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Interfaces

Phase A

Interface

Phase B

Consider interfaces between two
components/phases of a fluid

Since Aristoteles’ times scientists
have been interested in interfaces

These were assumed to be sharp
and discontinuous like it appears to
the human eye

Poisson (1831): Interface is
a diffuse, continuous
transition; it can be
described by a continuous
profile ¢(x)

@(x) is e.g. the density Phase B
difference of the phases

Phase A

Interface




Interfaces

Phase A

Interface

Phase B

= Definition of interface thickness is arbitrary and therefore a
problem on its own

X3



Phenomenology of Binary Fluid Systems

Cyclo-Hexane (CgHi2) and Aniline (CeHs NH>)

T0<TC T0<T1<TC TNTC T>TC

e Experiment by Atack and Rice (1953)
Below T¢ = 30.9 °C both fluids seperate into two pure phases

Above T¢ the fluids mix perfectly

No latent heat is measured = second order phase transition



Phenomenology of Binary Fluid Systems

Cyclo-Hexane (CsHi2) and Aniline (CsHs NH>)

T0<TC T0<T1<TC TNTC T>TC

e Near T¢ the reduced interface tension o = 7/kg T obeys a

scaling law
o ~ ogtt uw=1.26+40.01

with reduced temperature t = T}CTC

e Correlation length ¢ diverges at T¢ according to
g g g

er=¢ft™ v =0.630=+0.002
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Phenomenology of Binary Fluid Systems

Cyclo-Hexane (CgHi2) and Aniline (CeHs NH>)

T0<TC T0<T1<TC TNTC T>TC

Universality
e Many other BFS show the same behaviour:
o Isobutyric acid + Water
e Triethylamine + Water
e ..
e Even some binary systems of one fluid and one gas behave
similar



Phenomenology of Binary Fluid Systems

Cyclo-Hexane (CgHi2) and Aniline (CeHs NH,)

T0<TC T0<T1<TC TNTC T>TC

Universality
o While Jo,ﬁg[ vary from system to system...

e ... the critical exponents u, v agree almost perfectly
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Remember: Phase Transitions and Universality

Continuous Phase Transitions

e \We only consider phase transitions of second order

e Low temperature phase is usually more orderly than high
temperature phase because of

F=U-TS F minimal at equilibrium

e Order parameter ¢ = 0 only for one phase. Examples:
e spontaneous magnetization Ms = % >-; it; of a magnetical
system
o difference of concentrations AC = C4 — Cg of a binary fluid
system



Remember: Phase Transitions and Universality

Critical Exponents

e Near Tc many physical quantities behave according to power
laws of the reduced temperature t

e Define critical exponents X\, \' to physical quantity F as
follows:

/\:IimM )\’:“mw

t\O Int t,70 In(—t)

= F(t)=t" as t—0" and F(t)=(-t) as t—0"



Remember: Phase Transitions and Universality

Critical Exponents

(—t)= for T < Tc

specific heat:  Cr—g ~ { t—a for T> T
C

order parameter: ¢ ~ (—t)? (¢ =0 for T > T¢)

for T < T¢

I (—t)~
susceptibility:  x ~ = for T> T
C

critical isotherm: T ~ ¢ for T = T¢

(=)™ for T < T¢

lation length: ~
correlation leng & { v B T i

e, G Gy Y




Remember: Phase Transitions and Universality

Hypothesis of Universality (Griffiths, 1970)

e Systems with a phase transition of second order can be sorted
in universality classes

o Crititical behaviour (i.e. the critical exponents) of systems in
the same UC is essentially equal
e Classification depends on
a) the system'’s dimension D

b) the dimension n of the order parameter
c) the symmetries of the system



From Ising Model to ¢*-Theory

How do we describe such Binary Fluid Systems theoretically?

e Values of u, v suggest the systems to be in the same
universality class as the 3D Ising model

Ising Model

Hamiltonian (ferromagnetic)
H=-J> SS-uB>_ S
i i

Si =41

Order parameter:

1
M:VZ<Si>

i




From Ising Model to ¢*-Theory

How do we describe such Binary Fluid Systems theoretically?

e Values of i, v suggest the systems to be in the same
universality class as the 3D Ising model

Ising Model

o Fluid systems: Identify

o S;=1("up”) with a volume cell of fluid
component A

o §; = —1 ("down") with a volume cell of
component B




From Ising Model to ¢*-Theory

Interfaces of Ising Systems

e The Ising Model can be used to treat systems with interfaces
numerically




From Ising Model to ¢*-Theory

Interfaces of Ising Systems

e The Ising Model can be used to treat systems with interfaces
numerically




From Ising Model to ¢*-Theory

Analytical Treatment: Landau-Ginzburg Model

e System with interface can be described by double-well
potential

e Minima correspond to pure phases of the components



From Ising Model to ¢*-Theory

Analytical Treatment: Landau-Ginzburg Model

e Order parameter: Continuous variable ¢ (—oco < ¢ < 00)
where (¢) = M

e Continuum: x; — x, ¢; — ¢(x), a — 0, N — oo
e Landau approximation: Neglect fluctuations — ¢ = (¢)

e Analyticity assumption: Near T, free energy G(T,¢) is
expandable in powers of ¢

G(T.6) = Go(T) — 76 + %ro( V62 + —uo¢4

(symmetry is assumed =- no odd powers of ¢ if no external
force 7 is present)



From Ising Model to ¢*-Theory

Analytical Treatment: Landau-Ginzburg Model

e The Ginzburg-Landau Model uses the "Hamiltonian” (valid
only in vicinity of T¢)

= Hualdl = [ P |3V + 3r(T)62 + gyund?]

e Pertubation expansion terms contain statistical fluctuations



From Ising Model to ¢*-Theory

Analytical Treatment: Landau-Ginzburg Model

e Partition function:

Z = Ze‘BH

{si}
e Each configuration {S;} corresponds to a field ¢(x)

= 7= [ 29 eI LA BED D ']

e Generating functional of correlation functions:

(8] = / D(x) e~ PHeL—] dPx B(:)9(0)



From Ising Model to ¢*-Theory

Comparison: Landau-Ginzburg Model vs. ¢*-QFT

e Generating functional in QFT:
7l = / D e Selél] dPx J(x)(x)
e Euclidean action of ¢*-QFT

el = [ @ | 3007 + G + Lo

Lagrangean ¢
is the formal equivalent of

Hgr[¢] = /dDX [;(V¢)2 - %ro(7)¢2 + 41!UO¢4]

Hamiltonian density .77



From Ising Model to ¢*-Theory

Comparison: Ginzburg-Landau-Model vs. ¢*-QFT

Field ¢(x)
Planck's A

Order parameter ¢(x)
Temperatur kg T =1/0
Hamiltonian density .7(¢) Lagrangean .Z(¢)
Hamiltonian Euclidean action

Hlg] = [ d°x 7#(4(x)) Seld] = [ dPx Z(¢(x))

Landau approximation Classical limit

1111

!

Statistical fluctuations Quantum fluctuations

!




So why do we care?

e Binary fluid systems happen to be in the same universality
class as ¢*-theory!

e ¢*-theory is part of the Standard Model of high energy
particle physics (e.g. electroweak Higgs field)

o Critical behaviour is universal = details of binary fluid system
can be neglected, methods of QFT can be applied to BFS and
vice versa

o Interfaces appear in some systems with spontaneously broken
symmetry, consider e.g. domain walls in cosmology
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Generating Functionals in Field Theory

Generating Functional of Correlation Functions

o Addition of a source term to the Lagrangean in the functional
integral yields

20= [ 96 0]~ [ x12 + s000

(0é(x1) - - &(xa)[0) = Zlo 5J(X16)n-Z~F{5]J(Xn) 2Vl

J=0
mit Zp = Z[J = 0]



Generating Functionals in Field Theory

Generating Functional of Connected Correlation Functions
o We define another generating functional by W[J] = In Z[J]

S2W[J]

TR [< ¢(x)d(y) > — < ¢(x) >< ¢(y) >]

= |—o—+000—— 00

= —@— =< ¢(x)o(y) >comn

e More generally: #&J}(XH) = (#(x1) - - 9(xn)) conn



Generating Functionals in Field Theory

The effective Action I

e We define the classical field ¢ci(x) by

fsbv([xj)] = (QU6()I) = dai(x)

e Analogy to the free energy of statistical mechanics: Legendre
transformation of W[J] yields I'[¢ci(x)]

SW[] = / d*x ‘i;'j'z[xj)] 5J(x) = / d*x don(x)5J(x)

= [ dx0at0Ix) - [ d*x s )

= s(WLJ - / d*x der(x)I(x)) = — / d*x J(x)6dc(x)

e




Generating Functionals in Field Theory

The effective Action I
e Definition of Iecy] yields

Mocr] _
d¢ci(x)

= In abscence of external sources [ becomes stationary
= equation of motion for VEV ¢ci(x) = (¢(x)) )_o

—J(x)

e |t can be shown that

5T oci]

— G Yx
el )beal) ~ ~CC tuy)




Generating Functionals in Field Theory

The effective Action I

e [¢c] is the generating functional of the proper vertices

6" [pci]
5¢01(X1) . (5(Z)c](Xn

e This is proved by induction from n-point to (n + 1)-point
correlation functions and explicit calculation for the 3-point
correlator

) = (d(x1) ... ¢(xn))1pr



Generating Functionals in Field Theory

X

3
/é\: (&(x)0(y)D(2)) conn = m

y V4
SwJ 8r !
= fd4W sz%ycvlvégy] = _fd4W GZW%SI (&bg{?g)gl)

&r -1 sr &r -1
= [d*wd*ud*v Gy ( : ¢Sl[?§:c]l) SPThA (Mg[?q‘j;%]l)

83r
= fd4ud4v d4WGquvszwm
X

A

y V4



Generating Functionals in Field Theory

e Induction hypothesis

(&(x1)---0(Xn)) conn = (U()(Z)‘A/([SJJ]()Q,)

0" o]
= d4)/1d4y2~-d4yn{Gx Gxoyp---Gxyyy — e + o
/ 1y1 Fx2y2 Y 5¢)911(5¢921... }gnl

where the ... terms consist of some G,,,, and some

%ﬁ%ﬂn, m < n and the derivatives of [ describe proper

vertices



Generating Functionals in Field Theory

e Inductive step: Addition of an external point

<¢(X1) (Xn+1)>conn = 5./5 <5JinW[g.]/X >

Xn+1

e This yields two types of terms:

) 0 0" o]
<5J Gx,-y,->--- and ”'5an+1(5¢}915¢21...

Xn+1
Type I Type I1



Generating Functionals in Field Theory

e Terms of type I:

5 B 4 § 2WI[J]
5, O /d O o T
-1
§ [ 6°T[ocl
. 4
= /d Ukau6¢§1 <6¢gl5¢gl
4, 44 4 o°r
= d*ud’vd WGXkUGﬁVGW”m
Xk
)

o | T | =

Xj Yj



Generating Functionals in Field Theory

e In each of the type | terms one external line is replaced by a
three-point function
e Terms of type Il

j ( i n ) - [ ', o Tgal

5 \ 3650 D SGTGT. . 6

= a new external line is added to what used to be a m-point
proper vertex

Yi Yi

@YJ 5 E @yj
(SJXk Xk
e e d P




Generating Functionals in Field Theory

Graphical representation of step n — (n+ 1):

X X X X u
) ?
) W‘%FF yi\@ +j§i )
Y Zy u u zy z




Generating Functionals in Field Theory

The effective Action I

e [ is the generating functional of the proper vertices!
e Its second functional derivative is the inverse propagator

o Effective action I" contains all the physics of the corresponding
theory!



The Effective Potential

Definition of the Effective Potential

e Definition of I yields 5r[¢01] =0for J=0
Solutions are the stable VEV. da1(x) = (p(x))
e Expansion of I in ¢¢; and derivatives:

—Iocl] = /d4X |:Veff(¢01)+;(au¢01)2z(¢C1(X))+

We consider systems with Lorentz invariance and conservation
of momentum

= ¢c1(x) = ¢o = const.

From above expansion only the first term remains:

o] = / d*x V() = — Verr(do) / d'x = —Vig(do)Q



The Effective Potential

What is the Physical Meaning of Vg7
e Variation of above expansion yields

—6M¢c] :/d4x [aveﬁ

O¢ci

décr + d(terms containing derivatives)]

: |
o

oMoa] Ve

dpci O0dqi

e It can then be shown that

9? Vg
06,

*Viog
0%,

a2
= Mipvs and

o




The Effective Potential

Advantages of the Effective Potential Formalism

o If we replace the classical potential by Vg we can apply
methods of classical SSB theory to quantum systems

e |t can be shown that the divergence structure of a
renormalisable theory is not affected by the occurrence of SSB

e Coleman: "Secret symmetry buys us secret renormalizability.”



Calculation of the Effective Potential

e For non-trivial models V.g cannot be calculated exactly
o It can be approximated by loop expansion

e The zero-loop term is the classical potential U
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The Formalism applied to Interfaces

e Action functional of ¢*-Theory

stol = [ aPx{ 3007+ uto)} = [ aPx{-JoiPo-+ vio)}

2

_m > & 4
U(¢) = 590"+ ;¢
e Classical interface profiles obey
65[¢] 1y
o6 o+ U(p)=0

U'(¢) = m6+ £6°



The Formalism applied to Interfaces

o Assumption: ¢ = ¢(x3)
e Multiply equation of motion by J¢, integrate over x3

1 o M 5 & a4
—5(&75) — gt ge =¢

e Boundary conditions:

%) as X3 — +00
P(x3) = { 7 _
Vo, as X3 — —00



Phase A

Phase B

¢ci(x3) = votanh (g(x;; - a))

Y
B




The Formalism applied to Interfaces

e Replacing U by Vg yields the equation for interface profiles
with loop corrections

1 2 / _
—738 ¢+ Ve(¢) =0



The Formalism applied to Interfaces

e Assumption: ¢ = ¢(x3)
e Multiply by 0¢, integrate over x3

1 5 _
= —273(3@?)) + Verr(¢) = C

e V¢ can be normalized to get C =0

(09)? = 2Z3 Verr(9)

¢ = \/2Z3Veii(®)

e We use 0¢ = +,/-." in our calculations and retrieve the
solution with negative sign simply by substituting x3 by —x3 in
our results



The Formalism applied to Interfaces

Results to second order (Kiister, 2001)

%gR

5
(up/Br)ehdh -
(up/8m)*x




Outlook

e The interface profile is to be calculated

o Kiister for example approximated the profile by using the
effective potential Vg, which is defined for constant ¢ to
get a differential equation for a non-constant profile ¢

e Instead of Vg we are now going to use I[¢c] with the
classical kink solution ¢

e The first orders of the loop expansion of I will be used to
retrieve a new differential equation for the profile ¢

e The resulting profile will hopefully respect long-wavelength
fluctuations - a phenomenon known as interface roughening
which are ignored by approximations using Vg



Summary

o Interfaces in binary fluid systems can be described by a
continuous order parameter field

e BFS belong to the same universality class as the 3D Ising
Model and the Ginzburg-Landau Model (¢*-Theory)

e The statistical ¢*-Theory is formally equal to the euclidean
»*-QFT

e The effective action I is the Legendre-Transform of the
generating functional of connected correlation functions

e For a constant ¢y an effective potential Veg is defined



Summary

e The transition from classical to quantum field theory can be
done by subsituting the classical potential U with the effective
potential Vg

e This equals the transition from statistical field theory in
Landau approximation to a theory with fluctuations

e V. can be used to formulate a differential equation for the
interface profile

e Instead we will use I'[¢c1] with the classical kink solution ¢y
to calculate the profile



