described by means of Fermi-Dirac statistics (see, e.g., [9, 24]).
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