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Abstract

It is argued that perception-action systems should be considered as spatially extended systems on
account of (i) the presence of spatially distributed synchronized brain activity during the perfor-
mance of perceptual-motor tasks and (ii) the failure of conventional zero-dimensional theoretical
approaches to deal with multistable perception-action systems and hysteresis in the presence of
noise. It is shown that in spatially extended systems self-organization can arise due to the emer-
gence of mean field attractors. This mean field approach is exemplified for a particular class of
perception-action systems, namely, rhythmic movements. In addition, clinical implications of the
mean field approach and the notion of spatially extended perception-action systems are briefly

discussed in the context of psychotherapy and Parkinson’s disease.



I. INTRODUCTION

Perception-action systems have been described with great success by means of synergetics
[1-3] and dynamical system theory [4-7]. Recently, a plea has been made to incorporate
structural elements in the descriptions of perception-action systems [8, 9]. In line with this
suggestion, field theoretical models of movement-related brain activity have been developed
[10-14] and the relevance of neural pathways [15, 16], musculo-skeletal constraints [17], and
visual feedback [18] for movement coordination has been discussed. In this article, we ad-
dress the issue of structural determinants of dynamics from a slightly different perspective.
Perception-action systems are embodied in humans and animals and often include environ-
mental aspects. Since humans, animals, and environments are spatially extended systems,
from a structural perspective, perception-action systems are likely to be spatially extended
too. Nevertheless, in many cases they have been modeled as zero-dimensional systems, that
is, as systems without a spatial extension. Therefore, the question arises do we need to
incorporate a spatial dimension in the descriptions of perception-action systems? And if so,
what are the benefits of spatially extended models with respect to zero-dimensional models?
We will answer the first question in the affirmative. As regards the second question, we will
demonstrate that spatially extended models can explain the phenomena of multistability
and hysteresis in systems subjected to noise. In contrast, conventional zero-dimensional

models fail to account for these phenomena.

II. ZERO-DIMENSIONAL VERSUS SPATIALLY EXTENDED SYSTEMS

A Synchronization of task-related brain activity

An important concept in neuroscience is that the neocortex of humans and animals
is organized as a map. Particular areas correspond to sensory and motoric organs and
functional abilities (e.g., memory). In fact, encephalographic measurements corroborate this

notion [19-21]. We may regard these areas as "black boxes”, neural dipoles, or elementary



neural units and describe their functioning by means of zero-dimensional models (just as
we would describe the functioning of an Ohmic resistance). According to a new paradigm
in neuroscience, however, neural computation involves the cooperative activity of many
spatially distributed neurons. In particular, it is believed that perception and action involve
spatially extended systems composed of many neurons that are bound to task-related entities
by synchronizing their activity. Using cross-correlation analysis, in animal studies with
cats, synchronized neural activity has been found in functional columns of the visual cortex
[22, 23], among several unilateral areas of the visual cortex [24], and between left- and
right-hemispheric visual areas [25]. Although synchronization typically occurs during the
presentation of an object, it is assumed that the visual stimulus does not act as a driving
force in order to establish a population of synchronized neurons. On the basis of theoretical
reasoning and experimental evidence, we can assume that synchronization emerges due to
mutual couplings between so-called neural oscillators. Accordingly, the synchronization of
particular populations of neurons corresponds to particular perceptions [26-28]. Moreover,
if in animal experiments the corticocortical connections between cortical hemispheres are
removed, then synchronization between the hemispheres vanishes despite of the presence of
a visual stimulus [25].

Synchronized oscillatory neural activity has also been found during the performance of
manual tasks. There are significant cross-correlations between neural populations of dif-
ferent unilateral cortical regions when monkeys perform perceptual-motor tasks [29]. Such
correlations are almost entirely absent before and after task performance. In similar animal
studies, it has been found that arm movements involve both uni- and bilateral synchronized
brain activity [30]. By means of analytical methods other than cross-correlation analysis,
synchronized brain activity has also been revealed in man. Visual flicker signals can induce
synchronized oscillatory neural activity over the whole cortex [31]. In addition, synchroniza-
tion between different cortical areas occurs during tremor [32, 33|, the production of isometric
forces [34], and when humans listen to music [35]. The conflict between zero-dimensional and

spatially distributed neural units is a conflict between localized and nonlocalized task-related



neural activity. Probably the truth is to be found somewhere in between these extremes. In
order to illustrate this, we may compare the situation with the theories of electromagnetism
and gravity. Both theories deal with localized elements (charged particles and particles with
mass, respectively) as well as nonlocalized elements (electromagnetic fields and gravitational
fields, respectively). There are problems that can be treated solely by reference to the local-
ized elements. Other problems only involve the field theoretical aspects of electromagnetism
and gravity. Similarly, a comprehensive account of neural task-related activity may com-
bine zero-dimensional and spatially distributed task-related units. Nevertheless, in special
cases it may be sufficient to model perception-actions systems as either zero-dimensional or

spatially extended systems.

B Multistability and hysteresis

If, under the same circumstances, perception-action systems exhibit multiple stable be-
havioral states, then they are said to be multistable. Examples of multistable isofrequency
coordination patterns are found in animal locomotion [36], rhythmic single limb movements
[37-39], and rhythmic multilimb movements [40-44]. Multistability has also been observed
in polyrhythmic movements [45-47]. In line with the dynamical systems approach, multi-
stable perception-action systems are described by potentials with multiple minima. Each
minimum corresponds to one stable behavioral state. This is illustrated in Fig. 1 for a
bistable system. According to the dynamical systems approach, the double-well potential
V(z) can be regarded as an energy measure or a measure of effort, where x represents a
suitably chosen state variable. Stable perception-action systems occupy states of minimal
effort or energy, that is, they occupy a minimum of the potential V. If a perception-action
system is initially located outside a potential minimum, then it performs an overdamped
energy-decreasing motion and finally converges to a minimum. Consequently, in the de-
terministic case, we find a bistable perception-action system in either one the two minima

depicted in Fig. 1.



Insert Figure 1 about here

In order to take fluctuations into account, we may follow the conventional approach
and regard the bistable perception-action system as a zero-dimensional unit. In this case,
we can describe the system in terms of an ordinary linear Fokker-Planck equation with
additive noise involving the potential V' (z) [12, 44, 48-50]. The stationary state of the
perception-action system is described by a stationary probability density. For the linear
Fokker-Planck equation the stationary solution is given by the Boltzmann distribution [51]
of V(z) as depicted in Fig. 1. Obviously, this conventional approach predicts a unique
solution and, therefore, fails to account for the phenomenon of multistability. Alternatively,
we may view the bistable perception-action system as a spatially extended system composed
of many interacting and almost identical components (e.g., neural oscillators). According
to the mean field theory, we can describe the spatially extended bistable perception-action
system by a nonlinear Fokker-Planck equation involving the potential V' (z) and a mean field
force arising from the interactions among the components. For example, we may consider
the Desai-Zwanzig model [52] or extensions of it [53, 54]. Then, there are two stationary
probability densities, as in Fig. 1. Consequently, the spatially extended model can describe
a bistable perception-action system in the presence of noise.

Another fascinating phenomenon that is closely related to multistability is hysteresis.
Hysteresis means that under the same environmental conditions a system shows two dif-
ferent behaviors. The behavior that is actually realized depends on the way how the en-
vironmental conditions were established, that is, the history of the system. For example,
let us consider half a glass of beer. If we have a full glass of beer and drink half of it, we
usually see the glass half empty. If we have an empty glass and we fill it up halfway, then
we usually see the glass half full. Although, strictly speaking, hysteresis requires bistabil-
ity, it is sometimes easier from an experimental point of view to prove hysteresis than to
prove bistability [55]. Hysteresis has been observed, for example, in isofrequency interlimb
coordination [56], polyrhythmic movements [57], and discrete movements such as hitting a

ball with a table-tennis bat [58]. In addition, perceived apparent motion is known to show



hysteresis [59].

Let us consider a simple type of hysteresis, namely, a three-stage hysteresis emerging in
a system with a single control parameter o and two parameter regimes: a bistable and a
monostable regime. We change the control parameter such that the system evolves from the
bistable regime with the stable states A and B to the monostable regime with the stable
state A and back to the bistable regime with the stable states A and B. Note that in this
case the environmental conditions (described by the control parameter «) for the first and
last stage are identical. Nevertheless, if we initially prepare the system in the B-state, then
it will abandon the B-state and occupy the A-state in the second stage and remain there
during the third and final stage. For a deterministic system this behavior is illustrated in
the upper panels of Fig. 2. Again, the system in described in terms of a potential V' (z; ).
For o > «, the potential has two minima. For o < . there is a single potential minimum.
An explicit example of such a potential is the one proposed by Haken, Kelso, and Bunz in
the context of coordinated finger movements [1].

Insert Figure 2 about here

In the presence of fluctuations, we may supplement the deterministic model with an
additive fluctuation force. Thus, we obtain a zero-dimensional stochastic model described by
a linear Fokker-Planck equation [51]. The stationary probability density P(z) predicted by
this stochastic model is the Boltzmann distribution of V' (z, ) depicted in Fig. 2. We realize
that in the stochastic zero-dimensional description there is no hysteresis. Alternatively, we
may use a spatially extended stochastic model, for example, the mean field model introduced
above. Then, there are multiple stationary probability densities that show hysteresis [60, 61]
and [62] (with v = 2). The stationary probability densities of the mean field model are

depicted in the lower panels of Fig. 2.



C The mean field approach to self-organization in spatially distributed systems

So far, we illustrated the benefits of spatially extended models. They are in line with a new
paradigm in neuroscience and can describe multistability and hysteresis of noisy perception-
action systems. The objective now is to elucidate how the structural properties of spatially
extended systems relate to their behavioral properties. To this end, we concentrate on the
aforementioned stochastic systems that can be described in terms of mean field models. As
pointed out by Haken [63-65] and others [52] systems of this kind are of particular interest
because they are self-organizing.

Let us assume we deal with a many particle system composed of spatially distributed,
interacting, and almost identical particles. Note that we here use the notion of particles
in a broad sense. In general, the particles represent subsystems such as neural oscillators,
neurons involved in memory and association processes, muscular cross-bridges, or humans
involved in social interactions. A detail of such a many particle system is shown in the
upper panel of Fig. 3. Hexagons denote particles, connecting lines represent interactions,
and black dots are so-called heat bath particles that permanently impinge on the system’s
particles and thus produce fluctuations [65]. Fp is an external force that acts on each particle.
Next, we summerize the effects of all particles but one in a particle-particle interaction force
F,, which acts on the remaining particle but is affected by that particle as well (see middle
panel). In many cases, we can assume that the states of the particles differ only by statistical
fluctuations. In particular, in large systems with many almost identical particles, we can
assume that individual properties can be described approximately as fluctuations. In line
with this notion, we pick out an arbitrary particle, call it a representative particle, and
describe all other particles in terms of the representative particle and fluctuations of its
state variable. Then, we can approximate [y, by a so-called mean field force Fy/r that
depends on the stochastic properties of the representative particle, see lower panel of Fig.
3. Thus, we obtain a self-organizing system characterized by a circular causality structure

(cf. also [3]).



The mean field force Fj,r can distort the potentials shown in Figs. 1 and 2. For example,
in the lower left panel of Fig. 1, when assuming attractive particle-particle interactions, the
particles in the vicinity of the right potential minimum produce an attractive mean field force
Fyrr which attracts all particles such that they remain preferably in the vicinity of the right
potential minimum. The lower right panel depicts the opposite situation. The particles are
situated close to the left potential minimum of V(z) and due to their interactions produce
an additional force, the mean field force F;r, that renders the left potential minimum more

attractive than the right one.

III. APPLICATION OF MEAN FIELD MODELS

A Paced rhythmic finger movements

In a series of experiments subjects were asked to tap with their right index fingers along
with the beat of a metronome [60, 66, 67]. They were requested to tap either on the
beat (on-beat condition) or between two consecutive beats (off-beat condition). During the
experiments the frequency of the beats was increased from 1 Hz to about 3 Hz. At low
pacing frequencies (= 1 Hz) both off-beat and on-beat tapping could be stably performed,
whereas at high pacing frequencies (=~ 3 Hz) only on-beat tapping could be performed in a
stable fashion. If a subject was asked to tap off-beat with the frequency of the metronome,
then often an involuntary switch occurred from the required off-beat tapping to on-beat
tapping when the metronome frequency exceeded a critical (subject-dependent) value. This
transition has been studied extensively in the literature [37, 68]. In our experiments, during
the performance of on-beat and off-beat tapping, brain activity was measured by means of
magnetoencephalography (MEG) [69] over the whole cortex. A detailed data analysis yielded
the following results. The power spectra of single-site recordings were dominated by a peak
corresponding to the movement frequency (which coincided with the pacing frequency).

Irrespective of the task conditions (on-beat vs. off-beat) we could distinguish two polarity



regimes of brain activity. Roughly speaking, these regimes represent cortical regions of in-
flowing and out-flowing magnetic fluxes. The observed bipolarity of cortical activity is in
line with other experimental studies on finger movements [20, 70, 71]. We found that MEG
signals of the same polarity region were statistically phase-locked. That is, synchronization
of neural activity was observed [60, 72]. In what follows, we will focus on the synchronization
within a polarity region. A detailed discussion of the interplay of both polarity regions can be
found in [60]. From the MEG signals of a polarity region we computed a phase distribution.
In the low-frequency regime (= 1 Hz), we observed two phase distributions. One distribution
was related to off-beat tapping, the other to on-beat tapping. In the high-frequency regime
(~ 3 Hz) there was a unique phase distribution which was related to on-beat tapping. From
this observation, we concluded that paced tapping involves a stochastic perception-action
system that is bistable in a particular parameter regime and monostable in another.

In order to model a stochastic, multistable perception-action system, we proposed a spa-
tially extended model and evaluated it with the help of mean field theory [60, 73]. According
to this model, the cortex is conceived of as a population of N interacting neural oscillators
described by s;(t) = Acos(Qt + ¢;(t)), where A denotes a time-independent amplitude and
Q) corresponds to the pacing and tapping frequency. The phases ¢; with ¢ = 1,..., N are

assumed to perform a stochastic overdamped motion given by [60, 73]

d d

—¢i(t) = ——Vukp(di; a,b) Z sin(¢; — ér) ++/QTi(2)

dt " dg, v
P h ~~ g noise
Fo Fp

with K > 0, Q > 0, (T;(¢)Tx(t')) = 0:;xd(t—1t') [51]. Here, the external force Fj is described by
the HKB potential Vi kp(z;a,b) = —acos(z) — bcos(2z) which depends on two parameters
a>0and >0 [1, 2]. The HKB potential has two potential minima for b/a > 1/4 and then
looks like the potentials in the left panels of Fig. 2. For b/a < 1/4 it has a unique minimum
and resembles the potentials shown in the middle panels of Fig. 2. The interactions between
the neural oscillators is described by a coupling function F), proposed by Kuramoto [74, 75].

The strength of the couplings is measured by the parameter K. The action of the heat bath
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particles are described by fluctuation forces I';(¢), which represent statistically independent
white noise forces (for details see [51, 65]). The overall fluctuation strength is given by Q.
Using the mean field approximation, we can derive the evolution equations for the probability
density P(¢,t) of a representative neural oscillator [60, 74], which reads

82
0¢?

e

09 do

with the mean field force defined by

—HMWKﬂPw@+Q P(,)

Fur(6:K) = K [ sin(o— ¢)P(6,1) o'

The mean field model can be evaluated using different techniques such as transcendent equa-
tion analysis, linear stability analysis, and stability analysis by Lyapunov’s direct method
[60, 73]. Thus, we can identify bistable and monostable regimes of the neural oscillator
model. These regimes can be conveniently illustrated in the parameter space defined by
the rescaled parameters K' = K/Q, ' = a/Q, and € = b/a, see Fig. 4 (upper panel). In
addition, a simulation of the model for spatially extended neural oscillators agrees with the

experimental findings, see Fig. 4 (lower panel).

B Parkinson’s disease

Several authors have suggested that Parkinsonian tremor is caused by particular popu-
lations of neurons that synchronize their oscillatory activity [76]. In a series of papers, Tass
[77-79] proposed a model of the synchronized neural oscillators involved in Parkinsonian
tremor (see also [80]). This model is quiet similar to the model described in Sec. IIIA.
According to the model proposed by Tass, the couplings between the neural oscillators in
healthy people are so weak that they do not lead to the degree of synchronization necessary
to create Parkinsonian tremor. Therefore, in healthy people neural systems for the control
of finger posture are well described by zero-dimensional approaches. Then, the phase ¢ of

each oscillator can assume any value between 0 and 27 and — on account of the lack of
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sufficiently strong couplings between the oscillators — the distribution of phases is uniform,
see Fig. 5 (panels a) and b)). The oscillators are said to be de-synchronized. In contrast,
in patients with Parkinson’s disease the oscillators are assumed to be connected with each
other. Consequently, we deal with a spatially extended neural system. According to the
Tass’s model, a mean field force emerges in this system and results in a self-organized syn-
chronization of the oscillator population. For this reason, the phase distribution becomes
non-uniform and single-peaked, see Fig. 5 (panel c)). This synchronization, however, can
be destroyed by stimulating the synchronized neurons with an appropriate external signal
Fy. Put differently, the external signal Fy can be used to effectively de-couple the neural
oscillators. Consequently, the oscillator’s phase distribution becomes uniform again and

synchronization along with Parkinsonian tremor vanishes, see Fig. 5 (panel d)).

C Patterned versus diffusive selves

Dynamical systems theory and synergetics have not only been applied to perception-
action systems, but also to psychological processes, see, for example, [81, 82]. Since psy-
chological conditions such as anxiety can affect perception-action systems (e.g., [83]), in
general, we deal with systems in which psychological, perceptual, and motoric processes are
integrated. In this paragraph the focus is on psychological processes. We will discuss a
rather specific issue. How can a patterned self emerge under the impact of two contrasting
potential self-states? Here, we mean by ’a patterned self’ a personality with articulated
properties. For example, charismatic and authoritarian people exhibit clearly articulated
characteristics. Drug-addicts, work-aholics, and fanatic people are extreme examples of
people with patterned selves. In contrast, ’a diffusive self’ is a personality with a lack of
characteristic features. For example, there are school leavers without definite future plans
because they do not feel a preference for a particular job or higher education. Indifferent
people, people who switch from TV channel to TV channel, and people who have the expe-

rience of being pushed throughout their lives instead of making their own decisions, show
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aspects of a diffusive self.

Let us now concentrate on two opposing self-states, say, a selfish self and an altruistic self.
We consider the case in which both self-states are available for a single person. Furthermore,
we describe the person by a scalar time-dependent psychological variable p(¢) and assign
p = 1 to a selfish self and p = —1 to an altruistic self. Then, we can model the psychological

process of creating a self by a potential dynamics

G0 =~ V)

where V' (p) corresponds to a double-well potential with minima at +1 as shown schematically
in Fig. 1. In the deterministic case the person eventually becomes either altruistic (minimum
at —1) or selfish (minimum at +1). In both cases, we meet with a patterned self. Aiming
at a more comprehensive model for psychological processes we may take fluctuations into
account. Assuming that the stochastic process p(t) evolves in a zero-dimensional system,

we can rewrite its evolution equation as

d d

G0 =LV +/ere .

where I'(t) describes a fluctuation force [51] and @ > 0 is a measure for the fluctuation
strength. According to this model, in the stationary state the person will permanently switch
between altruistic and selfish behavior because the stationary distribution of p has peaks at
both potential minima, see Fig. 1 (middle panels). Consequently, in such a stochastic zero-
dimensional psychological system a diffusive self emerges. Finally, we consider a spatially
extended psychological system. Then, the psychological variable reads p(z,t), where x
denotes a continuous spatial coordinate. We will defer the discussion about the meaning of
a spatial coordinate to the end of this paragraph. For a so-called diffusive spatial coupling,

the evolution equation reads

0 d
_ >
—atp(x,t) = —de (p) + KAgp(z,t) +/QL(), K>0

where A\, denotes the Laplace operator. This stochastic partial differential equation is a

special case of the general evolution equation for p(x,t) as proposed in [84]. Alternatively,
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we may consider a discrete spatial coordinate x;. Then, we deal with a psychological system
composed of many similar subsystems p;(t) = p(x;,t) with ¢ = 1,..., N > 1. In the case of
a so-called ferromagnetic coupling [52] between the subsystem the evolution equations for
pi(t)’s read

%) d KX

The stochastic behavior of the spatially extended models can be read off from Fig. 1 (lower
panels). Two possible patterned selves can emerge. The person may be selfish on the average
(probability density centered at +1) or altruistic on the average (probability density centered
at —1). Since p is distributed according to a probability density it is possible that there are
brief episodes with large deviations from the averaged behavior. That is, an altruistic person
can sometimes behave in a selfish fashion and a selfish person can now and then perform a
selfless deed.

There are at least two fundamental interpretations of the spatial dimension of the psy-
chological system of a person: a structural and a social one. Psychological processes take
place in human bodies and involve neural computations. Therefore, the p;(t)’s may rep-
resent almost identical structural subsystems of the neural system involved in a particular
psychological process. Alternatively, we may regard the index 7 as a label for different peo-
ple. Then, the diffusive coupling A, and the ferromagnetic coupling 35, (p; — px) describe
social interactions between people. In particular, the relevance of social interactions for the
development of the self was recently pointed out [85]. According to this latter interpreta-
tion of the spatial dimension, people with ’backbones’ or with a patterned self emerge due
to social interactions, whereas people without social interactions tend to develop diffusive
selves.

The dynamical model described here and suggested in [84] has also clinical implications.
For example, people may suffer from a diffuse self (e.g., schizophrenics). According to the
current model, a diffusive self may arises from a lack of connecting elements. Psychotherapy

and drug treatment may aim at an increase of coupling constants such as K or an increase



14

of the number N of connected subsystems. In a second example, we may consider people
who suffer from a self that is trapped in a particular self-state (e.g., drug addicts). Although
there are in principle other self-states available, these people cannot occupy them due to the
couplings with other people (e.g., other drug addicts) or due to spatial couplings between
structural parts of their psychological systems. Put differently, they cannot change their way
of living because of the impacts of mean field forces that tend to re-establish their actual
personal situations as soon as deviations from these situations occur. In this case a therapy

may act as an external force Fj leading to

0 d KX

api(t) = _d—piv(pi) - N}; (pi — i) + Fo(pis t) + /QTu(t) .

In doing so, the psychological system can be driven out of the actual self-state and can be
put close to a desired self-state.

By comparing the proposed use of Fj in this section and in Sec. IIIB, we realize that
there are two possible effects of Fj. On the one hand, Fy may interact with the potential
V in order to drive a many particle system out of stable stochastic state and to put it in
the vicinity of another stable state. On the other hand, Fy may interact with the coupling
force F}, in order to reduce the impact of F,,, to destroy particle-particle interactions, and
to force the spatially extended many particle system into a state in which it can be regarded

as a collection of many independent zero-dimensional systems (see Sec. IIIB).

IV. CONCLUSIONS

We presented experimental and theoretical evidence for the relevance of spatially extended
perception-action systems. First, we showed that there are several instances in which action
and perception involve spatially extended neural circuitries. Then, we illustrated the failure
of conventional stochastic zero-dimensional models for multistability and hysteresis. In con-
trast, spatially extended models, such as mean field models, can describe these phenomena.
In this context, we discussed the coordination of rhythmic finger movements, Parkinso-

nian tremor, and psychological processes involved in the creating of selves. We would like
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to emphasize that at present these three research fields are studied extensively. That is,
many scientists are nowadays interested in exploring the link between neural activity and
movement coordination, in constructing dynamical models for psychological processes, and
in developing novel treatments for Parkinsonian tremor on the basis of spatially extended
stochastic models. From a phenomenological perspective, when we observe a noisy multi-
stable system or hysteresis in the presence of noise, we can take these observations as a strong
hint that we should consider the system under consideration as a spatially extended one. In
addition to bistability and hysteresis, further indicators for spatially extended perception-
action systems have been documented such as cutoff-distributions, anomalous diffusion, and

noise-induced shifts of bifurcation points (or instability points) [86] (Sec. 6.2).

ACKNOWLEDGMENTS

We are indebted to Lieke Peper and Andreas Daffertshofer for helpful discussions and for
their support in obtaining the results presented here. We are grateful to Wolfgang T'schacher

for sharing with us his ideas on a dynamical systems approach to psychological processes.

REFERENCES

[1] H. Haken, J. A. S. Kelso, and H. Bunz, Biol. Cybern. 51, 347 (1985).

[2] H. Haken, Principles of brain functioning (Springer, Berlin, 1996).

[3] H. Haken, Intelligent behavior: a synergetic view (these proceedings).

[4] M. T. Turvey, Am. Psychol. 45, 938 (1990).

[5] P. J. Beek, C. E. Peper, and D. F. Stegeman, Hum. Movement Sci. 14, 573 (1995).

[6] J. A. S. Kelso, Dynamic patterns - The self-organization of brain and behavior (MIT
Press, Cambridge, 1995).

[7] D. Sternad, Hum. Movement Sci. 19, 627 (2000).

[8] C. Michaels and P. J. Beek, Ecol. Psychol. 7, 259 (1995).



16

[9] P. J. Beek, C. E. Peper, A. Daffertshofer, A. J. van Soest, and O. G. Meijer, in Models
in human movement sciences: proceedings of the second symposium of the institute for
fundamental and clinical human movement science, edited by A. A. Post, J. R. Pijpers,
P. Bosch, and M. S. J. Boschker (PrintPartners Ipskamp, Enschede, 1998), pp. 93-111.

[10] V. K. Jirsa and H. Haken, Phys. Rev. Lett. 77, 960 (1996).

[11] V. K. Jirsa and J. A. S. Kelso, Phys. Rev. E 62, 8462 (2000).

[12] T. D. Frank, A. Daffertshofer, P. J. Beek, and H. Haken, Physica D 127, 233 (1999).

[13] P. A. Robinson, P. N. Loxley, S. C. O’Connor, and C. J. Rennie, Phys. Rev. E 63,
041909 (2001).

[14] J. A. S. Kelso, Cognitive coordination dynamics (these proceedings).

[15] C. E. Peper and R. G. Carson, Exp. Brain Res. 129, 417 (1999).

[16] C. F. Michaels, Ecol. Psychol. 12, 241 (2000).

[17] R. G. Carson and S. Piek, Hum. Movement Sci. 19, 451 (2000).

[18] F. Mechsner, D. Kerzel, G. Knoblich, and W. Prinz, Nature 414, 69 (2001).

[19] T. Allison, in Cognitive Psychophysiology, edited by E. Donchin (Erlbaum, Hillsdale,
New Jersey, 1984), pp. 1-36.

[20] D. Cheyne and H. Weinberg, Exp. Brain Res. 78, 604 (1989).

[21] R. Hari, K. Aittoniemi, M. L. Jarvinen, T. Katila, and T. Varpula, Exp. Brain Res 40,
237 (1980).

[22] C. M. Gray, P. Konig, A. K. Engel, and W. Singer, Nature 338, 334 (1989).

[23] W. Singer, in Neural cooperativity, edited by J. Kriiger (Springer, Berlin, 1991), pp.
165-183.

[24] R. Eckhorn, O. Griisser, U. Kroller, K. Pellnitz, and B. Pépe, Biol. Cybern. 22, 49
(1976).

[25] A. K. Engel, P. Konig, A. K. Kreiter, and W. Singer, Science 252, 1177 (1991).

[26] H. Damasio, Neural Comput. 1, 123 (1989).

[27] W. Singer, Annu. Rev. Physiol. 55, 349 (1993).

[

28] C. von der Malsburg and J. Buhmann, Biol. Cybern. 67, 233 (1992).



17

[29] S. L. Bressler, R. Coppola, and R. Nakamura, Nature 366, 153 (1993).

[30] V. N. Murthy and E. E. Fetz, J. Neurophysiology 76, 3949 (1996).

[31] R. B. Silberstein, in Neocortical dynamics and human EEG rhythms, edited by P. L.
Nunez (Oxford University Press, New York, 1995), pp. 272-303.

[32] P. Tass, M. G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J. Volkmann, A. Schnit-
zler, and H. J. Freund, Phys. Rev. Lett. 81, 3291 (1998).

[33] P. Tass, J. Kurths, M. Rosenblum, J. Weule, A. Pikovsky, J. Volkmann, A. Schnitzler,
and H. J. Freund, in Analysis of neurophysiological brain functioning, edited by C. Uhl
(Springer, Berlin, 1999), pp. 252-273.

[34] J. Gross, P. A. Tass, S. Salenius, R. Hari, H. J. Freund, and A. Schnitzler, J. Physiology
527, 623 (2000).

[35] J. Bhattacharya and H. Petsche, Phys. Rev. E 64, 012902 (2001).

[36] D. F. Hoyt and C. R. Taylor, Nature 292, 239 (1981).

[37] J. A. S. Kelso, J. D. DelColle, and G. Schéner, in Attention and performance XIII,
edited by M. Jeannerod (Erlbaum, Hillsdale, New Jersey, 1990), pp. 139-169.

[38] R. H. Wimmers, P. J. Beek, and P. C. W. van Wieringen, Hum. Movement Sci. 11, 217
(1992).

(39] C. E. Peper and P. J. Beek, Biol. Cybern. 79, 291 (1998).

[40] J. A. S. Kelso, Am. J. Physiology: Regulatory, Integrative and Comparative Physiology
15, R1000 (1984).

[41] P. J. Beek, W. E. I. Rikkert, and P. C. W. van Wieringen, J. Exp. Psychol. - Hum.
Percept. Perform. 22, 1077 (1996).

[42] P. G. Amazeen, E. Amazeen, and M. T. Turvey, in Timing of behavior, edited by D. A.
Rosenbaum and C. E. Collyer (MIT Press, Cambridge, 1998), pp. 237-2509.

[43] A. A. Post, C. E. Peper, A. Daffertshofer, and P. J. Beek, Biol. Cybern. 83, 443 (2000).

[44] H. Park, D. R. Collins, and M. T. Turvey, J. Exp. Psychol. - Hum. Percept. Perform.
27, 32 (2001).

[45] G. C. DeGuzman and J. A. S. Kelso, Biol. Cybern. 64, 485 (1991).



18

[46] C. E. Peper, P. J. Beek, and P. C. W. van Wieringen, Biol. Cybern. 73, 301 (1995).

[47] D. Sternad, M. T. Turvey, and E. L. Saltzman, J. Motor Behav. 31, 207 (1999).

[48] G. S. Schéner, H. Haken, and J. A. S. Kelso, Biol. Cybern. 53, 247 (1986).

[49] A. Daffertshofer, Phys. Rev. E 58, 327 (1998).

[50] A. Daffertshofer, C. van den Berg, and P. J. Beek, Physica D 132, 243 (1999).

[51] H. Risken, The Fokker-Planck equation — Methods of solution and applications
(Springer, Berlin, 1989).

[52] R. C. Desai and R. Zwanzig, J. Stat. Phys. 19, 1 (1978).

[53] T. D. Frank, A. Daffertshofer, and P. J. Beek, Phys. Rev. E 63, 011905 (2001).

[54] T. D. Frank, Phys. Lett. A 280, 91 (2001).

[55] M. Coulson and S. Nunn, in Dynamics, synergetics, autonomous agents, edited by
W. Tschacher and J. P. Dauwalder (World Scientific, Singapore, 1999), pp. 241-255.

[56] J. J. Buchanan and J. A. S. Kelso, Exp. Brain Res. 94, 131 (1993).

[57] C. E. Peper, P. J. Beek, and P. C. W. van Wieringen, J. Exp. Psychol. - Hum. Percept.
Perform. 21, 1117 (1995).

[58] V. Sorensen, R. P. Ingvaldsen, and H. T. A. Whiting, Biol. Cybern. 85, 27 (2001).

[59] H. S. Hock, J. A. S. Kelso, and G. Schéner, J. Exp. Psychol. - Hum. Percept. Perform.
19, 63 (1993).

[60] T. D. Frank, A. Daffertshofer, C. E. Peper, P. J. Beek, and H. Haken, Physica D 144,
62 (2000).

[61] J. H. Li and P. Hanggi, Phys. Rev. E 64, 011106 (2001).

[62] S. Shinomoto and Y. Kuramoto, Prog. Theor. Phys. 75, 1105 (1986).

[63] H. Haken, in Cooperative phenomena, edited by H. Haken and M. Wagner (Springer,
Berlin, 1973), pp. 363-372.

[64] H. Haken, in Synergetics — Cooperative phenomena in multi-component systems, edited
by H. Haken (Teubner, Stuttgart, 1973), pp. 9-19.

[65] H. Haken, Synergetics. An introduction (Springer, Berlin, 1977).

[66] A. Daffertshofer, C. E. Peper, and P. J. Beek, Phys. Lett. A 266, 290 (2000).



19

[67] A. Daffertshofer, C. E. Peper, T. D. Frank, and P. J. Beek, Hum. Movement Sci. 19,
475 (2000).

[68] J. A. S. Kelso, A. Fuchs, R. Lancaster, D. C. T. Holroyd, and H. Weinberg, Nature
392, 814 (1998).

[69] J. P. Wikswo, in Advances in Biomagnetism, edited by S. J. Williamson, M. Hoke,
G. Stroink, and M. Kotani (Plenum Press, New York, 1989), pp. 1-18.

[70] C. Gerloff, C. Toro, N. Uenishi, L. G. Cohen, L. Leocani, and M. Hallett, Electroenceph.
Clin. Neurophysiol. 102, 106 (1997).

[71] R. Kristeva, D. Cheyne, and L. Deecke, Electroenceph. Clin. Neurophysiol. 81, 284
(1991).

[72] T. D. Frank, C. E. Peper, A. Daffertshofer, and P. J. Beek, Variability of brain activity
during rhythmic unimanual finger movements, submitted.

[73] T. D. Frank, A. Daffertshofer, C. E. Peper, P. J. Beek, and H. Haken, Physica D 150,
219 (2001).

[74] Y. Kuramoto, Chemical oscillations, waves, and turbulence (Springer, Berlin, 1984).

[75] S. H. Strogatz and I. Stewart, Sci. American 269(6), 68 (1993).

[76] R. Levy, W. D. Hutchison, A. M. Lozano, and J. O. Dostrovsky, J. Neurosci. 20, 7766
(2000).

[77] P. A. Tass, Prog. Theor. Phys. Suppl. 139, 301 (2000).

[78] P. A. Tass, Europhysics Letters 53, 15 (2001).

[79] P. A. Tass, Europhysics Letters 55, 171 (2001).

[80] P. A. Tass, Phase resetting in medicine and biology - Stochastic modelling and data
analysis (Springer, Berlin, 1999).

[81] W. Tschacher and J. P. Dauwalder, Dynamics, Synergetics, Autonomous Agents —
Nonlinear Systems Approaches to Cognitive Psychology and Cognitive Science (World
Scientific, Singapore, 1999).

[82] W. Tschacher, N. Baur, and K. Grawe, Psychotherapy Res. 10, 296 (2000).

[83] J. R. Pijpers and F. C. Bakker, in Studies in perception and action III, edited by B. G.



20

Bardy, R. J. Bootsma, and Y. Guiard (Erlbaum, Hillsdale, New Jersey, 1995), pp.
137-1309.

[84] W. Tschacher and J. P. Dauwalder, in Dynamics, synergetics, autonomous agents,
edited by W. Tschacher and J. P. Dauwalder (World Scientific, Singapore, 2000), pp.
83-104.

[85] W. Tschacher and O. E. Réssler, Chaos, solitons & fractals 7, 1011 (1996).

[86] T. D. Frank, Doctoral Thesis: Stochastic properties of human motor control: nonlinear

Fokker-Planck equations (T. D. Frank, Amstelveen, 2000).



21

b v b viv

1\ P(X)

] \

o
X %

FIG. 1: Examples of models involving a typical double-well potential V' (z): a) deterministic

model, b) stochastic zero-dimensional model, c) stochastic spatially extended model. The
black balls describe the stationary states of the model a). P(z) corresponds to the stationary

probability densities of the models b) and c).
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FIG. 2: Examples of models involving a three-stage hysteresis: a) deterministic model,
b) stochastic zero-dimensional model, c) stochastic spatially extended model. The potential
V (z; @) is shown for two values of & (; and ap). The control parameter « is varied according
to the sequence oy, g, a;. The black balls describe the stationary states of the model a).

P(z) corresponds to the stationary probability densities of the models b) and c).
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FIG. 3: Self-organization of a spatially distributed system. Upper panel: Many interacting
and almost identical particles subjected to an external force Fy and fluctuation forces (black
dots). Middle panel: The symbolic re-arrangement of particles and forces results in the
introduction of a particle-particle interaction force F,, that acts on a representative particle
and is affected by that particle. Lower panel: The behavior of the particles contributing
to Fy, is approximately described by the stochastic properties of the representative particle

(mean field approximation); here P stands for the distribution function.
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FIG. 4: Upper panel: the three-dimensional parameter space of the mean field HKB model is
composed of two subspaces describing a regime with a single (monostable) and two (bistable)
stationary phase distributions. Lower panel: a simulation of the model is shown that mimics
the experimentally observed transition between two characteristic phase distributions of

MEG signals.
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FIG. 5: Neural oscillator models of synchronized brain activity related to Parkinsonian
tremor and treatment via electric stimulation. Panel a): deterministic case for a healthy per-
son; the ball represents the phase of a free oscillator. Panel b): stochastic zero-dimensional
model for a healthy person; phases are uniformly distributed. Panel c¢): stochastic spatially
extended model for a patient with Parkinson’s disease; oscillator phases are attracted to
each other due to a mean field force. Panel d): stochastic spatially extended model under
the impact of an external stimulus; the impact of couplings between neural oscillators is
reduced by the external stimulus. P represent the phase distributions of models b), c), and

d).



