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Abstract

So far, the stability of stationary solutions of mean field models described by
Fokker-Planck equations has only been determined analytically in some special
cases. Following two earlier studies (M. Shiino, J. Korean Phys. Soc. 40:2002:1037;
T.D. Frank, Prog. Theor. Phys. Supp. 150, in press), we discuss a stability analysis
for a large class of mean field models based on Fokker-Planck equations. To this
end, we use linear stability analysis in addition to the well-known approaches by
means of transcendent equations and Lyapunov’s direct method. We demonstrate
that all three methods yield consistent results for systems that exhibit free en-
ergy functionals (e.g., equilibrium systems). We show that the simple transcendent
equation analysis fails for systems that do not exhibit free energy functionals (e.g.,
nonequilibrium systems) and show how to solve this problem by means of a more
sophisticated transcendent equation analysis. Furthermore, we propose a norm for
the perturbations of stationary states and illustrate some of our results by a model

that exhibits a reentrant noise-induced phase transition.
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1 Introduction

Mean field models have been proven to capture at least two essential prop-
erties of spatially distributed systems: multistability of stationary states and
the emergence of collective behavior. For this reason, they have found appli-
cations in various disciplines. For example, they have been used to describe
ferromagnetism [1], synchronization [2-4], human motor behavior [5,6], and
social behavior [7,8]. Mean field models can describe relaxation processes as
well. To this end, evolution equations that are similar to Fokker-Planck equa-
tions but are nonlinear with respect to probability densities have frequently
been used [4,9-30]. The fact that evolution equations of this kind can indeed
describe relaxation processes has been shown by extending the H-theorem
for linear Fokker-Planck equations [31,32] to the nonlinear case [10,26,33,34]
The nonlinearities typically reflect mean field forces that are produced by
the subsystems of a many-body system and impinge on individual subsys-
tems. On account of these nonlinearities, Fokker-Planck equations of this kind
can exhibit multiple stationary probability densities [9,35]. In order to dis-
cuss bifurcations (e.g., the emergence of a collective behavior or transitions
between stationary states) one needs to distinguish between stable and un-
stable stationary probability densities. In this context, it has been illustrate
that stationary distributions that correspond to minima of Lyapunov func-
tionals describe stable stationary probability densities. Likewise, distributions
corresponding to maxima or saddle points are unstable ones [10,26]. In sum,
Lyapunov’s direct method provides us with a powerful tool to analyze the

stability of stationary solutions of nonlinear Fokker-Planck equations.

Our understanding of this approach, however, is still incomplete. First, the
relationship between linear stability analysis and Lyapunov’s direct method
has not yet been thoroughly explored. For the special case of a mean field

model with a Kuramoto coupling term it has been shown that both meth-



ods yield the same result [28]. However, in this study no attempts have been
made to pin down the reason for the observed equivalence. Second, until now,
Lyapunov’s direct method has been developed for two special cases of nonlin-
ear Fokker-Planck equations: the Desai-Zwanzig model [10] and a mean field
model proposed by Kuramoto and others [26]. Both models involve subsystem-
subsystem interaction energies that can be expressed in terms of mean field
forces of the form (Unr (X, X')) x 5/ /2, where the averaging is carried out with
respect to X and X'. The functional (Uur (X, X'))x x /2 is characterized by
the fact that its third variational derivative vanishes. It might be worth while
to investigate a larger class of nonlinear Fokker-Planck equations involving
mean field energy functionals with nonvanishing third variational derivatives.
In particular, one may study Fokker-Planck equations that describe systems
with mean field energies proportional to ((X™ — (X™)]?). In this case, we deal
with drift forces of the form z"~' (X™) (see below). Drift forces of this kind
play an important role in the theory of first order phase transitions [15] and
may be used in social sciences to describe group behavior [7,8]. Third, the
stability of stationary distributions of nonlinear Fokker-Planck equations has
also been determined by means of transcendent equations. The relationship
between linear stability analysis and Lyapunov’s direct method, on the one
hand, and transcendent equation analysis, on the other hand, has not yet been
explored in detail. In particular, the question arises whether or not transcen-
dent equation analysis can be applied to nonequilibrium systems for which
free energy functionals can not be found. Finally, only little attention has
been payed to apply Lyapunov’s direct method and linear stability analysis to
mean field models that involve multiplicative noise sources. This is in contrast

to the wide interest in systems of this kind [12,36,37].

This paper is organized as follows. In Sec. 2 we will discuss systems with free
energy measures such as equilibrium systems. We will distinguish between

systems with additive (Sec. 2.1) and multiplicative (Sec. 2.2) noise sources.



In Sec. 3 we will consider systems for which free energy functionals can not
be found or for which the existence of free energy functionals is not obvious
(e.g. nonequilibrium systems). Here, we will treat the case of additive and
multiplicative noise sources simultaneously. In this context we will discuss a
noise-induced reentrant phase transition for which rigorous prove can be given

that transcendent equation analysis can be applied.

2 Free energy case
2.1 Additive noise

We consider stochastic processes in M-dimensional phase spaces €2 that are
described by a vector x = (z1,...,2y). Let P(x,t;u) denote the probability
density of such a stochastic process, where ¢ is time and u(x) describes the ini-
tial distribution of the process given at t = ty: P(x,to;u) = u(x). We assume
that P(x, t; u) satisfies natural boundary conditions or periodic boundary con-
ditions. In the former case we have x € = RM. In the latter case we have
x € [TM,]a;, b)) with b; —a; =T; > 0and P(...,2; +T;,...) = P(...,2,...).

We assume that the free energy of the system under consideration is given by

F[P] = / Up(x)P(x) "z + Uxi.[P] — QS[P] , (1)

where S denotes the Boltzmann-Gibbs-Shannon entropy S[P] = — f PIn PdMz
[1] and Uxy[P] is bounded from below like Unp,[P] > Uxpmin. We further
assume that the evolution of P is given by the multivariate Fokker-Planck

equation

9 Pl tu) =V - {Pvg—f,} )

for t > tg and Q > 0, which can equivalently be expressed as
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(3)

with V = (8/0zy,...,0/0zy) and A = §%/0x% + - -- + 0 /023%,. Stationary

solutions of Eq. (2) can be obtained from

P (1)

where 1 may be regarded as a chemical potential for systems with mass equal
to one'. Note that Eq. (4) can be written in form of the implicit equation

L {_Uo(x)+5gNL[Pst]/5P} |

(5)

where Z denotes a normalization constant given by InZ = 1 — u/Q. Now,
let us briefly review the H-theorem and the stability analysis by Lyapunov’s
direct method for nonlinear free energy Fokker-Planck equations [10,26,38,39].

2.1.1 H-theorem for free energy Fokker-Planck equations

In line with previous work [10,28,40], one can show that F' is bounded from
below if the Boltzmann distribution W (x) o< exp{—Uy(x)/Q} exists (see Ap-

pendix A). Using partial integration, from Eq. (2) we obtain the inequality

d §F1?
L [PIVvE| aMz<o.
= ! lvapl dMgz <0 (6)

Since, by definition, F' does not depend explicitly on time, the implication

0P/0t = 0 = dF/dt = 0 holds. From Egs. (2) and (6) we conclude that

! In the case of periodic boundary conditions, we assume that the potential U
is a T-periodic function Uy(...,z; + T;,...) = Up(...,x;,...). Likewise, we re-
quire that 6UNL[P]/dP as a function of x satisfies 0Uni[P]/0P(...,x; + T;,...) =
SUNL[P]/6P(. .., zi,-..).



dF/dt = 0 = 6F/6P = constant = O0P/0t = 0. In sum, F satisfies the

properties of a Lyapunov functional, which are

d d 0
F>Fu, —F<0, —F=0e2pP=0.
= a =0 g =0e gl =t ()
From Eq. (7) we further conclude that the limiting case lim;_ o, OP/0t = 0

holds. That is, every transient solution converges to a stationary one in the

long time limit (H-theorem [32]).

2.1.2 Stability analysis by means of Lyapunov’s direct method

By means of Lyapunov’s direct method, we can also analyze the stability of
stationary probability densities [10,26,38]. If 6> F[Py](¢) > 0 for all € # 0 then
P,; corresponds to a minimum of F'. This implies that for small € there does not
exist a probability density P = Py + € that corresponds to another stationary
point of F' and describes a further stationary solution of the Fokker-Planck
equation. Since from Eq. (7) we have OP/0t # 0 = dF/dt < 0 we conclude
that every perturbation P = Py + € evolves in such a way that the inequality
dF/dt < 0 is satisfied as long as € # 0. Since P = Py + € is located in
a neighborhood of a minimum of F', the time-dependent solution P can not
leave this neighborhood (because this would imply an increase of F'). The only
behavior of the perturbation P = Py + € that is consistent with the constraint
dF/dt < 0 for € # 0 and the fact the P is located (in the function space of
probability densities) in a neighborhood of a minimum of F' is the relaxation

to the unperturbed state described by Py;. Therefore, we get
Ve # 0 : 0°F[Py](€¢) > 0 = Py, = asymptotically stable . (8)
Let Py correspond to a maximum or a saddle point of F' such that there

is at least one small perturbation €* which yields 0?F[Py](¢*) < 0. Then,
the inequality F'[Py + €] < F[Py] holds and the time-dependent probability



density P(x,t;u) with u = Py + €* at t = ¢y can not return to Py(x) for any
t > to (because F' can not increase and F(ty) < F[Py]). In this context, it
is usually assumed that a perturbation in the direction of ¢* increases with
time in the sense that the deviation between P and P, increases with time.

Consequently, we obtain:

3e* : 6°F[Py](€*) < 0 = Py, = unstable . 9)

In sum, the sign of the second variation of the free energy F' determines
the stability of stationary distributions. For F' given by Eq. (1) the second

variation reads

S2F[Py)(e / / 6‘]5DUNL[P il () e(y) dMadMy + O / P—Sth . (10)

2.1.8 Linear stability analysis

Let us investigate now the stability of stationary solutions of Eq. (3) by
means of linear stability analysis. First, we require that 6*Uxy,/0P(x)0P(y) =
X'(x,y) satisfies the symmetry relation x'(x,y) = x'(y, x) which implies that
the symmetry relation x(x,y) = x(y,x) holds for §?F /6 P(x)6P(y) = x(x,¥)-
Next, we linearize Eq. (2) at Py. That is, we put P(x, t;u) = Py (x) + €(x, t).

Using Eq. (4) and taking only e-terms of first order into account, we obtain

%e(x, t) = { stV/ 5P o F[PSt (y,t) dMy} ) (11)

Let us consider the functional L defined by the second variation of F' like

L[P, Py = %62F[Pst](e) (12)

with € = P — Py. Differentiating L with respect to ¢, exploiting the symmetry
of 8?F/6P(x)dP(y), and integrating by parts, from Eq. (11) we obtain



d (5 F[ Py
— =_=Z 2 2 /Ps I L? B M M <
iy dt25 Py](e) ¢ =)0P(y )e( ) d%y| d¥x <0
(13)
It is clear from this result that dL/d¢ = 0 implies
2
CER (yay=c. (14

J dP(x)dP(y)

where C is a constant. Multiplying Eq. (14) by €(x, t), integrating the result
with respect to x, and taking the normalization constraint [, €(x,t)d”z =0
into account, we get

d 2 —
EL=0=>5F[Pst](€)—O' (15)

In sum, using linear stability analysis, two fundamental results can be found:
the inequality (13) and the implication (15). These results can now be used to
analysis the stability of stationary probability densities related to stationary

(or critical) points of F.
Minima

Let us consider a distribution Py with §?F[Pg](e) > 0 for all ¢ # 0 and
62F[Py](€) = 0 < € = 0. Then, from Egs. (12), (13), and (15) it follows that

L>0, —L<0, —L=0&¢e=0. (16)

Consequently, the limiting cases lim; ,, €(x,t) = 0 and lim;_,, P(x,t;u) = Py
hold for all initial distributions v &~ Py. In other words, by means of linear
stability analysis related to the second variation of free energies we reobtain
the proposition (8). By means of the second variation §°F, we can determine
the stability of stationary distributions in a way consistent with the stability

theory for deterministic systems. To this end, we define the norm ||-|| for



positive definite 62F and functions e(x) € C®(Q) with [, e(x)d”z = 0 by

|lel| = /0> FPu](e) , (17)

see Appendix B. Using 2L(e) = 6>F[Py](€) = ||¢e||> = dL/dt = ||e||d ||e|| /dt
and Eq. (16) we obtain

d
0= — <0 18
e#0= Il (18)

for Py with positive definite 62F. Eq. (18) tells us that the norm of every
small perturbation of Py decreases as a function of time which means once

again that Py is asymptotically stable.
Saddle points and maxima

If there is a €* such that §?F[Py](e*) < 0 then we have L(t,) < 0 for
P(x,tg,u = Py + €*). From Eq. (15) it follows that §?F[Pg](e*) < 0 =
dL/dt # 0. Finally, from Eq. (13) we obtain dL/d¢t < 0 for the perturba-
tion P(x,ty,u = Py + €*). That is, |L| increases as a function of time for the
perturbation related to a saddle point or a maximum of F'. The increase of
|L| indicates that the deviation between P and Py increase with time and P
corresponds to an unstable distribution. Consequently, linear stability analysis

gives us the proposition (9).
Mazima

If Py describes a maximum of F' with §2F[Py](e) < 0 for all € # 0 we can

introduce a norm defined by

lel| = /= 2F[Px](e) , (19)



see Appendix B. Using —2L(e) = —62F[Py](¢) = ||e||* = —dL/dt = ||¢|| d ||e|| /dt
and Eq. (16) we obtain

d
— 2
e#0= el >0 (20)

for Py with negative definite §°F. Eq. (20) tells us that the norm of every
small perturbation of Py increases as a function of time which means that Py
is unstable. In sum, we realize that irrespective of the form of the functionals
that describe internal energies, Lyapunov’s direct method and linear stability
analysis yield consistent results. From both methods it follows that stationary
probability densities are stable if they correspond to free energy minima with
positive definite second variations. In contrast, if there is a perturbation of a
stationary probability distribution that involves a decrease of the free energy

(1) then the stationary distribution is an unstable one.

2.1.4 Transcendent equation analysis

We confine ourselves to discuss the univariate case. We consider systems with

nonlinear energy functionals of the form

UxL[P] = (Bo(z)) + B((4)) = Buin (21)

and free energy measures given by

F[P] = / V(2)P(z)dz + / Bo(2)P(z) dz + B((A)) — QS[P], (22)

where A(z) denotes an arbitrary function. From Eq. (21) we read off that the
nonlinearity B({A)) is balanced by a potential By such that [, BoPdz+B((A))
is bounded from below. Consequently, we do not require that B(z) itself is

bounded from below. In the univariate case, the free energy Fokker-Planck

10



equation (2) reads

0 0 0 J0F

For F' given by Eq. (22) we obtain

82

dV(z) dBy(z)  dA(z) dB(z) P+l p
ox?"

dz dx dzx dz

0 0
EP(x,t, u) = %

z2=(A)
(24)

By means of the H-theorem derived in Sec. 2.1.1, we can then conclude that
the limiting case lim; ,o, OP/0t = 0 holds. Using 6Uxp|[P]/0P = By(x) +
A(x)dB({A))/dz, Eq. (5) becomes

Pulz) = %exp {_V(x) + By + Ag)dB((A>St)/dz} . (25)
Let us introduce the order parameter m = (A), and the functions
1 V(z) + Bo(z) + A(z)dB(m)/dm
P(x,m)_mexp{— 0 } ;
R(m) = / A(z)P(z;m) dz (26)

where Z(m) is the normalization constant of P(x;m). Then, (A)_ is given by

the solutions of the transcendent equation

m = R(m) . (27)

Not only can we derive from Eq. (27) the order parameter m and thus the
explicit form of stationary solutions but we can also determine the stability of
stationary solutions. To this end, we examine the intersection points between
the function y;(m) = R(m) and the diagonal ys(m) = m. Inspired by the
theory of iterative maps [41], for systems with monotonically increasing R(m),

it is assumed that we deal with a stable stationary solution if the slope of R(m)

11



at an intersection point is smaller than one. Likewise, we deal with an unstable

stationary solution if the slope of R(m) at (X)_, is larger than one:

j—R < 1= Py (z;m) = asymptotically stable ,

m

dR

am > 1= Py(z;m) = unstable . (28)

The slope of R(m) can be computed from Eq. (26):

dR(m)
dm

: (29)

where K4 denotes the generalized variance defined by K4 (X) = (A(X)?) —
(A(X))? = ([A— (A)]>) > 0. By means of the stability coefficient

X:Q<1—g—ﬁ>, (30)

we conclude that for A = Q + K4 4d*B/dz*> > 0 (< 0) the stationary distri-

butions (25) are asymptotically stable (unstable).

Let us determine now the stability of the distributions (25) by means of Lya-
punov’s direct method. Since the second variational derivative of Uyy, reads

62Un1[P]/6P(2)0P(y) = A(z)A(y)d>B({A))/dz?, Eq. (10) can be found as

d’B(?)
dz?

82 F[Py](e) =

+Q Q/ ;zt(é)) de. (31)

/A(:c) e(r) dz

(A) st

Eq. (31) can be evaluated as proposed by Shiino [10,38] using

e(z) = B [A(z) — (A(X))y] Pst(2) + x1(2)y/ Par(z) , (32)

where y, satisfies the orthogonality relations [, x . (z)y/Ps(z)dz = 0 and
Jo A(x)x 1 (z)y/Psy(x)dz = 0. Note that analogous to the cases discussed in
[10,26,38] we can show that the representation (32) accounts for all possible

12



perturbations € of a stationary probability density. Substituting Eq. (32) into
Eq. (31), one can determine the sign of 6*F from

d’B(z)
dz?

62F[Pst](€) = BQKA»%(X)

Q + KA,st (X)

(A)gt

+Q/[X¢]2d$ .

(33)

For A\ = Q + d’B(m)/dm?K as(X) > 0 with m = (A),, we obtain §2F >
0 indicating that the stationary distribution being studied is a stable one.
For A = Q + d*B(m)/dm?K 44 (X) < 0 there is a perturbation that yields
§2F < 0 which tells us that we deal with an unstable stationary distribution.
The critical parameter value of @ can be computed from A = 0 = Q +
d’B(m)/dm?K 4 5(X;Q) = 0 with m = (A)_. Consequently, for stochastic
processes described by Eqgs. (22) and (24) transcendent equation analysis is
consistent with Lyapunov’s direct method and linear stability analysis. Further
special cases in which we can prove the validity of the transcendent equation
analysis by means of Lyapunov’s direct method are listed in Table 1 and are
addressed in Appendix C. In this context the reader is also refereed to [38].
Insert Table 1 about here.

2.2 Multiplicative noise

We consider now systems subjected to multiplicative noise. Our objective is
to analyze multiplicative noise systems by means of the methods developed
in the previous section. Therefore, we confine ourselves to systems with state-
dependent diffusion coefficients and mean field forces that satisfy a particular
matching condition. Let us illustrate this issue for the univariate case. To this
end, we generalize the Fokker-Planck equation (23) by introducing a state-

dependent mobility coefficient M > 0 like

2P(x,t; u) = 2M P 0 oF

ot = M@ P 5E (34)

13



We can proceed as in Sec. 2.1 and show that stationary solutions can be
computed from 0F/0P = p and the relations dF/dt < 0 and dF/dt = 0 <
O0P/0t = 0 hold (see also [39]). Using Lyapunov’s direct method, we conclude
that stationary distributions P, are asymptotically stable if the inequality
Ve # 0 : 0°F[Py](e) > 0 holds. If there is at least one perturbation €* that
yields 62F[Pg](€*) < 0 then we deal with an unstable stationary distribution.
From Eq. (34) it follows that perturbations of stationary distributions satisfy

the evolution equation

B B B 52 F
Selw,t) = = M(@) P J 5Pl (35)

Just as for systems with M = 1, we can then show that if we deal with a
free energy minimum distribution Py with Ve # 0 : 62F[Py](¢) > 0 then
lle|]| = 4/02F[Ps)(e) decreases as a function of time and Py is asymptoti-
cally stable. If there is a perturbation €* with 2 F[Py](€*) < 0 then we have
d|L|/dt > 0 for L = §2F[Py](e*) which indicates that P,; describes an unstable
stationary distribution. In particular, for free energy maximum distributions
with Ve # 0 : 62F[Py](€) < 0 one finds that ||e|| = \/—82F[Py](€) increases
as a function of time which means that distributions of this kind describe

unstable distributions.

It is clear that due to the state-dependency of M we deal with stochastic pro-
cesses with multiplicative noise. However, M also occurs in the drift term. Let
us illustrate this issue for the free energy measure F' = (V(X)) +xkKa(X)/2—
QS (see Table 1, second row) for which Eq. (34) becomes

%P(x,t; u) =
Snrte) [T s (a60) - 242 g, )| P+ 0 M

(36)

Using the transformation (M, A, V) — (D, A', V') given by

14



dV’ dV
- a —Q— KMA

dz
D(z) =QM(x) ,
Az

)= \/g (@) (37)

we can transform Eq. (36) into

0 L0 |dV(z)
EP($’t’“)_a_x dz —\(a;) dzx (A

Aegr (.’I},P)

L) e, P+ L D@ (39)

Conversely, every mean field Fokker-Planck equation of the form (38) can be
transformed into Eq. (36) (via the backwards transformation (D', A", V') —
(M, A,V): dV/de = QD'[dV'/dz + dD/dz] — VkQA!, M(z) = D(z)/Q,
A(z) = 4/Q/kA'(z)) and, subsequently, the stability of stationary distribu-
tions of Eq. (38) can be determined using the free energy approach. In other
words, from Eq. (38) it follows that multiplicative noise systems can be inves-
tigated by means of the free energy approach if the effective mean field force
Aeg(z, P) can be decomposed into Aeg(z, P) = D(z) (A")dA'(x)/dx, that is,
if the diffusion coefficient D(z) and Aeg(z, P) satisfy a matching condition.

3 General case
3.1 Failure of the simple transcendent equation analysis

We study next systems for which free energy measures do not exist or for
which it is not obvious whether or not free energy measures can be derived.

Our departure point is the nonlinear Fokker-Planck equation

0 0 [dV(x) 92
ap(xt u) = oz | dw + k& (A(z) — (A(X))p) P+ﬁD( z)P (39)

15



with £ > 0 and D > 0. If D(x) depends on x we deal with multiplicative noise.
For D(z) = ) > 0 we deal with additive noise. By means of h(z) = —dV/dz,

stationary solutions of Eq. (39) can be written as

Fale) = ZDl(x) =P {/ h(xl)D_(,;)A(xl) Ao’ + K (A, / D(lx’)dxl} (40)

where Z denotes a normalization constant? . By virtue of

_ 1 [ 1) ~ KA@) —m] .,
P(x,m)—mexp{/ D() dzx } ;

R(m) :/A(x)P(x;m) dz , (41)

we can define the transcendent equation m = R(m) whose solutions corre-
spond to the expectation values (Ag) occurring in Eq. (40). Differentiation of

R(m) with respect to m gives us

dR(m) = kCy (A(x),/w D(lfv’) dw') ’ (42)

dm

(4)

st

where Cu(f,9) = ([F(X) = (F(X)),][g(X) = (9(X)),])y, describes the cross

correlation coefficient of the functions f and g. Frequently, the hypothesis is
made that for systems described by Eq. (39) the same relationship between
the slope dR/dm and the stability of stationary distributions holds as for free
energy systems. Let us investigate the validity of this hypothesis.

Substituting P = Py + € into Eq. (39), the evolution equation for the pertur-

bation € is found as

0 0 0?

—e(x,t)=—— |h(x) — k (A(z) — (A + —D(x

£ (1) == [h(z) — 8 (A() ~ ()] e+ 55 D(a) e

2 This result holds both for natural and periodic boundary conditions. In the latter
case, however, we need to require that h, A, D are defined in such as way that

P(z+T) = P(x) holds, where T' is the period of the processes under consideration.

16



[ AW)ela) a2 (43)

Q

Using Eq. (40), we can transform Eq. (43) into

0 0 dPy
t D(2)Pya— | — / A()e(a! 1) da' =20 (44
ot e(z1) = 833[ (@) St(% ] " e dz (44)
Eq. (44) can be evaluated for perturbations described by
T X
[ qw = ([ aw) | Pu) (45)
D(x") D(x") " S

The integral [, A(z)e(x,t)dz can be expressed in terms of the cross correla-
tion coefficient Cy: [ A(x)e(x,t) dz = B(t)Cx (A, [ D' (2') dz'). Therefore,
if we substitute Eq. (45) into Eq. (44), multiply with A(z) and integrate with
respect to z, we obtain d3(t)/dt Cy, = B[1 — kCy] J dPs(x)/dzA(x) dz. Using
[ dPy(z)/dzA(z) dz = — (dA(X)/dz),, and assuming that Cy # 0 holds, we
get

dR
dm

) p(t) - (46)
(g,

Since Eq. (45) describes a particular perturbation, from Eq. (46) we can
read off sufficient conditions for unstable stationary distributions and nec-
essary conditions for asymptotically stable distributions. For example, if the
inequality (dA(X)/dz),, > 0 holds, stationary distributions are unstable for
dR({A),)/dm > 1, which is the prediction of transcendent equation anal-
ysis. In addition, we see that the inequality dR({A4),)/dm < 1 is a neces-
sary conditions for Py being asymptotically stable. Eq. (46) also tells us that
nonequilibrium systems with mean field forces can exhibit a counter-intuitive
behavior: for (dA(X)/dz),, < 0 they may exhibit unstable stationary distri-
butions with dR/dm < 1 and asymptotically stable stationary distribution

with dR/dm > 1. In other words, the simple transcendent equation analysis
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that evaluates only R(m) fails because for systems described by Eq. (39) the
stability of the stationary states is determined by two stability criteria: the

slope of R(m) at m = (A)_ and the sign of (dA/dz).

3.2 Validity of the simple transcendent equation analysis

Here, we briefly address two special cases in which the impact of the additional

stability parameter (dA/dz),, can be neglected.

3.2.1 Linear mean field forces

For A(z) = = we have

+ Kk (x — (X)P)] P+ %D(x)P (47)

Ox2
and dg(t)/dt = AB(t) with

A:m(l— ) (48)

Consequently, stationary solutions of Eq. (47) become unstable if the slope

0 0

Z Pz, t;u) = — [dv(x)

dx

ot ox

dR

m

<X>st

dR/dm becomes larger than unity at intersection points with the diagonal in

the (m, R)-plane.

3.2.2  Local free energy functionals
Ito case

As we will show next, systems may exhibit some kind of local free energy

functional. Let us write Eq. (44) as
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0 0 0 [ e fo1
. _ D P . - A ! ! ! !
orel@,) = = |D(@) P {Pst ,{Q/ (') e(2’, 1) dz / B }]
(49)
If we put now
Az) = 07 L da’ (50)
D(x')
(where c is a constant) and introduce the local free energy functional
K
V[P = 2 Ku(X) - S[P] (51)
then Eq. (49) can equivalently be expressed as
a 8 8 52\11[Pst]
— =_—D st | €Y, . 2
oc (1) = 5P, | sp@ar( Y (52

Having obtained Eq. (52), we can proceed as in Sec. 2.1.4. For L = §?W¥[Py](¢) /2
we can show that analogous to Egs. (13) and (15) the relations dL/dt < 0 and
dL/dt = 0 & 62¥[Py](e) = 0 hold. The second variation §?¥ can be evaluated
as demonstrated in Sec. 2.1.4 (see also the Appendix C). Thus, we obtain a

stability condition similar to the one listed in the second row of Table 1: if

A=c— kK 4(X) (53)

is positive then we have Ve # 0 : 62°¢ > 0 and Ve # 0 : L > 0 and, conse-
quently, Py corresponds to an asymptotically stable distribution. Conversely,
if X < 0 then there exists a ¢* such that 62¥[Py](¢*) < 0 = L < 0 and, con-
sequently, Py is unstable. Using the matching condition (50), Egs. (40) and
(41) read




and

o 1 rh) ., K 2
P(x,m)_mexp {/ D(@) dz’ — % [A(x) —m] } ,
R(m) = / A(z)P(z;m) dz (55)

which eventually leads to dR/dm = kK, 4(X)/c at m = (A),, and A(z) =

st
c[* D7 (') dz'. As a result, in line with transcendent equation analysis we
conclude that for dR((A),)/dm < 1 stationary distributions are asymptoti-
cally stable and for dR((A),)/dm > 1 stationary distributions are unstable.
Note that Eq. (50) implies that the inequality (dA(X)/dx), > 0 is satisfied.

Therefore, the result derived here is consistent with Eq. (46).
Stratonovich case

In order to study noise induced phenomena it is often more appropriate to

consider Fokker-Planck equations such as

O Pl 1) = - [h(z) — 5 (A() — (AC))] P+ ~g(x) S g(a)P
(56)

with g(z) > 0. For k = 0 Eq. (56) describes a stochastic process defined by

the Stratonovich Langevin equation [32]

%X(t):h(X)-i- g(X)I't) . (57)
Stratonovich

Using D(x) = g*(x), we can cast Eq. (56) into the form of Eq. (39):

0 1dD(z) 0?
2+ 5, " F (A(z)—(A)p)| P+ @D(:v)P .

(58)

As shown in pervious studies [6,42-45], the Ito Langevin equation correspond-
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ing to Eq. (58) reads

Sxw =m0+ P a0 - )+ oM . (69)

dt
Ito

As a consequence, Eq. (59) also corresponds to the stochastic differential equa-

tion of Eq. (56). From Eq. (58) it follows that Eqs. (54) and (55) become

-1 ex [ hi) o — 2 [A(z) — ’
and

h(z") ., &

1 i 2
P(x’m)_weXP{/D(x') dzx —2—C[A(ac)—m] } ;

Z(m
R(m) :/A(x)P(x;m) dz . (61)

Comparing Egs. (54) and (60), we realize that the factor 1/D is replaced by

1/v/D.

3.3  Ezample: noise-induced reentrant bifurcation

Inspired by several studies on reentrant bifurcations [13,16,46-49], we use
g(r) = VQ(1 + bx?) and D(z) = Q(1 + bx?)? with b > 0 which means
that we deal with a mean field force involving A(z) = c [y D }(2')da’ =
clarctan(vbz)/vb+z/(1+b2%)]/(2Q). Since the expression arctan(z)+xz/(1+
1?) behaves like an arctan-function ® , we introduce the modified arctan-function
arctan’(z) = arctan(z) + /(1 + 2?). For ¢ = 2@} we then obtain from Eq. (58)

the mean field model

3 Both arctan(z) and arctan(z) + /(1 + z?) are symmetric and bounded functions

that increase strictly monotonically: d[arctan(z)+z/(1+2%)]/dz = 2/(1+22)% > 0.
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QT (140?) L (14 0a?) P (62

For h(z) = —axz(1 + bz?)? with a > 0 [13] stationary distributions of Eq. (62)

satisfy the implicit equation

Py(z) =
S — {—% ( S5 [T () | ) }

(see Eq. (60) and replaced Z+/Q by Z). Accordingly, the transcendent equation

m = R(m) for m = (arctan’(X)) involves the functions

1 1 1 , K [arctan’(v/bz) ?
P(x,m)—mmexp{—@ (CL.’L‘ +§[T—m] )} )

R(m) = /arctan'(x)P(x; m)dz . (64)

Since arctan’(x) describes an antisymmetric function, the relation R(0) = 0
holds which in turn implies that a symmetric solution Py with (X) = 0 and
<arctan’ (VbX)/ \/I;> = 0 exists for all parameters x and (). We refer to this so-
lution as the paramagnetic solution describing a state of disorder. In contrast,
we refer to stationary distributions with (X) # 0 and <arctan(\/5X )/ \/5> #0
as ferromagnetic solutions that describe systems featuring some kind of or-
der. Note that for stationary distributions of the form (63) the implication
(X)y #0 & <arctan’ (\/l_)X)/\/I_)>St # 0 holds. Let us examine the emer-
gence of ferromagnetic solutions. To this end, we first determine the qualita-
tive behavior of R'(m) = R(m) — m. It is clear that the relation R'(m) = 0
defines solutions of the transcendent equation m = R(m). Moreover, if the
inequality dR'(m)/dm < 0 (> 0) holds for R'(m) = 0, we deal with solutions
of m = R(m) with dR/dm < 1 (> 1) and asymptotically stable (unsta-
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ble) stationary distributions. R'(m) is shown in Fig. 1 for three values of Q.
We realize that when ferromagnetic solutions with <arctan’ (VbX )> JVb #0
and (X) # 0 emerge then the paramagnetic solution becomes unstable (be-
cause the slope dR'(0)/dm becomes positive). Furthermore, we realize that
the bifurcation is reentrant [13]. The bifurcation line can be computed from
dR(m)/dm = kK4 /c = 1 with ¢ = 2@Q) and is depicted in Fig. 2. The order
parameter m = (A)_, as a function of @) is given in Fig. 3. Note that in Fig. 3
only the stable solutions are shown.

Insert figures 1, 2, and 3 about here.

4 Conclusions

Using a Fokker-Planck approach, we have discussed the stability of stationary
states of mean field models that involve several kinds of internal and free en-
ergy functionals and describe stochastic processes subjected to additive and
multiplicative noise. We have shown how to determine the stability of sta-
tionary distributions by means of linear stability analysis, Lyapunov’s direct
method, and transcendent equation analysis. We have found that the three
methods yield consistent results for systems with free energy functionals (Sec.
2), linear mean field forces (Sec. 3.2.1), and local free energy functionals (Sec.
3.2.2). The consistence between Lyapunov’s direct method and linear stability
analysis arises due to the fact that both methods exploit the same quantity,
namely, the second variation of free energy measures. For systems that can
not be described by means of a free energy functional, in general, the simple
transcendent equation analysis that only evaluates the slope of R(m) (right
hand side of the transcendent equation) fails. The reason for this is that in
the general case there is another stability parameter that has to be taken into
account (Sec. 3.1). Consequently, there might be nonequilibrium systems that

exhibit a somewhat counter-intuitive behavior in the sense that stationary
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distributions become unstable when the slope of R(m) at intersection points

with the diagonal y(m) = m becomes smaller than unity.

We have introduced a norm for the perturbations of stationary states related
to free energy minima and maxima. By means of this norm, one can rigorously
prove that perturbations of free-energy-minimum-distributions vanish in the
long time limit whereas perturbations of free-energy-maximum-distributions
grow as a function of time. The existence of the norm functional is closely
related to the fact that second variational derivatives are positive (negative)
definite at free energy minima (maxima) with nonvanishing second variational
derivatives. We would like to point out that we deal with a norm which is lo-
cally defined in the function space of probability densities. That is, for different

stationary probability densities we usually obtain different norm functionals.

Moreover, we have studied special cases for which local free energy functionals
can be used to determine the stability of stationary distributions (Sec. 3.2.1).
Future studies may elucidate the relevance of these special cases. For example,
in the context of a reentrant bifurcation we have considered a system that
involves a mean field coupling given by a modified arctan-function. Close to the
origin this modified arctan-function corresponds to a linear mean field coupling
frequently used in literature. Therefore, we speculate that for weak fluctuation
forces and paramagnetic states the arctan-coupling is a good approximation
for a linear coupling. In other words, it might be the case that in general in the
weak noise limit multiplicative noise systems described by mean field Fokker-

Planck equations can be evaluated by means of local free energy functionals.

We have required that free energy functionals are bounded from below. How-
ever, as far as the stability analysis of stationary states is concerned, we can
dispense with this requirement. We only need the boundedness of free energy
measures to prove that systems are globally stable in the sense that every

transient solution eventually converges to a stationary one. Consequently, the
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stability analysis carried out in Sec. 2 also applies to mean field models with

free energy measures that are not bounded from below.

The H-theorem for free energy Fokker-Planck equations states that transient
probability densities converge to stationary ones. In this context, the question
arises whether or not stochastic differential equations that can be assigned to
free energy Fokker-Planck equations exhibit the same convergence property.
We can not answer this question in general because there are many ways to
assign stochastic differential equations to nonlinear Fokker-Planck equations.
Following an idea by McKean Jr., the time-dependent solution of a nonlinear
Fokker-Planck equation can be interpreted as a virtual Markov process de-
scribed by a suitably defined linear Fokker-Planck equation and thus Langevin
equations can be assigned to nonlinear Fokker-Planck equations [44,45] (see
also Sec. 3.2.2). In doing so, the realizations of the random variables described
by the Langevin equations can be regarded as the state variables of particles
(or subsystems) of a many-body system. Consequently, if we assume that a free
energy Fokker-Planck equation describes an ensemble of statistically indepen-
dent particles (subsystems), then we can immediately write down a stochastic
differential equation for the Fokker-Planck equation. In this case, the Fokker-
Planck equation and the Langevin equation yield the same time-dependent
probability density. In particular, if a free energy Fokker-Planck equation is
multistable then the corresponding Langevin equation is multistable, too (see
e.g. [6,42]). Taking this particular perspective, the convergence to stationary
probability densities can be regarded as the limiting case t — oo N — oo,
where N is the number of particles and the limiting case N — oo is carried
out before the limiting case t — oo is carried out. Alternatively, nonlinear
Fokker-Planck equations may be regarded as the limiting cases of multivari-
ate linear Fokker-Planck equations [2,3]. In line with this approach, we can
write down N-dimensional Langevin equations for nonlinear Fokker-Planck

equations and we can carry out the limiting procedure N — co ¢ — 0o, where
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the limiting case t — oo is carried out before the limiting case N — oo is
carried out. Since finite dimensional multivariate Fokker-Planck equations are
usually monostable, the corresponding Langevin equations are monostable,
too. If the nonlinear Fokker-Planck equation is multistable we deal with a
problem. It might be possible that we deal with a Langevin equation that is
monostable in the limit N — oo ¢ — oo. Then, the stationary probability
density of the Langevin equation would not reflect the stationary behavior
of the nonlinear Fokker-Planck equation. Alternatively, in the limit N — oo
t — oo there might be a degeneration of the eigenvalue zero of the linear
multivariate Fokker-Planck operator indicating that there are several eigen-
functions with eigenvalue zero [50]. Then, in the limit N — oo ¢t — oo the
Langevin equation could exhibit multiple stationary probability densities. Fi-
nally, it has been suggested to interpret nonlinear Fokker-Planck equations
as nonlinear evolution equations for transition probability densities [51]. The
relevance of multistability for this kind of nonlinear Fokker-Planck equations,

however, has not yet been addressed.

Appendix

A Boundedness of the free energy functional (1)

In what follows, we will show that the functional (1) is bounded from below
for infinitely differentiable potentials Uy(x) and functionals Uyy, with infinitely
differentiable integral kernels provided that particular constraints are satisfied.
Let us first discuss a stochastic process subjected to periodic boundary condi-
tions. In this case we require that the potentials Uy and Uyy, are periodic (see
Sec. 2.1). Since 2 is finite and the integral kernels of [, UyPd™z (which is
Up) and Uyy, are assumed to be continuous, the integral kernels assume finite
minimum values on Q. Consequently, the integrals [, UyPd™z and Uy, are
bounded from below, say, by [, UPdMz > Upmin and Uxi, > UNL,min- For

finite phase spaces, the entropy S becomes maximal for the uniform distri-
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bution. Consequently, S is bounded by S < Spax. Therefore, we obtain F' >
Up,min + UnL,min — @Smax. Next, let us consider a stochastic process subjected
to natural boundary conditions. In this case, we assume that the Boltzmann
distribution W (x) = exp{—Us(x)/Q}/Zp with Zp = [, exp{—Uy(x)/Q}dMz
exists and that Unp, is bounded from below by Ui, > Uni,min. By means
of Up(x) = —QInZp + QIn[Zg/ exp{—Uy(x)/Q}] the free energy (1) can be

written as

P
F[P] = —anZB—i-UNL—i-Q/Pande . (A1)
Q

[\ /

Lg>0

As indicated above, the expression labeled Lk is larger than zero or equals zero
because it represents the Kullback distance measure [52]. From Uny, > Unt,min

we obtain F Z —Q In ZB + UNL,min-

B On a norm for the deviations of probability densities

Let C(Q) = {f(x) | f € C®(Q) A fof(x)d"z =0} denote the function
space of the deviations of probability densities. Then the functions € € C, are
the vectors of a linear vector space and satisfy for a;,a, € R and €,¢, € C,
the relation ai€; 4+ ases = €3 € C¢. Consider a free energy functional F' with
second variational derivatives that are symmetric at a stationary point Py of

F (see Sec. 2.1.3) and second variations that are positive definite at Py:

€# 05 8F[Py)(e) >0, e=0< 62F[Py](e) =0 . (B.1)

Now, we introduce the functional

62 F[Py]

(e1,0) = FF[Pallen, ) = | s5os5p 5

e1(x)ez(x) dMzdMy  (B.2)

which is akin to a scalar product. This expression is a bilinear form satisfying
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(61,62) = (62761) )
(0161 + aqéo, 63) = a1 (61, 63) + a2(€2, 63) (B-3)

for a1, as € R. Then, we introduce the functional ||-|| defined by

el = /B2 F[Py](e) = /(e €) - (B.4)

Our objective is to show that the relations

e[| >0,

lef]| =0 €e=0,

ler + e[ < [ler]| + []ea]]

|ael| = |al |[e]] (B.5)

are satisfied for a € R which means that Eq. (B.4) is a norm related to a free
energy minimum. We can be read off from Egs. (B.1,...,B.4) that the first two
and the last property in Eq. (B.5) are satisfied. The triangle inequality can
be proven in line with the proof of the triangle inequality for vectors of the
Euclidean space (e.g., prove first that the Cauchy Schwarz inequality holds
and use the Cauchy Schwarz inequality to derive the triangle inequality). By
analogy one can show that Eq. (19) describes a norm related to a free energy

maximum.

C Special cases of free energy models
C.1 Linear mean field forces (Desai-Zwanzig model)

We consider the Desai-Zwanzig model for a general pinning force —dV/dz
[9,10] and assume that the evolution of P(x,t;u) with x € Q = R is defined
by

0 0 |dV 0?
aP(x,t; u) = E d:(f) +k(z—(X)p)| P+ Q@P (C.1)
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with k > 0. We can verify that Eq. (C.1) can be written as Eq. (23) with F

given by

F[P] = /V 7)de + SK(X) - QS . (C.2)

The free energy F' may alternatively be expressed as

FIP] = [V(2)P()do + . [ [lz-sFP@)PE) drdy - Qs (C3)

because of 2K(X) = [o[z — y]?P(z)P(y) dz dy. Since the nonlinear energy
functional Uy, is bounded from below, F' is bounded form below for all po-
tentials V' for which the Boltzmann distribution of V exists (see Appendix A).
Let us re-arrange the terms of the free energy (C.2) like

F[P]:/[V(a:) —a:Z]P dx——//a:yP y)dzdy — QS . (C.4)

In this case, comparing Egs. (22) and (C.4), we obtain

Up(z) = V(z) + —a?, B(z) = —gz2 . A(x) ==z . (C.5)

Pst(x):lexp{_V(fv)—F/ﬁx?g_mx(X)st} ’ (C.6)

which can be solved by means of the corresponding transcendent equation for

the expectation value m = (X)), [10,39]. That is, we define P(m; x) and R(m)

1 )exp{_V(w) +f~€:v2/2—mvm} |
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where Z(m) is a normalization constant. Then, m is given by the solutions of

m = R(m). For the Desai-Zwanzig model the second variation of F' reads

52F[pst]():—/<;/xe dx/ye dy—l—Q/

__KL/“ )

and can be evaluated by considering € in form of

Pst

+QQ/ s (©9

€(x) = Bz — (X)) Pt(z) + x1(2)y/ Pa() , (C.9)

where x, satisfies the orthogonality relations [ x1(2)y/Ps(z)dz = 0 and

Joxx1(2)y/Pst(x)dx = 0 [10]. Then, one obtains

S2F[Py](€) = 2K (X) [Q — K Ko(X)] + Q / i 2de,  (C.10)

where K (X) denotes the variance of a stationary distribution (C.6). It can
be seen now that for a distribution Py with A = Q — kK (X) > 0 we have
§2F > 0 for all ¢ # 0. Consequently, from the stability analysis carried out
in sections 2.1.2 and 2.1.3, we conclude that in this case Py correspond to
a stable stationary probability density. In contrast, for every distribution Py
that yields A < 0 there exists a €* such that 62F [Py (€*) < 0 and we deal with
an unstable stationary distribution. Critical parameter values of x and () define
a bifurcation line which can be computed from A = 0 = Q = kK (X: k, Q).
Since from Eq. (C.7) it follows that the relation

dR K
— = —K4(X) (C.11)
dm (A)st Q

holds, transcendent equation analysis yields the same results as Lyapunov’s

direct method and linear stability analysis.
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C.2 Generalized variance: Uxy, = kK4 /2 = £ ([A — (A)]?) /2

Here we consider the Fokker-Planck equation

0 0 |dV dA 82
aP(m,t; u) = B l d:(f) +K (A(:c) — df) (A(X)) )] P+Q
(C.12)
for t > ty and k > 0. Then, by means of
/v z) dz + KA( )~ Qs[P], (C.13)

Eq. (C.12) can be transformed into Eq. (23). Comparing the free energy func-
tionals (1) and (C.13) we may put Uy = V and Uy, = 0.56K4(X) > 0.
Due to the boundedness of Uy, we have F' > F.;, and can further con-
clude that the limiting case lim; ,,, OP/0t = 0 holds. Decomposing F' like
Uy = V(z)+kA?(z)/2 and Uxp[P] = —k (A)? /2 with Uy /6P = —kA(z) (A),
from Eq. (5) we obtain

Pu(z) = %exp {_V(x) + /{AQ(:c)g — kA(z) (A)St} . (C.14)

Introducing the order parameter m = (A), in combination with the functions

P m) = A(x) exp {_V(z) + kA(x)?/2 — /{A(x)m} ’

Q
- ﬁ({A(z)P(m;m) do (C.15)

we can determine (A) by solving the transcendent equation m = R(m). In
order to discuss the stability of these stationary distributions, we first note

that 62Un/6P(z)6P(y) = —kA(x)A(y). Then, Eq. (10) reads
2
/A z)dz
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+Q Q/ ;1((‘?) dz . (C.16)



Substituting Eq. (32) into Eq. (C.16), gives us

2 F[Py)(€) = B2K s (X) [Q — k K ast(X)] +Q / . ]?dz.  (C.17)

Consequently, for A = Q — K Ka5(X) > 0 (A < 0) we deal with a stable
(unstable) stationary probability density and critical parameter values of &
and @ can be computed from @ —k K4 4(X; @, k) = 0. Transcendent equation

analysis based on the hypothesis (28) involves the derivative

= —Kag(X) (C.18)

and leads to the same result as Lyapunov’s direct method and linear stability
analysis. Note that for A(z) = 2™ we obtain the example mentioned in the

introduction.

C.8 Couplings via bounded potentials Uxy[P] = B({A)) > Bmin

Our final example is concerned with the mean field Fokker-Planck equation

82

0
P+ Q@P (C.19)

2P(a:,t; u) = —

dV(z) = dA(z) dB(z)
ot RE -

dx dx dz

z=(A)

for t > ty and B(z) > Bp,. For example, if we put A(z) = 2" with n > 1 we

get

0 9 [AVE) L dBUX)] L 8
atP(x,t,u)—aml i +nx 3 P-I—Q&EQP, (C.20)

which has previously been discussed [53]. By virtue of

F[P] = / V(z)P(z) dz + B((A)) — QS[P] (C.21)
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Eq. (C.19) can be written like Eq. (23). From Uny[P] = B((A4)) > By it
follows that F' > Fl,;, and, consequently, the H-theorem derived in Sec. 2.1.1
gives us limy o OP/0t = 0. Using dUxp[P]/0P = A(x)dB((A))/dz, Eq. (5)

becomes

B
Z Q
The stationary expectation value m = (A), can be obtained in a self-consistent

fashion by introducing the functions

P(z;m) = % exp {_ V(z) + A(agdB(m)/dm} |

R(m) = / A(z)P(z;m) dz | (C.23)

Q

and solving the transcendent equation m = R(m). In order to carry out a
stability analysis of the stationary probability distributions thus obtained, we
can proceed as in Sec. 2.1.4 and obtain the results reported in Table 1 (third
row). The reason for this is that the functionals (22) and (C.21) have the same
second variations. Moreover, the slope of R(m) is given by Eq. (29) which
means that transcendent equation analysis and Lyapunov’s direct method

yield the same results.
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Table 1

Free energy cases

>

UnL F

x K(X) =(X%) —(X)? | (V(X))+rK(X)/2-QS | Q- rKy
x Ka(X) = (A% — (A | (V(X)) + kKa(X)/2 = QS | Q — kKag
B({(A)) > Buin (V(X))+ B({A) — QS Q + K4 5d?B/dm?

(Bo) + B({A)) > Bmin (V+Bo)+B((A) — QS | Q+ Kagd?B/dm?

Figure caption:

Fig. 1: Illustration of the transcendent equation R'(m) = R(m) —m = 0 for
the mean field Fokker-Planck equation (62). R'(m) for x = 20 and ¢ = 1 and
several values of Q: @ =1, @ = 10, Q = 40. Solutions of R'(m) = 0 describe
stationary distributions. Solutions of R'(m) = 0 with negative (positive) slopes

correspond to asymptotically stable (unstable) distributions.

Fig. 2: Bifurcation lines of reentrant bifurcations described by the mean field
model (62). Bifurcation lines are computed from kK44 /c =1 for a = 1 (solid

line) and @ = 1.5 (thick dashed line), b = 0.2 and ¢ = 2Q.

Fig. 3: Order parameter m = <arctan’ (vVbX)/ \/5>5t of a reentrant bifurcation
described by Eq. (62). Solid lines are computed from m = R(m) and Eq. (64).
Crosses and diamonds are obtained from simulations of the Langevin equation
(59) using an Euler forward discretization scheme [32]. ) is gradually increased

along the horizontal line depicted in Fig. 2. Parameters: a = 1, b = 0.2, k = 20.
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