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1 Introduction

The free energy principle is a fundamental con-
cept of phenomenological thermodynamics and
tells us that isothermal state changes do not in-
crease the free energy of systems and that systems
occupy stationary states of minimal free energy
[1]. Recently, there is an increasing interest to ex-
ploit the free energy principle in order to describe
many-body systems by means of free energy func-
tionals of the form F [P ] = U [P ]−β−1S[P ]. Here,
U [P ] denotes an internal energy functional or
a measure of effort (e.g., in the case of neural
network free energies). β−1 > 0 describes the
strength of fluctuations and can often be identi-
fied with the temperature T of a system or the
noise amplitude Q of a stochastic process. S

describes a general entropy functional or an in-
formation measures. In both cases S measures
the amount of disorder of a system and therefore
will be called in what follows a disorder measure.
The functionals F , U , and S are assumed to de-
pend on a density function P that might corre-
spond to a probability density or a particle num-
ber density. P depends on the M -dimensional
state variable x ∈ Ω of a many-body system,
where Ω corresponds to the phase space of a sin-

gle subsystem or particle of the system. That
is, we deal with µ-space descriptions of many-
body systems [1, 2, 3]. The free energy approach
to many-body systems involving µ-space density
functions has successfully been applied to real
gases [4, 5], amorphous material [6, 7], mean field
coupled many-body systems [8, 9, 10], and Fermi
and Bose systems [11, 12, 13]. If free energy
functionals are bounded from below then they
describe systems that are globally stable. That
is, they eventually converge to macroscopic sta-
tionary states with dF/dt = 0. The reason for
this is that, on the one hand, state changes with
β−1 = const yield dF ≤ 0 but, on the other
hand, we have F ≥ C > −∞ which implies
limt→∞ dF/dt = 0. In particular, using nonlinear
Fokker-Planck equations one can explicitly show
that systems converge to stationary states if they
are described by free energy measures that are
bounded from below [8, 11, 12, 13]. Consequently,
the boundedness of free energy functionals is a
crucial property. Despite of the wide applicability
of free energy functionals, a thorough discussion
about this key property has not been carried out
so far. In the following section we will address
several generic cases for which the boundedness
of free energy functionals can be proven.
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2 Boundedness of free energies

Stationary states

Let us first characterize stationary states of sys-
tems described by µ-space free energy functionals
F [P ]. We assume that stationary states are given
by distributions Pst that make F stationary under
the normalization condition

∫
Ω P dMx = 1 which

can equivalently be expressed as

Y [Pst] = F [Pst] + µ

(
1−

∫

Ω
Pst(x) dMx

)

= stationary . (1)

Here, µ is a Lagrange multiplier that can be in-
terpreted as a chemical potential (see Eq. (3)
below). The solutions Pst of Eq. (1) are given by

0 = δY [Pst] = δF − µ

∫

Ω
δP dMx

= δU − β−1δS − µ

∫

Ω
δP dMx . (2)

Since we require that δY [Pst](δP ) vanishes for all
kind of small perturbations δP , the bracket in Eq.
(2) must vanish and we get

δF

δPst
= µ (3)

and
δS

δPst
= β

[
δU

δPst
− µ

]
. (4)

Next, we decompose U [P ] into its linear and non-
linear parts:

U [P ] = UL[P ] + UNL[P ] , (5)

where UL[P ] and UNL[P ] satisfy

UL[P ] =
∫

Ω
U0(x)P (x) dMx , (6)

UNL[P ] = O(P 2) . (7)

Note that a useful relation that will be use below
is

δUL[P ′](P ) = UL[P ] . (8)

Furthermore, it is helpful to introduce the so-
called distortion functional [9, 14, 15, 16]

G[u] = exp
{
−δS

δu
− 1 + β

δUNL

δu

}
. (9)

Then, Eq. (9) can equivalently be expressed as

G[Pst] = exp
{
− δS

δPst
− 1 + β

δUNL

δPst

}
=

= exp {−β [U0(x)− µ]− 1} . (10)

Using the Boltzmann distribution

W (x) =
exp{−βU0(x)}∫

Ω
exp{−βU0(x)} dMx

, (11)

we obtain the mapping Pst → W defined by

G[Pst] =
1
Z

W (x) . (12)

Here, Z is a normalization constant depending on
µ like Z = [

∫
Ω exp{−β[U0(x)] − µ] − 1}dx]−1 >

0. In order to interpret Z as a new normal-
ization constant, we need to require that W in-
deed exists. That is, we assume that the integral∫
Ω exp{−βU0(x)}dMx is finite.

General Kullback measure

We consider a disorder measure S[P ] that satisfies
the concavity inequality

S[P ] ≤ S[P0] + δS[P0](P − P0) (13)

for P, P0 > 0. We assume that the equal sign
holds only for P = P0. Eq. (13) can be trans-
formed into

S[P0]− S[P ] + δS[P0](P − P0) ≥ 0 . (14)

Using the inequality (14) we can introduce a semi-
positive definite measure [12, 13, 16]

K[P, P0] = S[P0]− S[P ] + δS[P0](P − P0) ≥ 0 .

(15)
The functional K takes two arguments: P and
P0. It can be regarded as a distance measure.
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That is, it measures the difference between the
probability densities P and P0. If P equals P0 we
have K = 0. If P differs from P0 we have K > 0:

K > 0 ⇔ P 6= P0 ,K = 0 ⇔ P = P0 . (16)

We refer to K as a general Kullback measure be-
cause it recovers the Kullback-Leibner distance
measure in the case of the BGS entropy (see be-
low). Note that the general Kullback measures
(15) can also be defined for two discrete proba-
bility distributions {pi} and {p(0)

i } and entropy
measures of the form S(pi) = B[

∑N
i=1 s(pi)]:

K
(
{pi}, {p(0)

i }
)

= S({p(0)
i })− S({pi})

+
dB(z)

dz

∣∣∣∣∑N

i=1
s(p

(0)
i )

N∑

i=1

ds(z)
dz

∣∣∣∣
p
(0)
i

(
pi − p

(0)
i

)
,

(17)

see also [17] for the special case B(z) = z.

BGS-Kullback measure

For the BGS entropy S[P ] = − ∫
P lnP dMx, the

general Kullback measure (15) reads

BGSK[P, P0] = −
∫

Ω
P0 lnP0 dMx +

∫

Ω
P ln P dMx

−
∫

Ω
[1 + lnP0](P − P0) dMx

=
∫

Ω
P ln

[
P

P0

]
dMx . (18)

This distance measure is known in the literature
as Kullback-Leibner measure or Kullback mea-
sure [18, 19]. Since the BGS entropy satisfies
the concavity inequality (13) the measure BGSK is
semi-positive definite. We would like to present
here also an alternative prove of this property.
We start off with the logarithm ln(x). The loga-
rithm satisfies ln(1) = 0 and it is also well-known
that a straight line with slope one that intersect
the x-axis at x = 1 is always larger than ln(x) ex-
cept for x = 1 where both the line and logarithm
equal zero. Therefore, we have the inequality

ln(x) ≤ x− 1 , (19)

which holds for x > 0. As mentioned already
the equal sign holds for x = 1 only. Now, let us
replace x by P0(x)/P (x) for P, P0 > 0. Then, we
conclude that

ln
[
P0

P

]
≤ P0

P
− 1 ,

⇒ P ln
[
P0

P

]
≤ P0 − P ,

⇒
∫

Ω
P ln

[
P0

P

]
dMx ≤ 0 ,

⇒ BGSK[P, P0] =
∫

Ω
P ln

[
P

P0

]
dMx ≥ 0 .

(20)

Note that in the derivation above we used the nor-
malization condition in terms of

∫
Ω[P0−P ] dMx =

0.

General Kullback measure for stationary
probability densities

In particular, the general Kullback measure can
be used to compare arbitrary probability densi-
ties P with stationary probability densities Pst

obtained from the free energy principle. In this
case, we put P0 = Pst and Eq. (15) becomes

K[P, Pst] = S[Pst]−S[P ]+δS[Pst](P−Pst) . (21)

From Eq. (2) it follows that Pst satisfies the re-
lation

δS[Pst](δP ) = βδU [Pst](δP )− βµ

∫

Ω
δP dMx .

(22)
Consequently, Eq. (21) becomes

K[P, Pst] = S[Pst]− S[P ] + βδU [Pst](P − Pst)

−βµ

∫

Ω
(P − Pst) dMx

︸ ︷︷ ︸
=0

. (23)

That is, our final result reads

K[P, Pst] = βδU [Pst](P −Pst)−S[P ]+S[Pst] ≥ 0
(24)

If we split according to Eqs. (5,. . . ,7) the energy
measure U into a linear and nonlinear part and
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take into account that for arbitrary P ′ and P the
equivalence δUL[P ′](P ) = UL[P ] holds, see Eq.
(8), we can write Eq. (24) as

K[P, Pst] =

β (F [P ]− F [Pst]) + βδUNL[Pst](P − Pst) .

(25)

Linear energy functionals

The result (25) suggests to examine in more de-
tail the case in which energy functionals can be
written as U = UL =

∫
Ω U0(x)P (x) dMx. Then,

K reads [12]

K[P, Pst] = − (S[P ]− S[Pst])+β (U [P ]− U [Pst]) .

(26)
In the context of the BGS entropy and the so-
called availability of systems this relation between
the Kullback measure, on the one hand, and the
energy and entropy terms, on the other hand, has
been discussed, for example, in [20, 21]. Using the
so-called Massieu potentials defined by

J [P ] = S[P ]− βU [P ] (27)

we can write K as the difference

K[P, Pst] = −(J [P ]− J [Pst]) . (28)

By means of the free energy, we can express Eq.
(26) by

β−1K[P, Pst] = F [P ]− F [Pst] . (29)

This relation can also be obtained from Eq. (25)
by equating the δUNL-term to zero. From the
semi-positivity of the general Kullback measure,
we obtain the inequality

F [P ] ≥ F [Pst] . (30)

In order to exploit this inequality, we assume that
the functional F [Pst] is finite: |F [Pst]| < C <

∞. From |F [Pst]| < C it then follows that F is
bounded from below:

|F [Pst]| < C ⇒ F [P ] = bounded from below .

(31)

Finally, we note that from (30) we conclude that
for linear energy functionals the stationary states
corresponds indeed to minima of free energy mea-
sure.

Negative concave energy functionals

We consider now a negative concave (or convex)
energy functional U . In analogy with the inequal-
ity (13), U satisfies the convexity inequality

U [P ] ≥ U [P0] + δU [P0](P − P0) . (32)

In particular, for P0 = Pst we have

U [P ] ≥ U [Pst] + δU [Pst](P − Pst)

⇒ δU [Pst](P − Pst) ≤ U [P ]− U [Pst] .(33)

Consequently, from Eq. (24) we obtain

0 ≤ K[P, Pst]

= βδU [Pst](P − Pst)− S[P ] + S[Pst]

≤ β (U [P ]− U [Pst])− S[P ] + S[Pst] .(34)

Just as in the case of linear energy functional, we
arrive at the result:

F [P ] ≥ F [Pst] . (35)

Nonlinear energy functionals in finite
phase spaces

We consider systems with random variables de-
fined on finite phase spaces Ω. We assume that
the kernel of the functional U and the kernel
of the functional δU [P ](P ′) are continuous func-
tions. Then, these kernels are bounded from be-
low and from above on the phase space Ω. Usu-
ally, we will then deal with functionals U [P ] and
δU [P ](P ′) that are bounded like

∀P : |U [P ]| < C1, ∀P, P ′ : |δU [P ](P ′)| < C2

(36)
For example, for U0 ∈ C0(Ω) and P ∈ C0(Ω)
the integral

∫
Ω U0(x)P (x) dMx is larger

Nonlinear Phenomena in Complex Systems Vol. 6, No. 3, 2003



700 T.D. Frank: On the Boundedness of Free Energy Functionals

than minx∈Ω{U0(x)} and smaller than
maxx∈Ω{U0(x)}. From Eq. (24), we obtain

0 ≤ K[P, Pst]

= S[Pst]− S[P ] + βδU [Pst](P )− δU [Pst](Pst)

≤ S[Pst]− S[P ] + 2βC2

≤ S[Pst]− βU [Pst]− S[P ] + βU [P ]

+2βC2 + β(U [Pst]− U [P ])

≤ β(F [P ]− F [Pst]) + 2β(C1 + C2) . (37)

Consequently, if the integral F [Pst] exists (which
is usually the case due to the finiteness of Ω), then
F [P ] is bounded from below:

F [P ] ≥ F [Pst]− 2(C1 + C2) . (38)

The boundedness of free energy measures of sys-
tems with finite phase spaces can also be shown
in an alternative fashion [22]. Let us consider
a phase space Ω with

∫
Ω dMx = V < ∞ (e.g.,

Ω =
∏M

i=1[ai, bi] ⇒ V =
∏M

i=1(bi − ai)). Let U [P ]
be bounded from below by U [P ] ≥ Umin. Further-
more, we assume that S is maximal for the uni-
form distribution: Smax = S(P = 1/

∫
Ω dMx =

1/V ). Then, we obtain

F [P ] = U [P ]−β−1S[P ] ≥ Umin−β−1Smax . (39)

Mean field energy functionals and BGS
statistics

Of particular interest are systems that exhibit,
on the one hand, BGS statistics and, on the
other hand, mean field interactions between sub-
systems. The energy functional of this kind of
systems reads

U =
∫

Ω
U0(x)P (x) dMx +

+
1
2

∫

Ω

∫

Ω
UMF(x,y)P (x)P (y) dMx dMy ,(40)

where the interaction potential UMF satisfies the
symmetry condition UMF(x,y) = UMF(y,x).
The entropy and information measure S is given
by the BGS entropy. The inverse distortion func-
tional (9) reads

G[u] = u exp
{

β

∫

Ω
UMF(x,y) u(y) dMy

}
. (41)

We define now the functional I given by

I[P, P0] =

−β

2

∫

Ω

∫

Ω
UMF(x,y)P (x)P (y) dMxdMy

+
∫

Ω
P (x) ln

[
G(P )
G(P0)

]
dMx (42)

that involves two probability densities P and P0

[9, 14]. For UMF = 0 we have G[u] = u and, con-
sequently, I[P, P0] reduces to the BGS-Kullback
measure (18). Eq. (42) can alternatively be ex-
pressed as

I[P, P0] =
β

2

∫

Ω

∫

Ω
UMF(x,y)P (x)P (y) dMxdMy

+
∫

Ω
P (x) ln

[
P

G(P0)

]
dMx . (43)

The integral (43) can be used to compare station-
ary probability densities obtained from the free
energy principle with arbitrary probability densi-
ties P . To this end, we put P0 = Pst, where Pst

satisfies Eq. (12). In doing so, we replace G(P0)
by G(Pst) = W/Z∗ and obtain

I[P, Pst] = lnZ∗

+
β

2

∫

Ω

∫

Ω
UMF(x,y)P (x)P (y) dMxdMy

+
∫

Ω
P (x) ln

[
P

W

]
dMx

︸ ︷︷ ︸
BGSK[P, W ] ≥ 0

. (44)

Note that Z∗ is the normalization constant of Pst.
We assume that the mean field potential UMF is
bounded from below by UMF(z) ≥ UMF−kernel,min

which implies that the ensemble average f(x) =∫
Ω UMF(x,y)P (y)dMy is bounded from below by

UMF,min: ∀x : f(x) ≥ UMF−kernel,min. This re-
sult, in turn, implies that the ensemble aver-
age

∫
Ω f(x)P (x) dMx is bounded from below by

UMF−kernel,min. Consequently, the double integral
occurring in Eq. (44) is bounded from below by
βUMF−kernel,min/2 and from Eq. (44) we obtain

I[P, Pst] ≥ ln Z∗ +
β

2
UMF−kernel,min . (45)
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That is, I[P, Pst] is bounded from below. In ad-
dition, the functional I[P, Pst] is, up to a con-
stant, equivalent to βF [P ]. The reason for
this is that the BGSK[P, W ] can be written as
−S[P ] − ∫

Ω P (x) lnW (x) dMx. Using Eq. (11)
for U(x) = U0(x) and the Boltzmann factor ZB =∫
Ω exp{−βU0(x)}dMx, we can write BGSK[P, W ]

as −S[P ] + β
∫
Ω P (x)U0(x) dMx + ln ZB. Substi-

tuting this result into Eq. (44) gives us

I[P, Pst] = ln(Z∗ZB)− S[P ] + βU [P ] (46)

or, alternatively, the final result:

I[P, Pst] = βF [P ] + ln[Z∗ZB] . (47)

Comparing Eqs. (45) and (47) we obtain

F [P ] ≥ − ln(ZB)
β

+
1
2
UMF−kernel,min . (48)

The inequality (48) states that in the context of
the BGS statistics mean field systems with mean
field interaction potentials that are bounded
from below have free energy measures that are
bounded from below as well. This result holds
for mean field system defined on all kind of
phase spaces. While for systems defined on fi-
nite phase spaces we have derived the same re-
sult under much weaker conditions in the previ-
ous section, the estimate (48) can in particular be
used for systems defined on infinite phase spaces
(e.g., Ω = lRM ) and mixed phase spaces (e.g.
Ω = lRM ′ ×∏M ′′

i=1[ai, bi] with M ′ + M ′′ = M such
as phase oscillator systems with inertia terms).

Nonlinear energy functionals and BGS
statistics

The functional (42) is a special case of the func-
tional

I[P, P0] =
∫

Ω
dMx

∫
dP ln

[
G(P )
G(P0)

]
. (49)

Here, we assume that we deal with the BGS
statistics and a general nonlinear energy func-
tional U composed of a linear part UL and a non-
linear part UNL, see Eq. (5). Accordingly, G is

given by

G[u] = u exp
{

β
δUNL

δu

}
, (50)

cf. Eq. (9). The expression
∫

dP . . . de-
notes a functional integration, that is, an inte-
gration with respect to a function. Let f(x) by
a function defined on a one-dimensional domain
Ω. Then,

∫
Ω dx[

∫
df g(f(x))] can be written as∫

Ω

∫ z=f(x) g(z)dz dx. That is, we integral with
respect to z, replace in the result thus obtain
z by f(x), and finally integrate with respect to
x. It is clear from the notion of a functional
integration that the functional integration and
the functional derivative can be regarded as in-
verse operations. For example, for the functional
Y [f ] =

∫
Ω dx[

∫
df g(f(x))] we get δY/δf = g(f)

leading to Y [f ] =
∫
Ω dx[

∫
dfδY/δf ]. For our pur-

poses, however, we will not dwell into the formal-
ism of functional integrations. We interpret the
functional I as a functional that satisfies a par-
ticular ordinary first order differential equation.
To this end, we introduce a real parameter κ and
consider a probability density P̃ (x, κ) depending
on κ. Then, the integral (49) is defined as the
integral I[P̃ , P0] that satisfies

d
dκ

I[P̃ (x; κ), P0] =
∫

Ω

dP̃

dκ
ln

[
G(P̃ )
G(P0)

]
dMx .

(51)
For P0 = Pst the term G(P0) can be replaced by
G(Pst) = W/Z∗. Analogous to derivation of Eq.
(47), we can then conclude that

d
dκ

I[P̃ , Pst]

=
∫

Ω

dP̃

dκ
ln[G(P̃ )] +

∫

Ω

dP̃

dκ
ln

(
Z∗ZBeβU0

)

=
d
dκ

[
−S[P̃ ] + βUNL[P̃ ]

]
+ β

d
dκ

∫

Ω
U0P̃ dMx

(52)

Consequently, we can integrate both sides of Eq.
(52) with respect to κ. Subsequently, we drop
the parameter κ (that merely has been used to
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carry out the functional integration using stan-
dard techniques). The result reads:

I[P, Pst] =
∫

Ω
dMx

∫
dP ln

[
G(P )
G(Pst)

]
= βF [P ]+I0 .

(53)
I0 denotes an integration constant. Since F [P ]
can be decomposed into F = UNL−β−1 BGSS+UL

and UL =
∫
Ω U0(x)P (x) dMx can be written as

UL = −β−1
∫
Ω P (x) ln[ZBW (x)] dMx, we obtain

F = UNL − β−1 ln ZB + β−1
∫
Ω P ln[P/W ] dMx.

Due to the semi-positivity of the BGS-Kullback
measure (i.e., because of

∫
Ω P ln[P/W ] dMx ≥ 0),

we conclude that if the nonlinear energy func-
tional is bounded from below by UNL,min, the
free energy functional F and the functional I are
bounded from below as well:

F [P ] ≥ − lnZB

β
+ UNL,min , (54)

⇒ I[P, Pst] ≥ lnZB + βUNL,min + I0 .(55)

Finally, we would like to mention that from Eqs.
(49) and (50) and the aforementioned inverse re-
lation

∫
Ω dMx[

∫
dPδUNL/δP ] = UNL[P ], it fol-

lows that I[P, P0] can equivalently be expressed
as

I[P, P0] =

β UNL[P ] +
∫

Ω
P (x) ln

[
P

G(P0)

]
dMx + I0 .

(56)

That is, the functional (49) indeed gener-
alizes the functional (43). Likewise, Eq.
(49) generalizes Eq. (42). In order to see
this, note that the mean field functional
Y [P ] = 0.5

∫
Ω

∫
Ω UMF(x,y)P (x)P (y) dMxdMy

with UMF(x,y) = UMF(y,x) satisfies∫
Ω

∫
Ω Y [δY/δP ]dMxdMy = δY [P ](P ) = 2Y [P ].

Consequently, if UNL corresponds solely to such
a mean field functional we can add on the
right hand side of Eq. (56) a zero in form of
−2βUNL + βδUNL[P ](P ) and write βδUNL[P ](P )
as

∫
Ω P ln[exp{βδUNL/δP}] dMx which yields

Eq. (42).

Nonlinear free energy functionals with
matching condition

We consider a system with a nonlinear energy
functional U given by Eq. (5) and a general en-
tropy and information measure S. We assume
that the system has at least one stationary be-
havior for which the free energy F = U − β−1S

and the nonlinear part UNL of the energy measure
are stationary: δF [Pst] = 0 and δUNL[Pst] = 0.
We show now that this matching condition im-
plies the boundedness of free energy measures.
Our departure point is the free energy measure
F given by F = UL + UNL − β−1S. Since Pst

solves the variational problem (1) and we have
δUNL[Pst] = 0, Eq. (2) becomes

δU [Pst]− β−1δS[Pst]− µ

∫

Ω
δPdMx = 0

(57)

which leads to

δUL[Pst](δP )− β−1δS[Pst](δP )− µ

∫

Ω
δPdMx

= 0 . (58)

We proceed now as in previously discussed cases.
From Eq. (58) it follows that δS[Pst](ε) =
βδUL[Pst](ε) − βµ

∫
Ω ε(x) dMx. Substituting this

result into Eq. (21), taking the normaliza-
tion of P and Pst into account and the identity
δUL[P ](P ′) = U [P ′] (see Eq. (8)), we obtain

S[Pst]− S[P ] + βUL[P ]− βUL[Pst)] ≥ 0 . (59)

Using the free energy measure F = UL + UNL −
β−1S, we can transform the inequality (59) into

F [P ] ≥ F [Pst]− βUNL[Pst] + βUNL[P ] . (60)

We finally assume that the nonlinear part UNL

of the system energy measure U is bounded from
below: ∀P : UNL[P ] ≥ UNL,min. Then, from Eq.
(60) we obtain

F [P ] ≥ F [Pst]− βUNL[Pst] + βUNL,min . (61)

That is, provided that the integrals F [Pst] and
UNL[Pst] exist (i.e, are finite), the free energy F

is bounded from below.
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generic type S = U Ω K, I F[P] F [Pst]
A general UL finite/∞ K bounded f.b. minimal
B general negative concave finite/∞ K bounded f.b. minimal
C general bounded f.b. & f.a. finite K bounded f.b. —
D general bounded f.b. finite — bounded f.b. —
E BGSS bounded f.b. finite/∞ I bounded f.b. —

UL + UMF

F BGSS bounded f.b. finite/∞ I bounded f.b. —
UL + UNL

G general matching finite/∞ K bounded f.b. —
condition, UL + UNL

Table 1. Boundedness of several generic free energy functionals of the form F = U − β−1S (f.b. = from below,
f.a. = from above, ∞ = infinite phase space)

3 Conclusions

Let us summarize the results obtained in the pre-
vious section. We examined the boundedness of
free energy measure for several generic cases. The
conditions involved in these cases as well as the
results are listed in Table 1.

From our preceding discussion it is clear that
the boundedness of free energy functionals is due
to a few fundamental ingredients. For systems
described by finite phase spaces the bounded-
ness results from follows assumptions: (i) energy
measures are continuous and, therefore, bounded
from below and above and (ii) stationary states
exist with finite free energies. Alternatively,
the boundedness is due to the assumptions: (i)
energy measures are bounded from below and
(ii) entropy and information measures exhibit
a global maximum (which is usually given by
the uniform distribution). The maximum cor-
responds to a finite real number. For systems
defined on infinite phase spaces the boundedness
of free energy measures is, roughly speaking, a
consequence of the assumptions: (i) energy mea-
sures are bounded from below, (ii) entropy and
information measures are concave measures, and
(iii) there exists at least one stationary state with
finite values for system energy, entropy or infor-
mation, and free energy.
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