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We study the stochastic behavior of fundamental time-delayed feedback systems subjected to multiplicative
noise. We derive exact results for the first and second moments and the autocorrelation function. For a
particular class of systems we show how the variance depends on the amplitude of the multiplicative noise.
Furthermore, we identify parameter regions of stationary solutions with finite and infinite variances. Finally, we
suggest that delay-induced Lévy flights may occur in time-delayed feedback systems involving multiplicative
noise.
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I. INTRODUCTION

Systems with time-delayed feedback can be found in the
animate and inanimate world[1]. Especially, biological sys-
tems tend to involve feedback loops with retarded arguments
[2–6] (see also the survey in Ref.[7]). These retarded argu-
ments reflect finite transmission times related to the transport
of matter, energy, and information through the systems.
Since noise is an immanent property of delay systems in
general and biological systems in particular, there is an in-
creasing interest in the understanding and modeling of sto-
chastic systems involving time-delayed feedback. In this
context, a triangle of research activities has appeared in re-
cent years with corners at the derivation of analytical results
for the additive noise case[8], the description of stochastic
delay systems by means of Fokker-Planck equations[9–13],
and the investigation of delay systems involving parametric
or multiplicative noise sources[14]; see Fig. 1. In particular,
in line with general considerations on neural control mecha-
nism [15], it has been argued that time-delayed feedback and
multiplicative noise are indispensable ingredients for our un-
derstanding of the pupil light reflex[3,16], pointing move-
ments [4], and balancing movements[6]. This triangle of
research activities reveals that there is a need for the deriva-
tion of analytical results for stochastic delay systems sub-
jected to multiplicative noise. In particular, such analytical
results could be derived using the Fokker-Planck approach to
stochastic delay systems. Therefore, we will derive in the
present paper analytical expressions for the first and second
moments and the autocorrelation functions of fundamental
time-delayed feedback systems involving multiplicative
noise and examine how these moments depend on the delay
time and the amplitude of the multiplicative noise.

II. FUNDAMENTAL TIME-DELAYED FEEDBACK
SYSTEMS WITH MULTIPLICATIVE NOISE

In Sec. II A we will briefly review how to derive evolu-
tion equations for probability densitiesPsx,td, transition
probability densitiesPsx,tux8 ,t8d, and joint probability den-
sities Psx,t ;x8 ,t8d of stochastic delay differential equations.
In Sec. II B we will use these evolution equations to derive

exact analytical results for time-delayed systems with multi-
plicative noise. As we will see below, we will primarily de-
scribe time in terms of a relative time variablez given by a
mapping t→zstd such that the aforementioned evolution
equations are written in terms of the density functions
Psx,zd, Psx,zux8 ,z8d, andPsx,z;x8 ,z8d.

A. Fokker-Planck approach and the method of steps

Let us consider a univariate random variableXstd that is
defined on the phase spaceV and satisfies the stochastic
delay differential equation

d

dt
X = hsX,Xtd + gsX,XtdGstd, s1d

interpreted according to the Ito calculus[11,14,17]. Here and
in what follows, we use the notationXtstd=Xst−td. The vari-
able Gstd denotes a Langevin force withkGstdGst8dl=dst
− t8d [18]. For tP f−t ,0g the random variableX is given by
Xstd=fstd. Using

FIG. 1. Current research activities are calling for the derivation
of exact results for delay systems with multiplicative noise by
means of delay Fokker-Planck equations.
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Dsx,x8d =
1

2
fgsx,x8dg2, s2d

we get

d

dt
X = hsX,Xtd + Î2DsX,Xtd Gstd. s3d

Equation(1) can be treated by means of the method of steps
[8,19]. To this end, we consider the time axis for events that
fall into the interval f0,sN+1dtd with Nù0 and describe
time by means of a continuous counterzP f0,td and an in-
teger counteri P f0,Ng; see Fig. 2. More precisely, we de-
compose the intervalf0,sN+1dtd into N+1 intervals of
length t and label these intervals by means of the integer
variable i such thati =0 corresponds to the intervalfNt ,sN
+1dtd, i =1 corresponds to the intervalfsN−1dt ,Ntd, and so
on. In doing so, we look back in time when we increasei. We
describe a time pointt within an intervali by means of the
continuous counterz such that ift falls into the ith interval
given byfsN− idt ,sN+1−idtd we havez= t−sN− idt. We will
refer toz as relative time. Using this two-variable description
of time, we can describeXstd in terms of a set of random
variablesXitszd defined onf0,td. The variablesXit corre-
spond to the original random variableXstd in one of the
previously defined intervalsi. In detail, for tP fNt ,sN
+1dtd we define the variableX0st−Ntd=Xstd, for tP fsN
−1dt ,Ntd we define the variableXtst−sN−1dtd=Xstd, and
so on. In general, the variablesXitszd are defined on the
respective intervalsi by Xitszd=Xstd with z= t−sN− idt.

In sum, we deal with ansN+1d-dimensional vectorXszd
PVN+1 with components Xitszd such as X
=sX0,Xt ,X2t , . . . ,XNtd. The joint probability density forX
reads

Psx,zd = kd„x − Xszd…l s4d

with x=x0, . . . ,xNt . Note that fortP fNt ,sN+1dtd andz= t
−Nt we have

Psx,zd = Psx0,t;xt, t − t; . . . ;xNt ,t − Ntd

= kdsx0 − Xstd ¯ d„xNt − Xst − Ntd…l. s5d

For the stochastic process described by Eq.(1) we can then
derive the evolution equation ofPsx ,zd in terms of the
Fokker-Planck equation[10,11,13]

]

] z
Psx,zd = F̂sx, = ,zdPsx,zd s6d

involving the operator

F̂sx, = ,zd = o
i=0

N−1F−
]

] xit
hsxit ,xsi+1dtd +

] 2

] xit
2 Dsxit ,xsi+1dtdG

−
]

] xNt

h„xNt ,fszd… +
] 2

] xNt
2 D„xNt ,fszd…. s7d

The initial condition Psx ,0d for a particular integerN is
given by the limiting distribution limz→t Psx ,zd for N−1.
Therefore, we need to solve Eq.(7) in subsequent steps for
N=0,1,2, and so on(method of steps). Comparing Eqs.(1)
and (7), we see that we have transformed a non-Markovian
process into a Markov diffusion process at the cost of intro-
ducing additional variables[10,11,13]. Note that such a pro-
cedure is frequently used in the theory of ordinary Langevin
equations, for example, in order to treat univariate non-
Markovian stochastic processes subjected to colored noise as
multivariate Markov processes[18]. By analogy with Eq.
(6), the Markov transition probability densityPsx ,zux8 ,z8d
defined by

Psx,zux8,z8d = kd„x − Xszd…lux8=Xsz8d s8d

for z,z8P f0,td andzùz8 satisfies

]

] z
Psx,zux8,z8d = F̂sx, = ,zdPsx,zux8,z8d. s9d

Note that for t ,t8P fNt ,sN+1dtd, z= t−Nt, and z8= t8−Nt
we have

Psx,zux8,z8d = Psx0,t; . . . ;xNt ,t − Ntux08,t8; . . . ;xNt8 ,t8 − Ntd

= kd„x0 − Xstd… ¯ d„xNt − Xst − Ntd…l. s10d

Finally, the joint probability densityPsx ,zux8 ,z8d with z,z8
P f0,td andzùz8 and

Psx,z;x8,z8d = kd„x − Xszd…d„x8 − Xsz8d…l s11d

satisfies

]

] z
Psx,z;x8,z8d = F̂sx, = ,zdPsx,z;x8,z8d, s12d

which can be verified by multiplying Eq.(10) with Psx8 ,z8d.
For Nù1 integrating Eq.(6) with respect to the variables
xt , . . . ,xNt yields

]

] z
Psx,zd = −

]

] x
E

V

hsx,xtdPsx,xt ,zddxt

+
]2

] x2E
V

Dsx,xtdPsx,xt ,zddxt s13d

with Psx,zd=ePsx ,zddxt¯dxNt and Psx,xt ,zd
=ePsx ,zddx2t¯dxNt . This evolution equation was previ-
ously derived in a study by Guillouzicet al. [9] when using
Eq. (5) in order to transform the relation back to the absolute

FIG. 2. Relationship between absolute timet and relative
time z.
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time frame described byt. Integrating with respect to the
variablesxt , . . . ,xNt for Nù1 from Eq.(9) it follows that

]

] z
Psx,zux8,z8d = −

]

] x
E

V

hsx,xtdPsx,xt ,zux8,xt ,z8ddxt

+
]2

] x2E
V

Dsx,xtdPsx,xt ,zux8,xt8,z8ddxt.

s14d

Integrating with respect toxt , . . . ,xNt and xt8 , . . . ,xNt8 for N
ù1 from Eq.(12) we obtain

]

] z
Psx,z;x8,z8d = −

]

] x
E

V

hsx,xtdPsx,xt,z;x8,z8ddxt

+
]2

] x2E
V

Dsx,xtdPsx,xt,z;x8,z8ddxt.

s15d

Note that Eqs.(6), (9), and (12) are closed evolution equa-
tions, whereas Eqs.(13)–(15) do not provide closed descrip-
tions for the evolution of probability densities. Nevertheless,
as we will see below, Eqs.(13)–(15) can be exploited to
derive closed sets of equations to compute particular expec-
tation values of probability densities.

B. Fundamental case

Now let us assume that the phase spaceV is given by the
real line such thatXstdPV=R. Accordingly, density func-
tions are subjected to natural boundary conditions[18]. In
what follows, we confine ourselves to the class of stochastic
delay systems with multiplicative noise and linear drift
terms. More precisely, we puthsx,xtd=−ax−bxt with a,b
ù0 anda+b.0 and, consequently, Eq.(1) becomes

d

dt
X = − aX− bXt + Î2DsX,Xtd Gstd. s16d

Likewise, Eqs.(13) and (15) now read

]

] z
Psx,zd =

]

] xFaxPsx,zd + bE
V

xtPsx,xt ,zddxtG
+

] 2

] x2E
V

Dsx,xtdPsx,xt ,zddxt s17d

and

]

] z
Psx,z;x8,z8d =

]

] xFaxPsx,z;x8,z8d

+ bE
V

xtPsx,xt ,z;x8,z8ddxtG
+

]2

] x2E
V

Dsx,xtdPsx,xt ,z;x8,z8ddxt ,

s18d

respectively. In the stationary case, Eq.(17) reduces to

axPstsxd + bE
V

xtPstsx,xtddxt = −
]

] x
E

V

Dsx,xtdPstsx,xtddxt

s19d

and, using the relative time differenceu defined byu=z−z8,
Eq. (18) can be written as

]

] u
Pstsx,z8 + u;x8,z8d =

]

] xFaxPstsx,z8 + u;x8,z8d

+ bE
V

xt Pstsx,xt ,z8 + u;x8,z8ddxtG
+

] 2

] x2E
V

Dsx,xtdPstsx,xt ,z8

+ u;x8,z8ddxt. s20d

From Eq. (19) it is clear that the mean value satisfies the
relation sa+bdkXlst=0, that is, we havekXlst=0. Let us de-
termine next the second momentkX2lst. To this end, we use
the stationary autocorrelation function
Csud=kXstdXst8dlst involving the time differenceu= t− t8.
Then, we getCs0d=kX2lst and we see thatC is a symmetric
function: Csud=Cs−ud. In addition, it is reasonable to as-
sume thatCsud is a continuous function ofu and, in particu-
lar, is continuous atu=0 andu=t:

lim
u↓0

Csud = Cs0d, lim
u↑t

Csud = Cstd. s21d

The autocorrelation functionCsud can conveniently be deter-
mined if we discuss the problem within the relative time
frame. Then, we haveCsud=kXszdXsz8dlst with z,z8P f0,td
andu=z−z8P f0,td; see Fig. 3.

Evaluating the equation forPstsxd, namely, multiplying
Eq. (19) with x and integrating with respect tox, we obtain

aCs0d + b Cstd = kDlst. s22d

Evaluating the equation forPstsx,z8+u;x8 ,z8d, that is, using
Eq. (20), the relation

FIG. 3. Time differencesu with respect to absolute and relative
time.

ANALYTICAL RESULTS FOR FUNDAMENTAL TIME- … PHYSICAL REVIEW E 69, 061104(2004)

061104-3



dCsud
du

= − aCsud − b Csu − td s23d

can be found foruP s0,td. Using the symmetry ofCsud,
from Eq. (23) we obtain

d2Csud
du2 + sb2 − a2dCsud = 0 s24d

for uP s0,td. Using the continuity ofCsud, from Eq.(23) we
obtain

lim
u↓0

dCsud
du

= − kDlst. s25d

A detailed derivation of Eqs.(23)–(25) is given in the Ap-
pendix. Equations(22), (24), and(25) constitute the key re-
lations for all subsequent calculations.

Introducing the parameterv=Îub2−a2u and considering
the three casesb.a, b=a, andb,a separately, Eq.(24) can
be solved which gives us

b . a ù 0:Csud = Cs0dcossvud + e sinsvud,

b = a . 0:Csud = Cs0d + e8u,

a . b ù 0:Csud = Cs0dcoshsvud + e9 sinhsvud. s26d

Next, we use Eq.(25) to determinee, e8, e9 and thus obtain
e=e9=−kDlst/v ande8=−kDlst; that is, we get

b . a ù 0:Csud = Cs0dcossvud −
kDlst

v
sinsvud,

b = a . 0:Csud = Cs0d − kDlstu,

a . b ù 0:Csud = Cs0dcoshsvud −
kDlst

v
sinhsvud. s27d

Let us evaluate these relations in the limiting caseu→t :

b . a ù 0:Cstd = Cs0dcossvtd −
kDlst

v
sinsvtd,

b = a . 0:Cstd = Cs0d − kDlstt,

a . b ù 0:Cstd = Cs0dcoshsvtd −
kDlst

v
sinhsvtd. s28d

Consequently, if we deal with multiplicative noise sources
that satisfy the relation

kDlst = fsCs0d,Cstd,kXlstd, s29d

then Eqs.(22), (28), and(29) with kXlst=0 constitute a set of
three equations for the three unknown variablesCs0d, Cstd,
andkDlst; that is, in this case we have a closed description at
hand and can determine the unknown variables. We will
demonstrate this point in the subsequent section for special
choices ofD.

In closing this section, let us derive some useful relations.
First, by means of Eqs.(22) and (28) the variableCstd can
be eliminated and Eq.(28) becomes

b . a ù 0:Cs0d = kDlst
1 + b v−1 sinsvtd

a + b cossvtd
,

b = a . 0:Cs0d = kDlst
1 + at

2a
,

a . b ù 0:Cs0d = kDlst
1 + b v−1 sinhsvtd

a + b coshsvtd
s30d

for a+b cossvtdÞ0. UsingCsud=Cs−ud, Eq. (30) leads to

b . a ù 0:Csud

= kDlstH1 + b v−1 sinsvtd
a + b cossvtd

cossvud −
sinsvuuud

v
J ,

b = a . 0:Csud = kDlstH1 + at

2a
− uuuJ ,

a . b ù 0:Csud

= kDlstH1 + b v−1 sinhsvtd
a + b coshsvtd

coshsvud −
sinhsvuuud

v
J

s31d

for uP f−t ,tg. In the special caseg=ÎQ, we havekDlst

=Q/2 and Eq.(31) recovers the result derived earlier for
additive noise systems; see Ref.[8] and Eqs.(26) and(27) of
Ref. [12].

Second, using the relationship betweenCs0d and kDlst

[see Eq.(30)], we can write Eq.(31) in terms ofCs0d:

b . a ù 0:Csud

= Cs0dHcossvud −
a + b cossvtd

1 + b v−1 sinsvtd
sinsvuuud

v
J ,

b = a . 0:Csud = Cs0dH1 −
2a

1 + at
uuuJ ,

a . b ù 0:Csud

= Cs0dHcoshsvud −
a + b coshsvtd

1 + b v−1 sinhsvtd
sinhsvuuud

v
J

s32d

for uP f−t ,tg. Let us briefly demonstrate the power of Eq.
(32). Let us assume that Eq.(29) does not hold; that is, we
assume that we cannot expresskDlst in terms ofCs0d ,Cstd,
and kXlst [e.g., we deal withDsxd=A+Bx4]. Then, we may
determine numerically the variancekX2lst=Cs0d of the pro-
cess at hand. If we put the estimate forCs0d into Eq. (32),
then Eq.(32) gives us the autocorrelation functionCsud.
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Third, one may introduce the complex valued parameter
ṽ=Îb2−a2 satisfying ṽ=vÞ0 for b.aù0, ṽ=0 for b
=a.0, andṽ= ivÞ0 for a.bù0, wherei is i =Î−1. Using
the relations cossixd=coshsxd and sinsixd= i sinhsxd and the
limiting behavior sinsexd /e=sinhsexd /e=x for e→0, all
three casesb.a, b=a, and b,a can be treated simulta-
neously. In particular, Eqs.(28), (31), and(32) become

Cstd = Cs0dcossṽtd −
kDlst

ṽ
sinsṽtd, s33d

Csud = kDlstH1 + b ṽ−1 sinsṽtd
a + b cossṽtd

cossvud −
sinsṽuuud

ṽ
J ,

s34d

Csud = Cs0dHcossṽud −
a + b cossṽtd

1 + b ṽ−1 sinsṽtd
sinsṽuuud

ṽ
J

s35d

for a,bù0 anda+b.0, where the casea=b⇒ ṽ=0 is re-
garded as the limiting caseṽ→0.

C. Examples

1. Systems with g=ÎA+Bx2

We will first consider systems involving multiplicative
noise sources that can be described bygsx,xtd=Î2Dsx,xtd
=ÎA+Bx2 with A.0 andBù0. In fact, as we will see be-
low, the results obtained for systems of this kind carry over
to various different kinds of systems. The stochastic delay
differential equation(16) now reads

d

dt
Xstd = − aXstd − bXtstd + ÎA + BX2std Gstd, s36d

whereGstd denotes thed -correlated fluctuating force men-
tioned in Sec. II A.

Let us first considert=0. Then, Eq. (36) reduces
to the Ito-Langevin equation: dX/dt=−sa+bdXstd
+ÎA+BX2std Gstd. For B=0 Eq. (36) becomesdX/dt=−sa
+bdXstd+ÎA Gstd and describes the linear and instantaneous
response of a system to thed -correlated fluctuating force
Gstd. Such a response system exhibits in the stationary case
the Gaussian distribution of an Ornstein-Uhlenbeck process.
For B.0 Eq.(36) readsdX/dt=−sa+bdXstd+ÎA+BX2 Gstd.
From the corresponding Fokker-Planck equation the station-
ary distribution can be obtained and is given by the power
law distribution

Pstsxd =
1

Z
F 1

A + Bx2G1+sa+bd/B

s37d

with Z=eVfA+Bx2g−1−sa+bd/B dx. We see thatZ is finite and
Pstsxd exists for all a,bù0, a+b.0, B.0. The first mo-
ment vanishes:kXlst=0. The second moment satisfies

kX2lst = A/f2sa + bd − Bg s38d

and is finite for B,2sa+bd and infinite for Bù2sa+bd.
Consequently, there is a parameter range in which we deal
with stationary distributions that exhibit infinite variances
(Lévy flights).

Next, let us considert.0. By means ofDsx,xtd=sA
+Bx2d /2, Eq. (29) reads

kDlst =
A + BCs0d

2
. s39d

Exploiting Eqs.(22), (28), and(39) we get

b . a ù 0:Cs0d =
A

2

1 + b v−1 sinsvtd
a − B/2 + bfcossvtd − Bs2vd−1 sinsvtdg

,

s40ad

b = a . 0:Cs0d =
A

2

1 + at

a − B/2 + as1 − Bt/2d
, s40bd

a . b ù 0:Cs0d

=
A

2

1 + b v−1 sinhsvtd
a − B/2 + bfcoshsvtd − Bs2vd−1 sinhsvtdg

.

s40cd

It is clear that in the limitb↓a the first of the three relations
converges to the second one. Likewise, in the limitb↑a the
third relation converges to the second one. There are two
helpful rearrangements of Eq.(40), which will be addressed
next.

(a) Increase of variance with delay.For linear stochastic
delay differential equations with additive noise one can show
that the variance(i.e., kX2lst) increases with the delayt
[8,10]. Let us examine now the impact of the delay onkX2lst

for the multiplicative noise case. To this end, we write Eq.
(40) as

b . a ù 0:Cs0d =
A

2

1 + b v−1 sinsvtd
a + b cossvtd − Bf1 + b v−1 sinsvtdg/2

,

s41ad

b = a . 0:Cs0d =
A

2

1 + at

2a − Bs1 + atd/2
, s41bd

a . b ù 0:Cs0d

=
A

2

1 + b v−1 sinhsvtd
a + b coshsvtd − Bf1 + b v−1 sinhsvtdg/2

.

s41cd

Note once again that forB=0 we obtain the result derived
previously for the additive case; see Ref.[8] and Eq.(27) of
Ref. [12]. Differentiating Eq.(41) with respect tot gives us

b . a ù 0:
dCs0d

dt
=

2b2

A
fCs0dg2 1 + cossvt + w1d

f1 + b v−1 sinsvtdg2 ù 0,
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b = a . 0:
dCs0d

dt
=

4a2

A
fCs0dg2 1

f1 + atg2 . 0,

a . b ù 0:
dCs0d

dt
=

2b2

A
fCs0dg2 1 + coshsvt + w2d

f1 + b v−1 sinhsvtdg2 . 0

s42d

with tan w1=v /a and tanhw2=−v /a. As a result, ifCs0d is
finite thenCs0d increases monotonically as a function oft.
As we will see below, forb.aù0 there is a boundary value
t* for which Cs0d becomes infinite. Therefore, forb.aù0
the varianceCs0d increases monotonically only on an inter-
val f0,t*d as shown in Fig. 4(left panel). Qualitatively the
same behavior can be found for the casesb=a.0 with B.0
anda.bù0 with B.2v. For b=a.0 with B=0 from Eq.
(41b) it follows that Cs0d=As1+atd / s4ad, which implies
thatCs0d is finite for finite delayst but runs to infinity when
t runs to infinity. Fora.bù0 andBø2v there does not
exist at* such that the numerator in Eq.(41c) vanishes(see
below), which implies that for arbitrarily large but finitet we
haveCs0d,`. Let us examine the asymptotic behavior of
Cs0d in this case. ForB=2v from Eq. (40c) it follows that

Cs0d =
A

2v
exphvtj s43d

for large t. Consequently, we haveCs0d→` for t→`. In
contrast, forB,2v from Eq. (40c) it follows that

lim
t→`

Cs0d =
A

2v − B
; s44d

that is, we haveCs0d,` for t→`, as illustrated in Fig. 4
(right panel).

(b) Domains of finite variance. The numerator in Eq.(40)
may vanish for a particular boundary valuet* . In this case,
the second momentCs0d becomes infinite. Let us determine
t* and study the impact ofB (i.e., the amplitude of the mul-
tiplicative noise) on t* . To this end, we transform Eq.(40)
appropriately. Forb.aù0 Eq. (40) can be equivalently ex-
pressed as

Cs0d =
A

2

1 + b v−1 sinsvtd

ã + b̃ cossvt + wd
,

ã = a − B/2,

b̃ = bÎ1 + B2/s4v2d,

tan w = B/s2vd. s45d

Consequently,t* is found as

t* =
1

vF− w + arccosS−
ã

b̃
DG, w = arctanS B

2v
D . s46d

Using some geometrical considerations, we can read off
from Eq. (46) that t* decreases as a function ofB [23]. For
B=0 the boundary valuet* corresponds to the critical delay
value tc for which the additive noise model becomes un-
stable [8,10,14] [see also Eq.(61) below]. For B=2sa+bd
from Eq. (40a) it follows that the numerator reads
bfcossvtd−1d−sa+bgv−1 sinsvtd and vanishes fort=t* =0.
In sum, t*sBd decreases fromt* =tc at B=0 to t* =0 at B
=2sa+bd; see also Fig 5.

For b=a.0 Eq. (40) can be written as

Cs0d =
A

2

1 + at

2a − Bs1 + atd/2
; s47d

see Eq.(41b). The boundary valuet* is given by

FIG. 4. Increase of the second momentCs0d as a function oft
for b.a (left panel) anda.b (right panel). Solid lines: exact re-
sults given by of Eq.(41). Diamonds:Cs0d obtained by solving
numerically Eq.(36) using an Euler forward algorithm. Parameters:
a=1, b=1.5, A=B=1 (left); a=1.5, b=1.0, A=3, B=1 (right).

FIG. 5. The boundary valuet* decreases when the amplitude of the multiplicative noise increases. Depicted are three cases:b.a (left),
b=a (middle), and a.b (right). t* was computed from Eqs.(46), (48), and (52). Parameters are chosen such that 2sa+bd=5: a=1, b
=1.5 (left); b=a=1.25 (middle); a=1.5, b=1 (right).
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t* =
4a

B
− 1. s48d

It is clear thatt* decreases as a function ofB. In the limit
B→0 we havet* →`; that is, there does not exist a finite
boundary valuet* . For B=2sa+bd=4a we havet* =0; see
also Fig. 5. Fora.bù0 we can write down Eq.(40) for
three different cases such as

B , 2v:Cs0d =
A

2

1 + b v−1 sinhsvtd

ã + b̃ coshsvt + wd
,

ã = a − B/2,

b̃ = bÎ1 − B2/s4v2d,

tanhw = − B/s2vd; s49d

B = 2v:Cs0d =
A

2

1 + b v−1 sinhsvtd
ã + b exph− vtj

; s50d

B . 2v:Cs0d =
A

2

1 + b v−1 sinhsvtd

ã − b̃ sinhsvt + wd
,

ã = a − B/2,

b̃ = bÎB2/s4v2d − 1,

tanhw = − 2v/B. s51d

For Bø2v we have ã=a−B/2ùa−v, which implies ã
ùa−Îa2−b2.0. Therefore, for Bø2v we have ã

+ b̃ coshsvt+wd.0 and ã+b exph−vtj.0; that is, the nu-
merators in both cases are positive andCs0d is finite for
arbitrarily large but finitet. For B.2v we get

t* =
1

vF− w + arcsinhS ã

b̃
DG, w = arctanhS−

2v

B
D .

s52d

The boundary valuet* decreases as a function ofB [24]. For
B↓2v we havet* →`. For B=2sa+bd from Eq. (40c) it
follows that the numerator readsbfcoshsvtd−1d−sa
+bgv−1 sinhsvtd and vanishes fort=t* =0. In sum, we have
t* =` at B=2v. For B.2v the boundary valuet* decreases
and vanishes atB=2sa+bd; see Fig. 5. Finally, note that for
b=0 there does not exist an interval(2v ,2sa+bd) [because
for b=0 we have 2v=2sa+bd], whereas forb.0 one can
show that the inequality 2v,2sa+bd holds (under the con-
strainta.bù0) which means that forb.0 it is indeed im-
portant to take the parameter rangeBP f2v ,2sa+bdg into
account.

2. Further systems

The results obtained in the preceding section also apply to
several stochastic delay differential equations different from
Eq. (36). Let us mention a few of them.

For gsx,xtd=Î2D=Ã+B̃x Eq. (16) reads

d

dt
Xstd = − aXstd − bXtstd + fÃ + B̃XstdgGstd. s53d

We haveDsx,xtd=fÃ2+2ÃB̃x+B̃2x2g /2 which implies that

Eq. (39) holds forA=Ã2 andB=B̃2 because ofkXlst=0. Con-
sequently, Eqs.(36) and (53) yield the same variablesCs0d,
Cstd, andkDlst if we put A=Ã2 andB=B̃2.

For gsx,xtd=Î2D=ÎA+Bxt
2 Eq. (16) can be written as

d

dt
Xstd = − aXstd − bXtstd + ÎA + BXt

2std Gstd s54d

and we haveDsx,xtd=fA+Bxt
2g /2. Consequently, Eq.(39)

holds and the variablesCs0d, Cstd, andkDlst of Eqs.(36) and
(54) assume the same values.

If we put gsx,xtd=Î2D=Ã+B̃xt then Eq.(16) is given by

d

dt
Xstd = − aXstd − bXtstd + fÃ + B̃XtstdgGstd s55d

and we haveDsx,xtd=fÃ2+2ÃB̃xt+B̃2xt
2g /2. Since we have

kXlst=0, we obtain Eq.(39) for A=Ã2 and B=B̃2 and the
variablesCs0d, Cstd, andkDlst of the processes given by Eqs.
(36) and (55) have the same expectation valuesCs0d, Cstd,
and kDlst.

We may also consider stochastic delay differential equa-
tions involving the Stratonovich calculus. The idea is to map
these equations to equivalent stochastic delay differential
equations with Ito calculus. For example, let us consider a
stochastic process defined by

s56d

As shown in Refs.[11,14], the corresponding evolution
equation involving Ito calculus reads

d

dt
Xstd = − aXstd − Sb8 −

B

2
DXtstd + ÎA + BX2std Gstd.

s57d

Therefore, if we putb=b8−B/2 then Eqs.(36) and (56) ex-
hibit the same values forCs0d, Cstd, and kDlst. In other
words, the parameterb8 in combination with the amplitudeB
of the multiplicative noise source gives rise to an effective
parameterb. Such shiftsb8→b in the parameter space are
discussed in detail in a study by Mackey and Nechaeva[14]
and in Ref.[11].
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D. Considerations on stationary and nonstationary solutions

Having obtained exact results for the boundary valuet*

the following question arises: how does the systems behave
for delay times larger thant* . Basically there are two op-
tions. The systems either exhibit stationary distributions with
infinite variances or they become nonstationary.

(a) Sufficient conditions for nonstationary solutions. Us-
ing Eq. (5), we transform Eq.(17) back into the absolute
time frame which gives us

]

] t
Psx,td =

]

] xFaxPsx,td + bE
V

xtPsx,t;xt ,t − tddxtG
+

] 2

] x2E
V

Dsx,xtdPsx,t;xt ,t − tddxt s58d

for tùt, whereas fortP f0,td from Eq. (36) it follows that

]

] t
Psx,td =

]

] x
fax+ bfst − tdgPsx,td

+
] 2

] x2D„x,fst − td…Psx,td. s59d

Multiplying Eqs. (58) and (59) with x and integrating with
respect tox, we obtain an evolution equation forM1std
=kXstdl that reads

d

dt
M1std = − aM1std − bM1st − td s60d

for tù0 with M1std=fstd for tP f−t ,0d and exhibits the sta-
tionary valueM1,st=0. Let us define the critical delaytc by

tc = t*sB = 0,b . ad =
1

v
arccosS−

a

b
D . s61d

It can be shown thatM1,st=0 is stable for(i) b.aù0 with
t,tc, (ii ) b=a.0 with tù0, and(iii ) a.bù0 with tù0.
M1,st=0 is unstable forb.aù0 with t.tc. In particular,
there is a Hopf bifurcation att=tc which links the stationary
solution with nonstationary oscillatory solutions[20,21].
Consequently, a sufficient condition for the existence of non-
stationary solutions isb.aù0 with t.tc. In line with a
study by Mackey and Nechaeva[14], we conclude that irre-
spective of the explicit structure of the multiplicative noise
source forb.aù0 and t.tc stationary solutions do not
exist or they exist but they are unstable. Figure 6 illustrates
an oscillatory nonstationary solution of Eq.(36).

(b) Numerical evidence for domains of stable stationary
solutions with infinite variance. We now make the hypoth-
eses that for some of the multiplicative noise systems de-
scribed by Eq.(16) the stability of the first moment deter-
mines completely the asymptotic behavior of their solutions.
Systems of this kind may exhibit solutions with finite as well
as infinite variances. Let us further assume that these systems
exhibit a simple boundary valuet* such thatkX2lst,` for
t,t* and kX2lst=` for tùt* andt* øtc. According to our
hypotheses, we deal with stationary solutions exhibiting fi-
nite variance fort,t* , with stationary solutions exhibiting

infinite variances fortP ft* ,tcd, and with nonstationary so-
lution for t.tc. In particular, if Eq.(36) belongs to this class
of systems we obtain the classification scheme shown in
Table I. In fact, we have found numerical evidence that our
hypothesis is correct and that at least for Eq.(36) the
asymptotic behavior is determined by the asymptotic behav-
ior of the first moment.

In detail, we have solved Eq.(36) numerically for the two
casesb.a with tP ft* ,tcd and a.b with t.t* given an
initial function fstd composed of Gaussian distributed ran-
dom numbers. We have plotted the distributionsPsx,td
=kd (x−Xstd)l for both cases for several timest and, in doing
so, have found numerical evidence that transient distribu-
tions converge to stationary ones fort→`. Figure 7 shows
the distributionsPsx,td for three different timest* (dashed
lines), t1 (solid lines), andt2 (diamonds) with t* ! t1! t2. We
have chosent* such that we obtained transient distributions
that differ from the respective stationary ones. In contrast,
we have chosent1 such that we obtained stationary distribu-
tions. In order to illustrate that the distributionsPsx,t1d de-
scribe stationary distributions, we have plotted the distribu-
tions Psx,td for another timet= t2 with t2@ t1. Indeed, there
is a good match of the distributions taken at timest1 and t2.
In sum, we have good reason to believe that in the two afore-
mentioned cases(i.e., for b.a with tP ft* ,tcd and a.b
with t.t*) the distributionsPsx,td converge to stationary
distributions fort→`.

III. CONCLUSIONS

We have discussed stochastic processes that occur in
time-delayed feedback systems subjected to multiplicative

TABLE I. Parameter regions of different types of asymptotic
behaviors.

Asymptotic behavior b.aù0 b=a.0 a.bù0

Nonstationary t.tc

Stationary withkX2lst=` tP ft* , tcd tùt* tùt*

Stationary withkX2lst,` t,t* t,t* t,t*

FIG. 6. Oscillatory nonstationary behavior fort.tc. After a
transient period determined by the initial functionfstd, the first
moment starts to oscillate. Solid line: numerical solution of Eq.
(60). Diamonds: first moment obtained by solving numerically Eq.
(36). Parameters:a=1, b=1.5, t=2.5, A=B=1 (here we havetc

<2.05).
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noise. We have derived exact results for the first and second
moments and the autocorrelation functions of these pro-
cesses. To this end, we have exploited a Fokker-Planck ap-
proach that was advocated by Guillouzicet al. [9]. The re-
sults thus derived generalize previous findings by Küchler
and Mensch[8] that are devoted to delay systems with addi-
tive noise.

In particular, we have shown that for all systems with
linear drift terms the stationary autocorrelation functionCsud
evolves qualitatively in the same way irrespective of the ex-
plicit structure of the multiplicative noise source; see Eq.
(32). We have examined in more detail stochastic delay dif-
ferential equations that may involve different noise sources
but exhibit in the stationary case the same averaged noise
amplitude kDlst given by kDlst=fA+B Cs0dg /2 [here Cs0d
corresponds to the variance in the stationary case]. We have
found that for stochastic processes described by this kind of
evolution equations the variance increases monotonically
with the time delay. We have determined a boundary valuet*

for the time delay for which variances become infinite. In
line with a study by Mackey and Nechaeva[14], we have
derived sufficient conditions for the instability of stationary
solutions. We would like to point out that in their study sto-
chastic delay different equations are evaluated, whereas in
the present manuscript Fokker-Planck equations have been
studied.

We have closed our considerations with the hypothesis
that there are stochastic delay systems with multiplicative
noise that exhibit stable stationary distribution with infinite
variances. This hypothesis seems to be plausible because for
vanishing delays it is well-known that such systems exist.
Moreover, we have presented numerical evidence to support
our hypothesis. A striking implication of our hypothesis is
that when time delay is increased a system subjected to mul-
tiplicative noise may leave a parameter regime in which it
exhibits a stationary distribution with finite variance and en-
ters a parameter regime in which it exhibits a stationary dis-
tribution with infinite variance. In this sense, there might be
delay-induced Lévy flights. Increasing the time delay even
further, some of these multiplicative noise systems will leave
the parameter regime of stable stationary Lévy flights and
enter a parameter regime in which they exhibit nonstationary
solutions such as oscillatory solutions.

It seems to be rewarding to study the issue of stable sta-
tionary distributions with infinite variances in more detail.
We feel, however, that to this end numerical studies may be
employed which are beyond the scope of the present study.
Future studies may also be devoted to discuss the impact of
colored noise sources as opposed to thed -correlated noise
sources that have been considered in the present manuscript.
In particular, one may consider colored noise sources de-
scribed by Ornstein-Uhlenbeck processes. Such systems can
often be treated analytically by increasing the dimensionality
of the problem. Accordingly, the one-dimensional system
subjected to a colored noise source is described by means of
a two-dimensional system involving ad -correlated noise
source[18]. In our context, this would mean that we need to
study multivariate stochastic delay differential equations. In
the mathematical literature for a particular two-dimensional
stochastic delay differential equation the second moment of
one of the two system variables has been derived as a func-
tion of the systems parameters[22]. In addition, the Fokker-
Planck approach to stochastic delay differential equations
has been extended to the multivariate case[13]. In view of
these works, we are inclined to say that it should be possible
to extend the results of the present manuscript to stochastic
delay systems involving colored noise sources.

APPENDIX: DERIVATION OF EQS. (23)–(25)

Multiplying Eq. (20) with x and x8 and integrating with
respect tox andx8, we obtain

d

du
Csud = − aE

V
E

V

xx8Pstsx,z8 + u;x8,z8ddxdx8

− bE
V
E

V
E

V

x8xt Pstsx,xt ,z8

+ u;x8,z8d dxdx8dxt

−E
V
E

V
E

V

x8
]

] x
Dsx,xtdPstsx,xt,z8

+ u;x8,z8d dxdx8dxt sA1d

for u.0. We need to distinguish between thea-term,b-term,
andD-term. Thea-term reads

a-term = −a Csud. sA2d

The b-term reads

b-term = −bkXtsz8 + udXsz8dl − bkXsz8 + u − tdXsz8dl

= − b Csu − td. sA3d

The D-term involves an integral that can be evaluated by
means of the Gaussian integral relation:

FIG. 7. Transient(dashed lines) and stationary distributions
(solid lines and diamonds) for t.t* andb.a (left panel) anda.b
(right panel). Left panel parameters:t* =1000, t1=10 000, t2
=30 000,a=1, b=1.5,A=B=1, t=1.5 (here we havet* <1.30 and
tc<2.05). Right panel parameters:t* =300, t1=10 000,t2=30 000,
a=1.5, b=1.0, A=2, B=2.5, t=3 (here we havet* <1.72 and
B.2v<2.23). See text for details.
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D-term = −E
V

]

] x
fsx,x8,xtd dx dx8 dxt

= −E
−s

s E
−s

s

ffss,x8,xtd − fs− s,x8,xtdg dx8 dxt,

sA4d

whereV denotes the phase space

V = hx P f− s,sg,x8 P f− s,sg,xt P f− s,sgj

in the limit s→`. From Eq. (A1) we read off that
fsx,x8 ,xtd=x8Dsx,xtdPstsx,xt ,z8+u;x8 ,z8d. Taking natural
boundary conditions into account, we assume thatPst decays
to zero foruxu→`, uxtu→`, ux8u→` such thatx8Dsx,xtdPst

→0 at the surface ofV. Consequently, theD-term vanishes
and Eq.(A1) becomes Eq.(23). We proceed now just as in
the additive case[12]. Exploiting the symmetryCsud=Cs
−ud, from Eq. (23) it follows that

dCsud
du

= − aCsud − b Cst − ud. sA5d

Next, we differentiate Eq.(A5) with respect tou to obtain

d2Csud
du2 = − a

dCsud
du

− b
dCst − ud

du
. sA6d

From Eq.(23) it follows that

dCst − ud
du

= aCst − ud + b Csud. sA7d

Substituting Eqs.(A5) and (A7) into Eq. (A6) gives us Eq.
(24). Since the autocorrelation functionCsud is assumed to
be continuous inuP f0,tg and differentiable inuP s0,td, we
can compute the limitu↓0 of Eq. (23):

lim
u↓0

dCsud
du

= − aCs0d − b Cstd sA8d

[by exploiting Eq.(21)]. Substituting Eq.(22) into Eq. (A8),
we obtain Eq.(25). Note that in generalCsud is not differ-
entiable atu=0. Exploiting the symmetry ofCsud, from Eq.
(25) it follows that dC/du jumps from +kDlst to −kDlst at
u=0. In particular, in the additive case given byDsx,xtd
=Q/2 the expressiondC/du jumps from +Q/2 to −Q/2 at
u=0 [12].
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