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Abstract

For many-body systems described by nonlinear Fokker-Planck equations and Vlasov-
Fokker-Planck equations we determine the linear system response to small external
driving forces. Thus, we derive fluctuation-dissipation theorems that relate dissi-
pative properties of the perturbed systems to the second-order fluctuations of the

unperturbed systems.

PACS: 52.25.Dg; 05.70.Ln; 05.40.-a

1 Introduction

Dynamical mean field models defined by nonlinear Fokker-Planck equations, in
general, and Vlasov-Fokker-Planck equations, in particular, have found various
applications in physics because they can describe both transient and station-

ary properties of many-body systems that involve mean field interactions. For
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example, nonlinear Fokker-Planck equations have been used to describe wet-
ting transitions and surface growth [1-4], polymer dynamics [5-8], continuous
and discontinuous phase transitions [9-21], reentrant phase transitions [22—
27], and pattern formation [28-30]. Vlasov-Fokker-Planck equations are useful
models to describe diffusion in plasmas [31-35] and have more recently been
used to examine stochastic properties of particle bunches in electron storage

rings [36-42].

Despite this plentitude of applications, only a few efforts have been made to
elucidate the relationship between fluctuations and dissipation. For equilib-
rium systems this relationship is given by the famous Green-Kubo formula
which relates transport coefficients of systems to their second-order statis-
tics [43-45]. For nonequilibrium systems described by ordinary linear Fokker-
Planck equation a fluctuation-dissipation theorem similar to the Green-Kubo
formula has been derived by Agarwal [46]. This fluctuation-dissipation the-
orem describes the relationship between the linear response of a stochastic
system to a small external driving force (reflecting dissipative properties of
the system [45]) and the second-order statistics (fluctuations) of the system
when the driving force is switched off. In this context it is important to note
that a key step in the study by Agarwal is to exploit the formal description of
transition probability densities defined by Fokker-Planck equations.

For many-body systems that involve interacting subsystems and are defined by
nonlinear Fokker-Planck equations and Vlasov-Fokker-Planck equations basi-
cally two approaches have been made to generalize the Green-Kubo formula
[47,48]. The first approach exploits the formal description of transition prob-
ability densities defined by Fokker-Planck equations. This approach, however,
is centered around a quantity that vanishes in the thermodynamic limit of
infinitely large systems for which nonlinear Fokker-Planck equations become
relevant at all. The second approach starts off with the evolution of pertur-

bations that do not vanish in the thermodynamic limit. However, this second



approach is primarily concerned with the relationship between transport coef-
ficients and second-order statistics and, consequently, the relationship between
the results derived in this second approach and the fluctuation-dissipation the-
orem derived by Agarwal is mathematically involved. In sum, while both ap-
proaches have yield interesting insights into the problem, they are incomplete

to certain extents.

In the present study, we will exploit simultaneously the advantages of both
approaches. We will derive a fluctuation-dissipation formula that defines the
relationship between the linear response of a many-body system to a small
driving force and the second-order statistics of the system in the unperturbed
state. In line with recent developments in the theory of nonlinear Fokker-
Planck equations [42,49-56], our approach will involve explicitly the formal

description of transition probability densities.

2 Fluctuation-dissipation theorems for dynamical mean field mod-

els
2.1 Nonlinear Fokker-Planck equations of the Desai-Zwanzig type

Let X(t) € © = R denote the random variable of a stochastic process
with probability density Py(z,t;u) = (6(x — X (¢))) and initial distribution
Py(z,to;u) = u(z). We refer to Fokker-Planck equations with drift functions
that involve the first moment (X) as nonlinear Fokker-Planck equations of
the Desai-Zwanzig type. Accordingly, we assume that the evolution equation
of Py(z,t;u) is given by

0 0 0?
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for t >ty and (X), = [q Fy(z, t;u) dz. Note that Eq. (1) can alternatively be
regarded as a Fokker-Planck equation that involves a free energy functional
that depends on the variance K of the distribution function Py [57,58]. There-
fore, we may also refer to Eq. (1) as the K-model. Now, let us assume that
there is at least one stationary distribution for which the probability density

current [59] vanishes such that

[h(x) — Kz — <X>0,st)] Posi(z) = Q%PO,st(I) . (2)

Using the Fokker-Planck operator

~ 82
Fofa,0/0m, M) = — - [h(z) — sla = M) + Qg . (3)
we can write Egs. (1) and (2) as
%Po(x, t;u) = Ey(z,0/0x, (X),) Py (@)

and FO,st (x,0/0x,(X )o,st)PO,st = (0. We confine ourselves to evolution equations
(1) that correspond to strongly nonlinear Fokker-Planck equation such that
Eq. (1) describes a nonlinear family of Markov diffusion processes [42]. In this
case, every family member is labeled by the initial distribution v and has an
individual transition probability density denoted by P(z, t|z',t'; u) and defined
by

%Po(x,ﬂx',t';u) = F} (:r,a/a:r,/:rpo(:v,t; u) dx) Py(z, t|2',t';u) . (5)
Q

Note that Eq. (5) is coupled with Eq. (4) by means of (X), = [, 2 FPy(z,t; u) dz.
In the stationary case the Fokker-Planck operator (3) does not depend on ¢
because M is a constant which implies that in this case the formal solution

of Eq. (5) can be written as [59]

Py (x, 12’ t'; P (z)) = exp{Fo(x,0/0z, (X)) (t — ') }d(z — ') . (6)



In order to study perturbations of the stationary case, we consider a driving
force f(t) that acts on the system such that P(x,t;u) = (§(z — X())) evolves
like

2
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e P t0) = == h(z) = k(@ — (X)) + (O] P+ Q3P (7

for t > ty, P(z,to;u) = u(z) and (X) = [qxP(z,t;u)dr. We assume that
the amplitude of f(¢) is small and that the system is close to the stationary
unperturbed state given by P« (z). Consequently, we examine solutions of
Eq. (7) that can be written as P(z,t;u) = Pyg(x) + €(z,t) where € is small
and satisfies [, €(z,t) dz = 0. From Eq. (7) we then obtain the linear evolution

equation for e:

9 (1) = Fo(r,9/0r, (X)) el ) — [£(0) + 54X, (0] < Poae(r)
(8)
with (X)), (t) = [z e(z,t)dz. A detailed calculation shows that
Fo(2,0/02, (X)) [£Po] = Q-5 Poa(0) (9)
(see also [47]). As a result, Eq. (8) becomes
ge(x t)=Fo(x,0/0z, (X)y ) €(, 1)
ot 1 ) ) 0,5t )
~G @)+ 5 (X), 01 F(2,0/02, (X)) [ePosi] - (10)

In order to proceed further, recall that the inhomogeneous first order differ-

ential equation

30 = —a() + g(a(®).?) (11)



has the implicit solution

a(t) = alto) exp{—(t — to)} + [ exp{—(t — )}glalt),#) ot . (12)

Using the notation FO,st = ﬁ’o(x, 0/0x, <X>0,st)’ from Eq. (10) it follows that

with €(z, o) = u(z) — Pyg () (see also [48]). Since we have d exp{Fygt}/dt =
exp{ﬁ’o,stt}ﬁ’o,st, we obtain

A

€(z,t) =exp {FO,st (t— to)} €(z, )

Using €(z, to) = [q 0(z—x0)€e(xo, to) dxg and z Py g (z) = [ 6(z—a")z' Py g(x') da,

we get

A

exp {FO,st (t— to)} d(z — mo)e(xo, to) dxg

[
—~
8
=
I
D\

-2 /Q/[f(t’)+m<X> ()= ;Post( "exp { Fyu(t —t)} 6(z — 2) da’ dt’
(15)

From Eq. (6) and Py (z, t|2',t'; Post(2)) Pogt(2') = Post(2,t; 2", t'; Pogt) it then
follows that

€($,t):/P0st x,t|2o, to; Post) €(xo, to) dzg

/t/ )+ K (X) (¢ )]ﬂ?—Post(xtx,t,Post)dx dt'. (16)



Let us consider now the case u(z) = Pyg(x) = €(x,tp) = 0. Multiplying Eq.
(16) with = and integrating with respect to x, one finds that

t

1 0
(X) (1) = 0 / () + K (X) ()] 5 (XX () ' (17)
to
holds, where the autocorrelation (X (£) X (t')) ; is defined by (X (#) X (')}, 4 =
Ja Jaxx' Pogi(z, 82", t'; Py o) dz da’. Since in the stationary case the autocor-
relation function depends only on time differences, we may introduce the func-
tion Cy(z) defined by (X (¢) X (t'))y = Co(t —1'). Likewise, one may write Eq.
(17) like
/ 5

(X)(0) = =5 [[F#) +r (X0, O] 5Colt =)t . (18)

Finally, for to — —oo one can transform Eq. (18) into

()10 =~ [Ft=2) + (X ¢ =) O dz. (1)

Egs. (18) and (19) relate the linear response (X), (¢) of a dynamical mean field
system to the driving force f(¢) and the stationary autocorrelation function

Co(t —t'). Introducing the Green’s function

G(z) = —57-C0(2) = =5 — (X(2)X(0))g > (20)

we can write Eq. (18) in a more concise way like

t

(X). (1) = [ Gl =) )+ (X), ()] d . (21)

to

For k = 0 Egs. (18) and (19) reduce to the respective fluctuation-dissipation
theorems by Agarwal for stochastic processes defined by linear Fokker-Planck

equations [46]. Applying the Fourier transformation to Eq. (21), we can derive



the susceptibility function of our system. To this end, we assume that f(¢ —

—00) = 0 holds and transform Eq. (19) by means of partial integration into

o <X2>0,st
(X), (t)= 0 [f(t) + & (X}, (2)]
4 [ Gt =2) 4 £ (0, (6= 2)] da 22

0

Next, we use the Fourier transforms (X) (1) = [% exp{iwt} (X) (w)dw,
f(t) = J° exp{iwt} f(w) dw, and Co(2) = [, exp{iwz}Co(w) dw with Co(z) =
Co(z) for z > 0 and Cy(z) = 0 for z < 0 which implies that Cp(w) =
[27]7 57 exp{—iwz} (X (2) X (0))g dz. Then, Eq. (22) becomes

X — 2miwCo(w)
(X)e (W) = 0

[f(w) + & (X) (W)] - (23)

Consequently, for & = 0 we re-obtain the linear response equation (X), (w) =

Xo(w) f(w) involving the susceptibility

olw) = <X2>O,st — 2miw [5° exp{é;iwz} (X (2)X(0))g dz (24)

derived in [46]. In contrast, for k # 0 the equation (X)_ (w)[l — kxo(w)] =
Xo(w) f(w) holds. That is, for 1 — kxo(w) # 0 we get

Accordingly, the susceptibility of the many-body system with mean field in-
teractions is given by x, = xo/[1 — KXo)-



2.2  Example: Shimizu-Yamada model

Let us illustrate the power of Eq. (19) for the nonlinear Fokker-Planck equation
(1) with a linear drift force h(z). Using h(x) = —yz with v > 0, Eq. (1) reads

%P(m,t; u) = 8% vz + k(z — (X)) — f(¢)] P+ Q;—;P : (26)
As suggested by Shimizu and Yamada for f = 0 this model may describe the
contraction of muscles due to the collective pulling strokes of so-called muscu-
lar cross-bridges [60,61]. In the following, we use k£ > 0. Then, one can show
that stationary distributions exist and correspond to Gaussian distributions
with (X)
like

0st = 0 [52]. Tt is clear from Eq. (26) that the first moment evolves

00 () =~ (X) + (1) (27)

From Eq. (27) and (X)), ,, = 0 it follows that the deviation (X),_ (t) = [q ze(z,t) dzx

0,st

evolves in the same way. That is, we have

d

3 (0 (0 =7 (X) (&) + /(1) - (28)

Furthermore, for f = 0 the autocorrelation function in the stationary case is
given by [52]

Colt =) = (XOX (WD) =~ Le OHI0. (20)

Let us demonstrate that the fluctuation-dissipation theorem (18) indeed es-
tablish a link between Eqs. (28) and (29). Differentiating Eq. (29) with respect
to t and substituting the result into Eq. (18) give us

t

(X), () = [ 1)+ (X), (¢)] O ar (30)

to



Differentiating Eq. (30) with respect to t leads to

LX), ()= —(y + 5) (X, (1) + £(8) + R (X), (1)

dt
=—7(X). () + (1) - (31)

That is, for the Shimizu-Yamada model one can directly prove that Egs. (28)
and (29) are related to each other by means of the fluctuation-dissipation

theorem (18).
2.8  Vlasov-Fokker-Planck equations

We consider now a many-body system with a two-dimensional u-space: (p, q) €
Q, x ;. We assume that the evolution of an isolated subsystem is described
by a Hamilton function Hy(p,q). We assume further that the non-isolated
subsystem is subjected to a mean field force that is produced by all other

subsystems and is defined by the gradient of the mean field Hamiltonian

Hwr(q, P) = / Vur(g —¢')P(q')dq" . (32)

Qy

Finally, we assume that due to the contact with the environment the dynamics
of a subsystem is subjected to a damping force and a fluctuating force. Thus,

we arrive at the self-consistent Langevin equation

0
gq(t) = a_pHO(p’ q)
4 oy=—2 Hop,q) = L g, P) = 1p+/QT() (33)
dt aq 0 9 aq MF 3 )

where I'(t) denotes a Gaussian distributed fluctuating force with (I'(¢))=0
and (T'(t)[(¢')) = 26(t — t') [59]. Here, @ > 0 measures the strength of the
fluctuating force. For sake of conveniency, we consider a Hamiltonian H, that

includes a parabolic potential and consider rescaled variables p and ¢ such

10



that H, reads

2
p
Hy(p,q) = 5

2
q
—. 34
2 (349)
The self-consistent Langevin equation (33) is related to the Vlasov-Fokker-
Planck equation for Py(p,q,t) = (6(p — p(t))d(q — ¢(t))) that reads

0 N
aPO(pacbt) :FO(paQava-PO)PO (35)

with V = (0/dp, 00q) and

A 8 a ! ! ! 8
Fo(p,q,V, W)=—pa— + g+ a_/VMF(q_ q')W(q')dgq o
q ag p
0 0?2
i iy 36
ﬂapp’LQap? (36)

In fact, if Eq. (35) corresponds to a strongly nonlinear Fokker-Planck equation
then one can show that Egs. (33) and (35) are equivalent [52]. In this case,
the transition probability density P(p,q,t|p',q',t") is defined by

0 A
EPO(p: q, t|pla q,a t,) = FO(p) q, Va PO(Qa t))PO(p, q, t‘pla q,a t,) (37)

and is coupled to Eq. (35) due to the occurrence of Fy(q,t) = [qo, Po(p,q,t)dp

in the Fokker-Planck operator. In the stationary case Eq. (35) is solved by
Posi(P,4,) = Posi(p) Posi(q) with

_w
Posi(p) = \/%e 20 ’
2
1 _% 3 +/ Varr(4—¢') Post (') dd’
Posi(q) = 7 € Qq ’ (38)

where Z is normalization constant and Py (q) is only implicitly defined. Like-

wise, in the stationary case Eq. (37) has the formal solution

11



Posi(p, ¢, 10, ¢, 1) = exp{Fo(p, ¢, V, Poi(q)) (t—t)}5(p — p')5(q — ¢') .
(39)

Let us study now the impact of a perturbation in terms of a small driving

force f(t). Then, Eq. (33) becomes

%q(t) = a%Ho(p, q)
d 0 0
ap(t) = —a—qu(p, q) — a_qHMF(Q: P)+ f(t) —yp+/QT(2) (40)

By means of the corresponding Vlasov-Fokker-Planck equation for the proba-
bility density P(p,q,t) = (6(p — p(t))d(qg — ¢(t))), we can derive an evolution
equation for the perturbations €(p, ¢,t) = P(p,q,t) — Post(p, ¢) from the un-

perturbed stationary state. This evolution equation reads

0 A
ae(pa q, t) = FO (p7 q, Va PO,st (Q)) 6(pa q, t)

0 0
|10 = o [Varla = )eld, 140 | 5 Poalpa)  (41)
dq 4 op
with e(q,t) = Jo, €(p, ¢,t) dp. In order to analyze Eq. (41), we proceed as in Sec.

2.1. To this end, we first decompose EFj like Fy = —pd/0q + R(p,q,0/0p, W).

Then, one can show that the relation

FO (pa q, Va PO,St(Q)) [qPO,st] = _pPO,st (42)

holds. Using 0P, «/0p = —ypPost/Q, we eliminate in Eq. (41) the expression
0Py st/0p and thus obtain

0 N
ae(pa q, t) = FO (p7 q, V; PO,st(Q)) €(p: q, t)

—% (f(t) - %S{ Var(g — ql)ﬁ(ql,t)dql) Fo(p, a0, V, Post(q)) [aPost] - (43)

12



Next, we use the implicit solution of Eq. (43), write ¢Post(p, q) = [q, Jo, 0(p—
P)o(qg—¢ )¢ Pose(p', ¢') dp’ d¢’, and exploit Eq. (39). In doing so, we can trans-
form Eq. (43) into

€(p,q,t) = //PO,st(p7Qat|p07QO7tO) €(po, g0, to) dpo dgo
Qq Qp

t
)
5/( [t __/VMF q—q)eld, t’)dq)an0st(p,q,tp ¢ t")dp' d¢' dt’

(44)
(see also Sec. 2.1).

Let us consider the special case €(po, qo, to) = 0. If we put w(z) = —dV(z)/dz
and integrate with respect to p, then from Eq. (44) we get

t
0.t 5/( +/ (4— ) (qt)dq)qu()st(q,tqt)dth

(45)

Next, using the Fourier transforms e(q,t) = [q, e*%(k,t)dk and e(k,t) =
27]7" [q, e™*€(g, ) dg, Eq. (45) can be transformed into

t

) [f(t')%@—ikq(ﬂq(t'»

_27er 0,st
v2m [ w(k)e(K )2 (emitKg(y))  dw| a (46)
YOt q 0,5t )
Qf

Introducing the Green’s function

we can express Eq. (46) as

13



e(k,t) = / / Gk — Kt — ) [5(K') F (') + 2m w(k') (K, #)] dk'dt' . (48)

to
Just as in the case of the conventional fluctuation-dissipation theorem of the
linear response theory [45], Egs. (46) and (48) relate the linear response €(k, t)
of a system to the driving force f(t) to the second-order statistics of the unper-

turbed system. This second-order statistics is given in terms of the correlation

functions <e‘““1(t)q(t’)>0 -

2.4  Example: Kuramoto-Shinomoto-Sakaguchi model with inertia

From Eq. (48) we read off that in general the evolution of the Fourier mode
€(k,t) depends on the evolution of all other Fourier modes ¢(k’,t). However, if
Var has a discrete Fourier spectrum and, accordingly, w(k) is finite only for
particular k-values ki, ko, . . . then we can derive for the modes €(k;,t) a closed
set of evolution equations. The modes €(k,t) with k& & {ki, ko, ...} will then
depend only on these fundamental modes €(k;,t). Let us illustrate this issue

for the Kuramoto-Shinomoto-Sakaguchi model with inertia term.

A model that describes the collective behavior of phase oscillators was pro-
posed by Kuramoto, Shinomoto, and Sakaguchi [62—64] and many others (for
reviews see [65,66]). Accordingly, a single oscillator ¢ is described by a phase
#i(t) € Q4 = [0, 27] and the evolution of all oscillators is given by d¢;(t)/dt =
Qi — kN1 Y, sin[¢;(t) — dr ()] ++/QT(t) fori = 1,..., N in the limit N — co.
This limiting case implies that we can replace N~ Y, sin[¢;(t) — & (t) by
Ja, sin[¢;(t) — ¢)P(o,t)). Here, Q; is the natural oscillation frequency of the
1th oscillator. Let us consider the case {2; = ). Then, the parameter ) can be
eliminated by studying the system in a moving frame. That is, the model can
be simplified by means of a variable transformation yielding ¢ — ¢ — Qt. In
line with a study by Acebron et al. [67], we may study for ; = Q the impacts

of inertia terms using the model

14



d

—b(t) =

d :

PO =—r [ sinlp(t) = 6]P(6,1) dé =y + QT () (49)
Q2

with p € 2, = IR. This evolution equation corresponds to the Vlasov-Fokker-

Planck equation (33) for Hy = p?/2, Virr(2) = —kcos(z) = w(z) = —ksin(z)

and g = ¢. Taking an external driving force into account, we obtain

d

L) =

d :

Sp(t)=—r [ sinlo(t) — 61P(6,6)dé + F(1) —p+QT() . (50)

2y

Using w(z) = —k[e” — e™%*]/[2i] and the corresponding Fourier transform
w(k) = —k[0(k—1) —§(k+1)]/[2i], from Eq. (46) the evolution equations for
for e(k = 1,t) and ¢(k = —1,t) can be found:

e(k ==£1,t) =

0% / 0 TK 0
_ n Y/ Fie(t) ! v — n Y/ F2e(t) ! !
el lf(t)at (e d)(t)>07st = ek =FL1)5 (e ¢(t)>0’5t] dat’ .

(51)

Note that €(1,?) is explicitly defined by

e(1,1) = % { [ cos(9) (6, ) do — i [ sin(8) e(6,1) dqﬁ] L (2

2y 2

Since in general e(—k,t) is the conjugate complex of €(k,t) and in particular

we have e(—1,t) = €*(1,t), we can also write

T i /2 —2ip(t) 4 (4 '
+ ie(k—l,t)8t<e qs(t))m dt’ .

(53)

15



We see that Eq. (53) provides us with a closed description for the evolution
of the modes e(k = 1,t) and e(k = —1,t) = ¢*(k = 1,¢). From Eq. (46) it
further follows that all other modes €(k,t) with & # +1 are coupled to the
modes e(k = +1,1).

3 Conclusions

We have generalized a fluctuation-dissipation theorem for ordinary linear Fokker-
Planck equations to nonlinear Fokker-Planck equations of the Desai-Zwanzig
type and Vlasov-Fokker-Planck equations. According to this theorem, the re-
sponse of a dynamical mean field system does not only depend on the driving
force that acts on the system but depends also on the history of the response.
That is, while the original fluctuation-dissipation theorem can be cast into
the form R(t) = [G(t —t')f(t') dt’, where f(¢) and R(t) denote driving force
and response, respectively, the fluctuation-dissipation theorem for dynami-
cal mean field systems basically reads R(t) = [G(t — t)[f(t') + «R(t")] d¢',
where k is a coupling constant. For small coupling parameters x, however,
this memory effect can be eliminated because in this case the integral equa-
tion R(t) = [ G(t—t")[f(t')+kR(t')] dt' can be solved iteratively. In particular,

from Eq. (17) we obtain

(X)e (1) =
L
Q)

! K ’ n 8 ! " ! 8 ! ! 2
f(t)—éto/f(t )57 Colt =) dt | = Colt—t') dt’ + O(k?) . (54)

We see that eliminating the memory effect implies that the response (X)_(¢)

now depends not only on the driving force f(¢) but also on higher order terms

like f(£)f(#).
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