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Analytical results for fundamental time-delayed feedback systems subjected
to multiplicative noise
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We study the stochastic behavior of fundamental time-delayed feedback systems subjected to multiplicative
noise. We derive exact results for the first and second moments and the autocorrelation function. For a
particular class of systems we show how the variance depends on the amplitude of the multiplicative noise.
Furthermore, we identify parameter regions of stationary solutions with finite and infinite variances. Finally, we
suggest that delay-induced Lévy flights may occur in time-delayed feedback systems involving multiplicative
noise.
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[. INTRODUCTION exact analytical results for time-delayed systems with multi-
N . licative noise. As we will see below, we will primarily de-
Systems with time-delayed feedback can be found in thgcribe time in terms of a relative time varialdegiven by a

animate and inanimate world]. Especially, biological sys- : : .
tems tend to involve feedback loops with retarded argumentrsnappmgtﬂz(t) such that the aforementioned evolution

[2—6] (see also the survey in ReZ]). These retarded argu- equations are/w/ritten in term? (/)f the density functions
ments reflect finite transmission times related to the transporl?(x’z)' P(x,z|x",2'), andP(x,z;X’,2)).

of matter, energy, and information through the systems.
Since noise is an immanent property of delay systems in
general and biological systems in particular, there is an in-

creasing interest in the understanding and modeling of sto- | o ;s consider a univariate random variablig) that is

chastic systems involving time-delayed feedback. In thisdefined on the phase spa€e and satisfies the stochastic
context, a triangle of research activities has appeared in redelay differential equation

cent years with corners at the derivation of analytical results
for the additive noise cag@], the description of stochastic
delay systems by means of Fokker-Planck equationg3, d
and the investigation of delay systems involving parametric —X=h(X,X,) +g(X, X )I'(t), (1)
or multiplicative noise sourcd44j; see Fig. 1. In particular, dt

in line with general considerations on neural control mecha-

nism[15], it has been argued that time-delayed feedback and

multiplicative noise are indispensable ingredients for our un_!nterpreted according to the Ito calcullid, 14,1 Here and

i il i inti hat follows, we use the notatiof(t) =X(t— 7). The vari-
derstanding of the pupil light reflej3,16], pointing move- N w : ‘ /
ments[4], and balancing movements]. This triangle of ~2ble I'() denotes a Langevin force withl'(DI'(t'))=d(t

research activities reveals that there is a need for the derivazt’) [18]- Forte[-7,0] the random variabl& is given by
tion of analytical results for stochastic delay systems subX()=g¢(t). Using

jected to multiplicative noise. In particular, such analytical
results could be derived using the Fokker-Planck approach to
stochastic delay systems. Therefore, we will derive in the
present paper analytical expressions for the first and second
moments and the autocorrelation functions of fundamental
time-delayed feedback systems involving multiplicative
noise and examine how these moments depend on the delay
time and the amplitude of the multiplicative noise.

A. Fokker-Planck approach and the method of steps

delay systems with
multiplicative noise

exact results for delay

Fokker—Planck
equations

Il. FUNDAMENTAL TIME-DELAYED FEEDBACK
SYSTEMS WITH MULTIPLICATIVE NOISE

delay systems with

additive noise
In Sec. Il A we will briefly review how to derive evolu-
tion equations for probability densitieB(x,t), transition

probability densitiesP(x, tx’ 1), and joint probability den- FIG. 1. Current research activities are calling for the derivation
sities P(x,t;x’,t") of stochastic delay differential equations. of exact results for delay systems with multiplicative noise by
In Sec. Il B we will use these evolution equations to derivemeans of delay Fokker-Planck equations.
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FIG. 2. Relationship between absolute tinheand relative
time z.

D(XX') = {906 x) P, @

we get

gx =h(X,X,) + V2D(X,X,) T'(t).

™ ()
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9 N
[?—ZP(X,Z) =F(x, V,2P(x,2) (6)
involving the operator
N-1 P P 2
F 1V1 = __h it AN(i+ 7-+_D i7 1 (i+1) 7
(X Z) Z% J . (X| X(I 1) (9Xi27 (X| X(| 1))
7 o @) + Dl b2 (D)
IXy, T I, N '

The initial condition P(x,0) for a particular integemlN is
given by the limiting distribution lim . P(x,z) for N-1.
Therefore, we need to solve E) in subsequent steps for
N=0,1,2, and so ofmethod of steps Comparing Eqs(1)

and (7), we see that we have transformed a non-Markovian
process into a Markov diffusion process at the cost of intro-
ducing additional variablefl0,11,13. Note that such a pro-
cedure is frequently used in the theory of ordinary Langevin
equations, for example, in order to treat univariate non-
Markovian stochastic processes subjected to colored noise as

Equation(1) can be treated by means of the method of stepsnultivariate Markov processeld8]. By analogy with Eqg.
[8,19. To this end, we consider the time axis for events tha(6), the Markov transition probability densiti?(x,z|x’,z")
fall into the interval[0,(N+1)7) with N=0 and describe defined by

time by means of a continuous countes[0,7) and an in-

teger counteii € [0,N]; see Fig. 2. More precisely, we de-

compose the interval]0,(N+1)7) into N+1 intervals of

length 7 and label these intervals by means of the integer

variablei such thati=0 corresponds to the intervEN7, (N
+1)7), i=1 corresponds to the intervidN—-1)7,N7), and so
on. In doing so, we look back in time when we increas#/e
describe a time point within an intervali by means of the
continuous countez such that ift falls into theith interval
given by[(N-i)7,(N+1-i)7) we havez=t—(N-i)7. We will

refer toz as relative time. Using this two-variable description

of time, we can describX(t) in terms of a set of random
variablesX;(z) defined on[0,7). The variablesX;, corre-
spond to the original random variabM(t) in one of the
previously defined intervals. In detail, for te[N7,(N
+1)7) we define the variableXo(t—N7)=X(t), for te[(N
-1)7,N7) we define the variabl&X (t—(N-1)7)=X(t), and
so on. In general, the variable§(z) are defined on the
respective intervals by X (z)=X(t) with z=t—(N-i)7.

In sum, we deal with afiN+ 1)-dimensional vectoX(z)

e OVt with  components X;(z2 such as X
=(Xg, X+ X5, ..., Xn5). The joint probability density forX
reads

P(x,2) = (8(x - X(2))) (4)

with X=Xg, ... Xy, . Note that fort e [N7,(N+1)7) andz=t
-N7 we have
P(x,2) = P(Xg,t; X, t= 75 ... Xy ot = N7T)
=(8(xg = X(t) - - - 8(xy, = X(t = N7))). (5

For the stochastic process described by @y we can then
derive the evolution equation dP(x,z) in terms of the
Fokker-Planck equatiofil0,11,13

P(X,Z|X,,Z,) :<§(X_X(Z))>|X':X(Z') (8)
for z,2 €[0,7) andz=7 satisfies
9 -
&—ZP(x,z|x’,z’) =F(x, V,2P(x,Zx’,Z'). (9)

Note that fort,t’ e[N7,(N+1)7), z=t—-N7, andz’ =t'—=Nr
we have

P(x,Zx’,Z') = P(Xp,t; ..
=(8(xg = X(1) - - (xy, — X(t = N7))).

CXne st = NG Xy, t = N7
(10

Finally, the joint probability densityP(x,z|x",z") with z,2'
e[0,7) andz=Z7" and

P(x,z;x",Z") ={8(x = X(2)) 8(x" = X(Z'))) (11

satisfies

J -~

a—ZP(x,z;x’,z’) =F(x, V,2)P(x,z;x",Z), (12
which can be verified by multiplying E¢10) with P(x’,z’).
For N=1 integrating Eq.6) with respect to the variables
Xy -+ XN, Yields

J J
_P , [ — h ,TP Xr d
P (X,2) axf“ (X,X,)P(X,X.,2)dX,

+ %fﬂ D(X,X,)P(x,X,,2)dx, (13

with P(x,2)=fP(x,2)dx, - -dxy, and P(x,X;,2)
=[P(x,2)dx,, - -dXy,. This evolution equation was previ-
ously derived in a study by Guillouziet al. [9] when using
Eqg. (5) in order to transform the relation back to the absolute
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time frame described by. Integrating with respect to the
variablesx_, ... xy, for N=1 from Eq.(9) it follows that

J Jd
—P(x,2x',Z/)=—— h(x,x,)P(x,x,,z|x",x,,Zz")d
Pz 7)== | P 2K, 2

(92
+ —Zf D(x,X,)P(X,X,,Z|x’,x.,Z")dX.
JaXJq

(14)

Integrating with respect ta, ... Xy, andx_, ... xg, for N

=1 from Eq.(12) we obtain

h(x,x,)P(x,X,,z;x",Z")dx,

d d
—Px,z;x',2)=-—
Jaz IXJq

(92
+ 2J D(XlXT) P(XvXT!Z;X,;Z’)dX'T'
IX“Jq

(15
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FIG. 3. Time differences with respect to absolute and relative
time.

J
axP,(x) +b J X Pei(X,X,)dx, = = — f D(X,X,) Ps(X,X,)dx.
Q IxJg

(19

Note that Eqs(6), (9), and(12) are closed evolution equa- and, using the relative time differencedefined byu=z-z7,
tions, whereas Eq$13)<(15) do not provide closed descrip- Ed.(18) can be written as
tions for the evolution of probability densities. Nevertheless,

as we will see below, Eq913)—(15) can be exploited to

d

! & !
derive closed sets of equations to compute particular expecﬂpst(xl' +ux',z') = E[axPst(x,z’ +u;x’,z")

tation values of probability densities.

B. Fundamental case

Now let us assume that the phase sp@ds given by the
real line such thak(t) e O=R. Accordingly, density func-
tions are subjected to natural boundary conditiptg]. In

what follows, we confine ourselves to the class of stochastic
delay systems with multiplicative noise and linear drift

terms. More precisely, we put(x,x,)=—ax—bx, with a,b
=0 anda+b>0 and, consequently, E¢l) becomes

9y ax- bX_+\2D(X,X,) T(t).

16
at (16)
Likewise, Egs(13) and(15) now read
iP(x 2) -7 axP(x,2) +bf X.P(x,X.,z)d
0z T ax ' Q XX, DA
(9 2
+ —2J D(x,x,)P(x, X, ,2)dX, (17)
JX )

and

Jd d
—P(x,z;x",Z) = —[axP(x,z;x’,z')
0z X
+ bJ X P(X,X, ,z;x’,z’)dxf}
Q

P
+ —zf D(x,x,)P(x,X,,z;x",Z')dX, ,
JaX QO

(18)

respectively. In the stationary case, Efj7) reduces to

+ bf X, Ps(X,%,,Z" +u;x’',Z")dx,
Q

(92
+— D(X,X,)P(X,X,,Z'
e REICESLY

+u;x’,z")dx.. (20
From Eg.(19) it is clear that the mean value satisfies the
relation (a+b)(X)s=0, that is, we havéX),=0. Let us de-
termine next the second momept?),,. To this end, we use
the stationary autocorrelation function
C(u)=(X(t)X(t"))s involving the time differenceu=t-t’.
Then, we getC(0)=(X?) and we see thak is a symmetric
function: C(u)=C(-u). In addition, it is reasonable to as-
sume thatC(u) is a continuous function af and, in particu-
lar, is continuous ati=0 andu=r:

lim C(u)=C(0), lim C(u)=C(7). (21)
ul0 ulr

The autocorrelation functio@(u) can conveniently be deter-
mined if we discuss the problem within the relative time
frame. Then, we hav€(u)=(X(2)X(Z')) with z,Z' €[0,7)
andu=z-7' €[0,7); see Fig. 3.

Evaluating the equation foPg(x), namely, multiplying
Eqg. (19) with x and integrating with respect tq we obtain

aC(0) +b C(7) = (D)g. (22)

Evaluating the equation fdPy(x,z’ +u;x’,z’'), that is, using
Eq. (20), the relation
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dC(u) In closing this section, let us derive some useful relations.
au -aC(u)-b Cu-1) (23)  First, by means of Eqg22) and (28) the variableC(7) can
be eliminated and Eq28) becomes

can be found forue (0,7). Using the symmetry ofc(u),

from Eq.(23) we obtain b>a=0:C(0)= <D>st1 +b o™ sin(w7)

+b
ecw o, a+b cogwr)
2 +(b*=a°)C(u)=0 (24)
‘ b=a> 0:C(0) = (D)7
for u e (0,7). Using the continuity o2(u), from Eq.(23) we - ' TSt o
obtain
1+b o™ sinh(w7)
. dC(U) = Q- =
mw =~ (D). (25) a>b=0:C(0) = (D) coshwr) (30

A detailed derivation of Eq(23)25) is given in the Ap-  for a+b codwr) #0. UsingC(u) =C(-u), Eq.(30) leads to

pendix. Equation$22), (24), and(25) constitute the key re- b> a= 0:C(u)

lations for all subsequent calculations. -
Introducing the parameten=\|b’-a? and considering 1+b o™ sinf(w7) sin(w|ul)

the three casgls> a, b=a, andb< a separately, Eq24) can = (D) m o) e )

be solved which gives us

b >a= 0:C(u) = C(0)cogwu) + e sin(wu),

b=a> 0:C(u) =<D>st{ 1;:T— IUI},

b=a>0:C(u)=C(0) +€'u,
a>b=0:C(u)

a> b= 0:C(u) =C(0)cosHwu) + € sinn(wu). (26) . 1+b &t sinhwn) sinh(wlul)
Next, we use Eq(25) to determinee, €', €’ and thus obtain =D —3p coshw?) cost{wu) - — -
e=€g’=—(D)y/ v ande’ =—(D); that is, we get 31
D . =
b>a= o;c(u):c(o)cog(wu)-< >Stsin(wu), for ue[-7,7]. In the special casg=VQ, we have(D)
w

=Q/2 and Eq.(31) recovers the result derived earlier for
additive noise systems; see Rgf] and Eqs(26) and(27) of
b=a> 0:C(u) =C(0) - (D)su, Ref.[12].
Second, using the relationship betwe€f) and (D)
D see Eq(30)], we can write Eq(31) in terms ofC(0):
a>b>O:C(u):C(O)c:ost(wu)—< >Stsinf’(wu). (27) [ a0 w write Eq3D | ©

w

b>a= 0:C(u)

Let us evaluate these relations in the limiting case 7: a+bcodwr) sin(wlu))
) =C(0)) cogwu) — 14D oL sinwn) ,
b> a= 0:C(r) = C(0)coswr) - —sin(w7), o osmen e
w
b=a> 0:C(u) = C(0)| 1 - ——u
b=a> 0:C(n) = C(0) - (D), =az 0CW=CON =M

a> b= 0:C(r) = C(0)cosHw) - <|2)>5tsinr(wr). (29  @>b=0:C)

: a+b cosi{wr) sinhw|ul)
Consequently, if we deal with multiplicative noise sources = C(0)] cost{wu) - 1+b ! sinh(w?) ®
that satisfy the relation (32)
(D)st=f(C(0),C(7),{X)sp, (29)

for ue[—-7,7]. Let us briefly demonstrate the power of Eq.
then Eqs(22), (28), and(29) with (X)s,=0 constitute a set of (32). Let us assume that ER9) does not hold; that is, we
three equations for the three unknown varial), C(7), ~ assume that we cannot exprégs, in terms of C(0), C(7),
and(D)g; that is, in this case we have a closed description a@nd(X)s [€.g., we deal wittD(x)=A+Bx"]. Then, we may
hand and can determine the unknown variables. We wilfetermine numerically the varian¢¥®)s=C(0) of the pro-
demonstrate this point in the subsequent section for speciaess at hand. If we put the estimate ©(0) into Eq. (32),
choices ofD. then Eq.(32) gives us the autocorrelation functi@{u).
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Third, one may introduce the complex valued parameter

w=\b?-a? satisfying w=w+0 for b>a=0, ©=0 for b
=a>0, ando=iw#0 fora>b=0, wherei isi=\-1. Using
the relations casx)=coshx) and sirjix)=i sinh(x) and the
limiting behavior siifex)/e=sinnex)/e=x for e—0, all
three cased>a, b=a, andb<a can be treated simulta-
neously. In particular, Eq%28), (31), and(32) become

C(7) = C(0)cog&7) — <D>S‘sin(z:n),

(33

I -
cw= <D>st{ DB SO g - D) }

a+b codwr) ()
(34

(35

for a,b=0 anda+b>0, where the casa=b0 w=0 is re-
garded as the limiting case— 0.

C. Examples
1. Systems with gyA+Bx?2

We will first consider systems involving multiplicative
noise sources that can be describedgly, x,) =+2D(x,X,)
=JA+Bx* with A>0 andB=0. In fact, as we will see be-

PHYSICAL REVIEW E 69, 061104(2004)

(X*)si=Al2(a+b) - B] (38)

and is finite forB<2(a+b) and infinite for B=2(a+b).
Consequently, there is a parameter range in which we deal
with stationary distributions that exhibit infinite variances
(Lévy flights).

Next, let us considerr>0. By means ofD(x,x,)=(A
+Bx%)/2, Eq.(29) reads

A+ BC(0)
(D)st= 5 (39
Exploiting Eqgs.(22), (28), and(39) we get
A 1+b ot sin(w?
b>a=0:C(0)=— ,
a=0:C0= " B2+ blcoswr) - B2w) L sin(wn)]
(409
A 1+ar
b=a>0:C(0)=— , 40b
a © 2a-B/2+a(l-B7?2) (400
a>b=0:C(0)
_A 1+b ot sinhw)
" 2a-B/2+b[cosHwr) - B(2w) ™! sinw7)]’
(400

It is clear that in the limito | a the first of the three relations
converges to the second one. Likewise, in the linji@a the
third relation converges to the second one. There are two
helpful rearrangements of E¢40), which will be addressed

low, the results obtained for systems of this kind carry ovemext.

to various different kinds of systems. The stochastic delay

differential equation(16) now reads
d =
d—tX(t) =—aX(t) - bX(t) + VA+BXY(t) I'(t), (36)

whereI'(t) denotes thes-correlated fluctuating force men-

tioned in Sec. Il A.

Let us first considerr=0. Then, Eq.(36) reduces
the Ito-Langevin  equation: dX/dt=—(a+b)X(t)

to
+A+BX?(t) I'(t). For B=0 Eq. (36) becomesdX/dt=-(a

+b)X(t)+\J’Z I'(t) and describes the linear and instantaneous

response of a system to th#&-correlated fluctuating force

I'(t). Such a response system exhibits in the stationary case

(a) Increase of variance with delaizor linear stochastic
delay differential equations with additive noise one can show
that the variance(i.e., (X?)) increases with the delay
[8,10). Let us examine now the impact of the delay(d®)

for the multiplicative noise case. To this end, we write Eq.
(40) as

b>a=0C(0)="1 Lrbo s
T T 2a+bcodwn) - B[1+b ot sinwn)]/2]
(419
A 1+
b=a>0:C(0)= — ar (41b)

22a-B(l+an/2’

the Gaussian distribution of an Ornstein-Uhlenbeck process.

For B>0 Eq.(36) readsdX/dt=—(a+b)X(t) + VA+BX? I'(t).

From the corresponding Fokker-Planck equation the station- A
ary distribution can be obtained and is given by the power

law distribution

1 1+a+b)/B
] (37)

1
Ps(X) ==
(%) Z[A+ Bx?
with Z=[o[A+Bx2] 1 @b/B gy We see tha is finite and
P.(x) exists for alla,b=0, a+b>0, B>0. The first mo-
ment vanishes(X),;=0. The second moment satisfies

a>b=0:C(0)

B 1+b ot sinhw?

" 2a+bcoswr) —B[1+b &t sinhwn]/2’
(410

Note once again that foB=0 we obtain the result derived
previously for the additive case; see R} and Eq.(27) of
Ref.[12]. Differentiating Eq.(41) with respect tor gives us

dc(0) 2b?
b>a>o:—( ):—
dr A

1+ coswT+ ¢q)
[1+b o tsinen]?

[COT
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FIG. 4. Increase of the second momé&iD) as a function ofr
for b>a (left pane) anda>b (right pane). Solid lines: exact re-
sults given by of Eq(41). Diamonds:C(0) obtained by solving
numerically Eq(36) using an Euler forward algorithm. Parameters:
a=1,b=1.5,A=B=1 (left); a=1.5,b=1.0,A=3, B=1 (right).

dC(0) 4a? 1
b=a>0:——=—[C(0)]*- >0,
a dr A [CO] [1+ar?
dCc(0) 2b? 1+ cosliwT+ ¢,)
>b=0:——=—[C(0)]? >0
a=b= 0 = O T G wn P

(42)

with tan ¢;=w/a and tanhg,=-w/a. As a result, ifC(0) is
finite thenC(0) increases monotonically as a function of
As we will see below, fob>a= 0 there is a boundary value
7 for which C(0) becomes infinite. Therefore, fir>a=0
the varianceC(0) increases monotonically only on an inter-
val [0,7) as shown in Fig. 4left pane). Qualitatively the
same behavior can be found for the casea> 0 withB>0
anda>b=0 with B>2w. Forb=a>0 with B=0 from Eq.
(41b) it follows that C(0)=A(1+ar)/(4a), which implies
that C(0) is finite for finite delaysr but runs to infinity when
7 runs to infinity. Fora>b=0 andB<2w there does not
exist a7 such that the numerator in E¢t10) vanishegsee
below), which implies that for arbitrarily large but finitewe

PHYSICAL REVIEW E 69, 061104(2004)

limC(0) =

T—®

20 (44)

-B’
that is, we haveC(0) <« for 7— o, as illustrated in Fig. 4
(right pane).

(b) Domains of finite variancel'he numerator in Eq40)
may vanish for a particular boundary valde In this case,
the second momer@(0) becomes infinite. Let us determine
7 and study the impact d (i.e., the amplitude of the mul-
tiplicative noisg on 7. To this end, we transform E40)
appropriately. Fob>a=0 Eq.(40) can be equivalently ex-
pressed as

Al+b o™ sin(wn
CO=F——,
23+Db codwr+ @)

a=a-B/2,
b=bV1+B%(40?),

tan ¢ = B/(2w). (45)

Consequentlys is found as

{— o+ arcco{— %) ] , @= arctar(%) . (46)

Using some geometrical considerations, we can read off
from Eq. (46) that 7 decreases as a function Bf[23]. For
B=0 the boundary value’ corresponds to the critical delay
value 7, for which the additive noise model becomes un-
stable[8,10,14 [see also Eq(61) below]. For B=2(a+h)
from Eq. (408 it follows that the numerator reads
b[cogwr) —1)—(a+b]w™ sin(w7) and vanishes for=7=0.

. 1
;=

w

have C(0) <. Let us examine the asymptotic behavior of In sum, 7'(B) decreases from" =7, at B=0 to 7 =0 atB

C(0) in this case. FoB=2w from Eq. (40¢) it follows that

C(0) = %exp[an'} (43

for large 7. Consequently, we hav€(0) —« for r—o. In
contrast, forB<2w from Eq. (400 it follows that

b>a

1.5

™

0.5

b=a

=2(a+b); see also Fig 5.
For b=a>0 Eq.(40) can be written as

A 1+ar

CO = s B an2

(47)

see Eq(41b). The boundary value” is given by

357 a>b
3_
254

2]

L N St T S

I S T . T T . ;
5 2 25 3 35 4 45 5
B B

FIG. 5. The boundary valug decreases when the amplitude of the multiplicative noise increases. Depicted are threle easgstt),
b=a (middle), anda>b (right). © was computed from Eqg46), (48), and (52). Parameters are chosen such th@+b)=5: a=1, b

=1.5(left); b=a=1.25(middle); a=1.5,b=1 (right).
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. 4da
T=—-=-1.
B

(48)

It is clear thatr decreases as a function Bf In the limit
B—0 we haver —o; that is, there does not exist a finite
boundary valuer'. For B=2(a+b)=4a we haver =0; see
also Fig. 5. Fora>b=0 we can write down Eq(40) for
three different cases such as

_l .
B < 20:C(0) = Al+bw sinh(w7)

A+b coswr+ @) ,
a=a-B/2,

b=b\1-B%(40?),

tanh ¢ = - B/(2w);

(49)

Al+b o™ sinh(w7) |

2 a+bexp-owr '

B=2w:C(0) = (50)

Al+b wtsin
B> 20:C(0)= W sinh(w)
a

-b sinhw7+ @) ,
a=a-B/2,
b=DbVBY(40? - 1,

tanhp = — 2w/B. (51)

For B<2w we havea=a-B/2=a-w, which impliesa

=a-\ya?-b?>0. Therefore, for B<2w we have a

+b cosi{wr+¢) >0 anda+b exp{-w7}>0; that is, the nu-
merators in both cases are positive a@) is finite for

arbitrarily large but finiter. For B> 2w we get

. 1|: . y(ﬁ)] '< 2w>
T =—|-¢+arcsinh = | |, ¢=arctanhi— —].
w b B

(52)

The boundary value” decreases as a function Bff24]. For
B|2w we haver — . For B=2(a+b) from Eq. (400 it
follows that the numerator read$[cosiwr)—1)—(a
+b]w™? sin(w7) and vanishes for=7 =0. In sum, we have
7 = at B=2w. For B> 2w the boundary value’ decreases
and vanishes @=2(a+b); see Fig. 5. Finally, note that for
b=0 there does not exist an interv@w,2(a+b)) [because
for b=0 we have 2=2(a+b)], whereas foh>0 one can
show that the inequality @< 2(a+b) holds(under the con-
strainta>b=0) which means that fob>0 it is indeed im-
portant to take the parameter ranBes [2w,2(a+b)] into
account.
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2. Further systems

The results obtained in the preceding section also apply to
several stochastic delay differential equations different from
Eq. (36). Let us mention a few of them.

For g(x,x,)=\2D =A+Bx Eq. (16) reads
dﬂtX(t) = —aX(t) - bX(t) +[A+ BX®OIT(®). (53

We haveD(x,x,) =[A2+2ABx+B2x2]/2 which implies that
Eqg.(39) holds forA=A2 andB=B? because 0fX)s=0. Con-
sequently, Eqs(36) and(53) yield the same variableG(0),
C(7), and(D) if we put A=A2 and B=B2.

For g(x,x,)=\2D=\A+Bx Eq. (16) can be written as

d ———
d—tX(t) —aX(t) - bX(t) + VA+BX4(t) T(t)  (54)
and we haveD(x,x,)=[A+Bx2]/2. Consequently, Eq.39)
holds and the variables(0), C(7), and({D); of Egs.(36) and

(54) assume the same values.
If we put g(x,xT):\s‘”ﬁ:A+ Bx, then Eq.(16) is given by

d%x(t) = —aX(t) - bX() + [A+BX,()IC(1) (55

and we haveD(x,x,) =[A2+2ABx, +B2?]/2. Since we have
(X)4=0, we obtain Eq(39) for A=A2 and B=B? and the
variablesC(0), C(7), and({D); of the processes given by Egs.
(36) and (55) have the same expectation valu@®), C(7),
and(D).

We may also consider stochastic delay differential equa-
tions involving the Stratonovich calculus. The idea is to map
these equations to equivalent stochastic delay differential
equations with Ito calculus. For example, let us consider a
stochastic process defined by

d
EX(t) =—aX(t)-b'X () + VA+BX*(t) T'(¢) .
_
Stratonovich (56)
As shown in Refs.[11,14, the corresponding evolution
equation involving Ito calculus reads

d%X(t) =—aX({t) - (b’ - §>x7(t) +VA+BXA(t) T'(t).

(57)

Therefore, if we pub=b’-B/2 then Eqs(36) and(56) ex-
hibit the same values fo€(0), C(7), and (D). In other
words, the parametdr’ in combination with the amplitudB

of the multiplicative noise source gives rise to an effective
parametetb. Such shiftsb’ —b in the parameter space are
discussed in detail in a study by Mackey and Nechdéva
and in Ref.[11].
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D. Considerations on stationary and nonstationary solutions M;
Having obtained exact results for the boundary vatie 0.27
the following question arises: how does the systems behave \ 4 6 8 10 12
for delay times larger than’. Basically there are two op- oy ¢

tions. The systems either exhibit stationary distributions with

infinite variances or they become nonstationary. 021
(a) Sufficient conditions for nonstationary solutiotss- —04]
ing Eq. (5), we transform Eq(17) back into the absolute
time frame which gives us 0.6
J J [ f , , ,
—P(x,t) =—| axP(x,t) +b | xP(xt;x,,t = 7)dx. FIG. 6. Oscillatory nonstationary behavior far> 7. After a
at Ix Q transient period determined by the initial functigfit), the first

92 moment starts to oscillate. Solid line: numerical solution of Eq.
+ —Zf D(x,x,)P(x,t;X, ,t = 7)dx, (58) (60). Diamonds: first moment obtained by solving numerically Eqg.

ax"Jqg (36). Parametersa=1, b=1.5, 7=2.5, A=B=1 (here we haver,
. ~2.05.
for t=r, whereas fot €[0,7) from Eq. (36) it follows that 3
9 9 infinite variances forre[7,7,), and with nonstationary so-
EP(th) = 5—)([ax+ be(t = 7)P(x,t) lution for 7> 7. In particular, if Eq(36) belongs to this class

of systems we obtain the classification scheme shown in

Table 1. In fact, we have found numerical evidence that our
hypothesis is correct and that at least for E§6) the

o ] ] ) . asymptotic behavior is determined by the asymptotic behav-
Multiplying Egs. (58) and (59) with x and integrating with  jor of the first moment.

2
+ %D(X, o(t— 1)P(x,1). (59)

respect tox, we obtain an evolution equation fdvl,(t) In detail, we have solved E¢36) numerically for the two
=(X(1)) that reads casesb>a with re[7,7) anda>b with 7> 7" given an
q initial function ¢(t) composed of Gaussian distributed ran-
—M;(t) = - aM;(t) = bMy(t - 7) (60) dom numbers. We have plotted the distributioRéx,t)
dt =(8 (x=X(t))) for both cases for several timeand, in doing

for t=0 with M4(t)= ¢(t) for t e [-7,0) and exhibits the sta- SO have found nume_rical evidence that '_[ransient distribu-
tions converge to stationary ones for . Figure 7 shows
the distributionsP(x,t) for three different timeg" (dashed
. 1 a lines), t; (solid lineg, andt, (diamond$ with t" <t; <t,. We
7=7(B=0b>2a)= ;arcco{— 5) (61)  have choser® such that we obtained transient distributions
that differ from the respective stationary ones. In contrast,
It can be shown thall; =0 is stable fori) b>a=0 with  we have chosety such that we obtained stationary distribu-
7< 1, (i) b=a>0 with 7=0, and(iii) a>b=0 with 7=0.  tions. In order to illustrate that the distributiof$x,t;) de-
M; =0 is unstable folb>a=0 with 7> 7. In particular, scribe stationary distributions, we have plotted the distribu-
there is a Hopf bifurcation at= 7. which links the stationary tions P(x,t) for another timet=t, with t,>1,. Indeed, there
solution with nonstationary oscillatory solutiorf20,21.  is a good match of the distributions taken at tinieandt,.
Consequently, a sufficient condition for the existence of nonin sum, we have good reason to believe that in the two afore-
stationary solutions i®>a=0 with 7> 7. In line with a  mentioned casefi.e., for b>a with re[7,7) anda>b
study by Mackey and Nechaeya4], we conclude that irre- with 7> 7') the distributionsP(x,t) converge to stationary
spective of the explicit structure of the multiplicative noise gistributions fort — .
source forb>a=0 and > 7, stationary solutions do not
exist or they exist but they are unstable. Figure 6 illustrates l1l. CONCLUSIONS
an oscillatory nonstationary solution of EQ@6).

(b) Numerical evidence for domains of stable stationaryti
solutions with infinite varianceWe now make the hypoth-
eses that for some of the multiplicative noise systems de- ) ) _
scribed by Eq(16) the stability of the first moment deter- TABLE |. Parameter regions of different types of asymptotic
mines completely the asymptotic behavior of their solutions Pehaviors.
Systems of this kind may exhibit solutions with finite as well
as infinite variances. Let us further assume that these systems

tionary valueM; =0. Let us define the critical delay, by

We have discussed stochastic processes that occur in
me-delayed feedback systems subjected to multiplicative

Asymptotic behavior b>a=0 b=a>0 a>b=0

exhibit a simple boundary valug such that(X?)s<c for Nonstationary >
7<7 and(X?)s=o for 7=7 and7 <. According t0 OUr  gationary with(X2=»  re[r*,7) =7 =1
hypotheses, we deal with stationary solutions exhibiting fi- Stationary with(X?)e< = r<i <t r<i

nite variance forr< ', with stationary solutions exhibiting
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b>a PN a>b

4 3 32 1071723 s 3 2 a4 0 1 2 3

FIG. 7. Transient(dashed lines and stationary distributions
(solid lines and diamonglor 7> 7 andb> a (left pane) anda>b
(right pane). Left panel parameterst’=1000, t;=10 000, t,
=30000,a=1,b=1.5,A=B=1, r=1.5(here we have” ~1.30 and
7.~ 2.05). Right panel parameters:=300, ;=10 000,t,=30 000,
a=1.5, b=1.0, A=2, B=2.5, 7=3 (here we haver =1.72 and
B>2w=2.23. See text for details.
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It seems to be rewarding to study the issue of stable sta-
tionary distributions with infinite variances in more detail.
We feel, however, that to this end numerical studies may be
employed which are beyond the scope of the present study.
Future studies may also be devoted to discuss the impact of
colored noise sources as opposed to dheorrelated noise
sources that have been considered in the present manuscript.
In particular, one may consider colored noise sources de-
scribed by Ornstein-Uhlenbeck processes. Such systems can
often be treated analytically by increasing the dimensionality
of the problem. Accordingly, the one-dimensional system
subjected to a colored noise source is described by means of
a two-dimensional system involving &-correlated noise
source[18]. In our context, this would mean that we need to
study multivariate stochastic delay differential equations. In
the mathematical literature for a particular two-dimensional
stochastic delay differential equation the second moment of

noise. We have derived exact results for the first and seconghe of the two system variables has been derived as a func-
moments and the autocorrelation functions of these progon of the systems parametd2]. In addition, the Fokker-
cesses. To this end, we have exploited a Fokker-Planck apjanck approach to stochastic delay differential equations

proach that was advocated by Guillougtal. [9]. The re-
sults thus derived generalize previous findings by Kichle
and MenscH8] that are devoted to delay systems with addi-
tive noise.

In particular, we have shown that for all systems with
linear drift terms the stationary autocorrelation funct@(u)

evolves qualitatively in the same way irrespective of the ex-

plicit structure of the multiplicative noise source; see EQq.

(32). We have examined in more detail stochastic delay dif-
ferential equations that may involve different noise sources
but exhibit in the stationary case the same averaged noid€

amplitude (D), given by (D)y=[A+B C(0)]/2 [here C(0)
corresponds to the variance in the stationary fasle have

has been extended to the multivariate cgk®. In view of

these works, we are inclined to say that it should be possible

to extend the results of the present manuscript to stochastic
delay systems involving colored noise sources.
APPENDIX: DERIVATION OF EQS. (23)—(25)

Multiplying Eq. (20) with x and x’ and integrating with
spect tax andx’, we obtain

d
found that for stochastic processes described by this kind of @C(U) = —af f XX Pgi(x,2 +u;x’, 2" )dxdX
evolution equations the variance increases monotonically a7

with the time delay. We have determined a boundary value
for the time delay for which variances become infinite. In
line with a study by Mackey and Nechaej{®4], we have
derived sufficient conditions for the instability of stationary
solutions. We would like to point out that in their study sto-

—bf f J X'X; Pg(X, X ,Z'
o Ja Ja

+u;x’,z") dxdXdx.

chastic delay different equations are evaluated, whereas in _f f f x’iD(x,xT)Pst(x,xT,z’
the present manuscript Fokker-Planck equations have been aJaJa IX

studied.

We have closed our considerations with the hypothesis

+u;x’,z") dxdXdx, (A1)

that there are stochastic delay systems with multiplicative

noise that exhibit stable stationary distribution with infinite

for u>0. We need to distinguish between tréerm, b-term,

variances. This hypothesis seems to be plausible because fand D-term. Thea-term reads

vanishing delays it is well-known that such systems exist

Moreover, we have presented numerical evidence to support

our hypothesis. A striking implication of our hypothesis is

a-term=-a C(u). (A2)

that when time delay is increased a system subjected to mul-
tiplicative noise may leave a parameter regime in which itThe b-term reads

exhibits a stationary distribution with finite variance and en-

ters a parameter regime in which it exhibits a stationary dis-

tribution with infinite variance. In this sense, there might be

b-term = -b(X(Z' + u)X(Z')) —b{(X(Z' +u- 7X(Z'))

delay-induced Lévy flights. Increasing the time delay even =—b Cu- 1. (A3)
further, some of these multiplicative noise systems will leave

the parameter regime of stable stationary Lévy flights and

enter a parameter regime in which they exhibit nonstationaryrhe D-term involves an integral that can be evaluated by

solutions such as oscillatory solutions.

means of the Gaussian integral relation:
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J
D-term = —f —f(x,x’,x,) dx dX dx.
v X

=— fs JS [f(s,x',x,) = f(=s,x',x,)] dX’ dx,,

—SY =S
(Ad)
whereV denotes the phase space
V={x e [-5ss],x" €[-55]X, €[-55]}

in the limit s—«. From Eq. (A1) we read off that
f(x,x",x,) =x'D(X,X,)Ps(X,X,,Z' +u;x’,z"). Taking natural
boundary conditions into account, we assume Fatlecays
to zero for|x| — o0, [x,| — o0, [X’|— such thatx’'D(x,X,)Ps;
— 0 at the surface of. Consequently, th®-term vanishes
and Eq.(Al) becomes Eq(23). We proceed now just as in
the additive casd12]. Exploiting the symmetryC(u)=C(
-u), from Eq.(23) it follows that

dC(u)

du

Next, we differentiate EqA5) with respect tau to obtain

= - aC(u) -b C(T_ U). (AS)

PHYSICAL REVIEW E 69, 061104(2004)

2 -

ddCu(zu) _ _ad(;(uu) _ de(;-u u). (A6)
From Eg.(23) it follows that

% =aC(r-u) +b Cu). (A7)

Substituting Eqs(A5) and (A7) into Eq. (A6) gives us Eq.
(24). Since the autocorrelation functid®(u) is assumed to
be continuous il € [0, 7] and differentiable iue (0,7), we

can compute the limiti| 0 of Eq. (23):

. dC(u)
Iim——=
ul0

-aC(0)-b C(7) (A8)

[by exploiting Eq.(21)]. Substituting Eq(22) into Eg. (A8),
we obtain Eq.(25). Note that in generaC(u) is not differ-
entiable atu=0. Exploiting the symmetry o€(u), from Eq.
(25) it follows that dC/du jumps from D) to —(D); at
u=0. In particular, in the additive case given B(x,X,)
=Q/2 the expressionlC/du jumps from /2 to -Q/2 at
u=0 [12].
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