Non-perturbative determination of the B meson decay constant in HQET

P. Fritzsch

Institut für Theoretische Physik
Westfälische-Wilhelms-Universität Münster
Forschungsseminar, SS 2006 19.06.2006

Motivation

The old question: Why nature looks like it is?

Motivation

The old question: Why nature looks like it is?
search for a deeper understanding of all fundamental forces, experimentalists and theorists hand in hand

Motivation

The old question: Why nature looks like it is?
search for a deeper understanding of all fundamental forces, experimentalists and theorists hand in hand
in the case of QCD:

- well-defined QFT with Lagrangian

$$
\mathcal{L}_{\mathrm{QCD}}\left[g_{0}, m_{\mathrm{f}}\right]=-\frac{1}{2 g_{0}^{2}} \operatorname{Tr}\left\{F_{\mu \nu} F_{\mu \nu}\right\}+\sum_{\mathrm{f}=\mathrm{u}, \mathrm{~d}, \ldots} \bar{\psi}_{\mathrm{f}}\left[\gamma_{\mu}\left(\partial_{\mu}+g_{0} A_{\mu}\right)+m_{\mathrm{f}}\right] \psi_{\mathrm{f}}
$$

- easy to write down, but much more difficult to 'solve' than QED
- more non-linearities due to structure of non-abelian gauge group \rightsquigarrow confinement, asymtotic freedom
- spectrum extremly rich and exotic with various excitations over a wide energy range \rightsquigarrow hadronic zoo

Motivation

The old question: Why nature looks like it is?

search for a deeper understanding of all fundamental forces, experimentalists and theorists hand in hand

in the case of QCD:

- well-defined QFT with Lagrangian

$$
\mathcal{L}_{\mathrm{QCD}}\left[g_{0}, m_{\mathrm{f}}\right]=-\frac{1}{2 g_{0}^{2}} \operatorname{Tr}\left\{F_{\mu \nu} F_{\mu \nu}\right\}+\sum_{\mathrm{f}=\mathrm{u}, \mathrm{~d}, \ldots} \bar{\psi}_{\mathrm{f}}\left[\gamma_{\mu}\left(\partial_{\mu}+g_{0} A_{\mu}\right)+m_{\mathrm{f}}\right] \psi_{\mathrm{f}}
$$

- easy to write down, but much more difficult to 'solve' than QED
- more non-linearities due to structure of non-abelian gauge group \rightsquigarrow confinement, asymtotic freedom
- spectrum extremly rich and exotic with various excitations over a wide energy range \rightsquigarrow hadronic zoo
at the end of all days, QCD must be solved non-perturbativly

Motivation

The old question: Why nature looks like it is?

search for a deeper understanding of all fundamental forces, experimentalists and theorists hand in hand

in the case of QCD:

- well-defined QFT with Lagrangian

$$
\mathcal{L}_{\mathrm{QCD}}\left[g_{0}, m_{\mathrm{f}}\right]=-\frac{1}{2 g_{0}^{2}} \operatorname{Tr}\left\{F_{\mu \nu} F_{\mu \nu}\right\}+\sum_{\mathrm{f}=\mathrm{u}, \mathrm{~d}, \ldots} \bar{\psi}_{\mathrm{f}}\left[\gamma_{\mu}\left(\partial_{\mu}+g_{0} A_{\mu}\right)+m_{\mathrm{f}}\right] \psi_{\mathrm{f}}
$$

- easy to write down, but much more difficult to 'solve' than QED
- more non-linearities due to structure of non-abelian gauge group \rightsquigarrow confinement, asymtotic freedom
- spectrum extremly rich and exotic with various excitations over a wide energy range \rightsquigarrow hadronic zoo
at the end of all days, QCD must be solved non-perturbativly only know, fully non-perturbative framework: Lattice QCD

Why B physics?

Relevant for what?

- the b-quark mass
- spectrum \& lifetimes of b-hadrons
- determination of the CKM-parameters
- "fundamental" parameters of nature
- CP puzzle
weak eigenstates \neq mass eigenstates \Rightarrow

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

Why B physics?

Relevant for what?

- the b-quark mass
- spectrum \& lifetimes of b-hadrons
- determination of the CKM-parameters
- "fundamental" parameters of nature
- CP puzzle
weak eigenstates \neq mass eigenstates \Rightarrow

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

unitarity condition $V_{\text {CKM }} V_{\text {CKM }}^{\dagger}=\mathbb{1}$ in SM
$\rightarrow 6$ normalizations \& 6 orthogonality relations like

$$
\begin{aligned}
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 \\
& V_{u d}^{*} V_{t d}+V_{u s}^{*} V_{t s}+V_{u b}^{*} V_{t b}=0
\end{aligned}
$$

Question: unitarity violation or not \rightsquigarrow new physics? (NP)

Why B physics?

Relevant for what?

CKM-Matrix in Wolfenstein parametrization (1983)

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-\mathrm{i} \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-\mathrm{i} \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
$$

with CP-violating phase η and $\lambda=\sin \theta_{C}=0.22$ (θ_{C} : Cabibbo angle)

$$
\begin{aligned}
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 \\
& V_{u d}^{*} V_{t d}+V_{u s}^{*} V_{t s}+V_{u b}^{*} V_{t b}=0
\end{aligned}
$$

Why B physics?

Relevant for what?

CKM-Matrix in Wolfenstein parametrization (1983)

$$
V_{\text {CKM }}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-\mathrm{i} \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-\mathrm{i} \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

with CP-violating phase η and $\lambda=\sin \theta_{C}=0.22$ (θ_{C} : Cabibbo angle)

$$
\begin{aligned}
{\left[(\rho+\mathrm{i} \eta)+(1-\rho-\mathrm{i} \eta)+(-1)+\mathcal{O}\left(\lambda^{2}\right)\right] A \lambda^{3} } & =0 \\
{\left[(\bar{\rho}+\mathrm{i} \bar{\eta})+(1-\bar{\rho}-\mathrm{i} \bar{\eta})+(-1)+\mathcal{O}^{\prime}\left(\lambda^{2}\right)\right] A \lambda^{3} } & =0
\end{aligned}
$$

Why B physics?

Relevant for what?

CKM-Matrix in Wolfenstein parametrization (1983)

$$
V_{\text {CKM }}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-\mathrm{i} \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

with CP-violating phase η and $\lambda=\sin \theta_{C}=0.22\left(\theta_{C}\right.$: Cabibbo angle)

$$
\begin{aligned}
{\left[(\rho+\mathrm{i} \eta)+(1-\rho-\mathrm{i} \eta)+(-1)+\mathcal{O}\left(\lambda^{2}\right)\right] A \lambda^{3} } & =0 \\
{\left[(\bar{\rho}+\mathrm{i} \bar{\eta})+(1-\bar{\rho}-\mathrm{i} \bar{\eta})+(-1)+\mathcal{O}^{\prime}\left(\lambda^{2}\right)\right] A \lambda^{3} } & =0
\end{aligned}
$$

- side from $\Delta m_{s}, \Delta m_{s} / \Delta m_{d}$
- angle γ from $B \rightarrow h^{+} h^{-}$
- $\sin 2 \beta$ from $J / \psi K_{s}$ decays

$$
\binom{\bar{\rho}}{\bar{\eta}} \equiv\left(1-\lambda^{2} / 2\right)\binom{\rho}{\eta}
$$

Why B physics?

Relevant for what?

CKM-Matrix in Wolfenstein parametrization (1983)

$$
V_{\text {CKM }}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-\mathrm{i} \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

with CP-violating phase η and $\lambda=\sin \theta_{C}=0.22\left(\theta_{C}\right.$: Cabibbo angle)

$$
\begin{aligned}
{\left[(\rho+\mathrm{i} \eta)+(1-\rho-\mathrm{i} \eta)+(-1)+\mathcal{O}\left(\lambda^{2}\right)\right] A \lambda^{3} } & =0 \\
{\left[(\bar{\rho}+\mathrm{i} \bar{\eta})+(1-\bar{\rho}-\mathrm{i} \bar{\eta})+(-1)+\mathcal{O}^{\prime}\left(\lambda^{2}\right)\right] A \lambda^{3} } & =0
\end{aligned}
$$

- side from $\Delta m_{s}, \Delta m_{s} / \Delta m_{d}$
- angle γ from $B \rightarrow h^{+} h^{-}$
- $\sin 2 \beta$ from $J / \psi K_{s}$ decays

$$
\xi \equiv \frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}}
$$

CKM Fitter Group

http://ckmfitter.in2p3.fr/
experimental dataset

$$
\xi=1.24 \pm 0.04 \pm 0.06
$$

with lattice data [hep-lat/0510113]

$$
\xi=1.21_{-0.035}^{+0.047}
$$

UTfit collaboration

http://utfit.roma1.infn.it/
[hep-ph/0606167]

$$
\begin{aligned}
& \bar{\rho}=0.193 \pm 0.029 \\
& \bar{\eta}=0.355 \pm 0.019
\end{aligned}
$$

UTfit collaboration

http://utfit.roma1.infn.it/

[hep-ph/0606167]

$$
\begin{aligned}
& \bar{\rho}=0.173 \pm 0.039 \\
& \bar{\eta}=0.412 \pm 0.026
\end{aligned}
$$

B factories

$\rightsquigarrow \mathcal{O}\left(10^{8}\right) B \bar{B}$ pairs collected together so far

B factories

now and then

hope for a $e^{+}-e^{-}$"super-B factory" in a more distant future, with an increase of luminosity by up to two orders of magnitude

CP violation

The history so far

- 1964, first discovery of indirect CP violation in $K_{L} \rightarrow \pi^{+} \pi^{-}$ decays (branching ratio $\varepsilon_{K} \sim 10^{-3}$)
- CP-violating effects may also arise directly at the decay amplitude level \rightsquigarrow direct CP violation; eventually established in 1999 through the NA48 (Cern) and KTeV (FNAL) collaborations

CP violation

The history so far

- 1964, first discovery of indirect CP violation in $K_{L} \rightarrow \pi^{+} \pi^{-}$ decays (branching ratio $\varepsilon_{K} \sim 10^{-3}$)
- CP-violating effects may also arise directly at the decay amplitude level \rightsquigarrow direct CP violation; eventually established in 1999 through the NA48 (Cern) and KTeV (FNAL) collaborations
- this decade, the main actor is the B-meson system, i.e. charged \& neutral B mesons with the following valence-quark contents:

$$
B^{+} \sim u \bar{b}, \quad B_{c}^{+} \sim c \bar{b}, \quad B_{d}^{0} \sim d \bar{b}, \quad B_{s}^{0} \sim s \bar{b}
$$

detectable by BaBar, Belle and at the Tevatron (CDF \& D0 coll.s)

- 2001, CP violation in $B_{d} \rightarrow J / \psi K_{S}$ decays by BaBar \& Belle 1st observation outside the K system; 'mixed-induced' CPv
- 2004, direct CP violation detected in $B_{d} \rightarrow \pi^{\mp} K^{ \pm}$decays

B Physics and the lattice

the two smallest CKM-matrix elements $V_{u b}, V_{t d}$ (mixing between 1st \& 3rd generation) are the source of CP violation
b-quark decay inside the B meson always accompanied by a quark-gluon cloud
\rightsquigarrow extraction of fund. parameters from experimental data difficult
\rightsquigarrow lattice QCD is essential to calculate important B matrix elements

B Physics and the lattice

the two smallest CKM-matrix elements $V_{u b}, V_{t d}$ (mixing between 1st \& 3rd generation) are the source of CP violation
b-quark decay inside the B meson always accompanied by a quark-gluon cloud
\rightsquigarrow extraction of fund. parameters from experimental data difficult
\rightsquigarrow lattice QCD is essential to calculate important B matrix elements
Example: $B^{0}-\bar{B}^{0}$ Mixing (2 neutral B mesons) with definitions of the

- mass difference (oscillation frequency) $(q=s, d)$

$$
\Delta M_{B_{q}}=\frac{G_{F}^{2} m_{W}^{2}}{6 \pi^{2}} \eta_{B} S_{0}\left(\frac{m_{t}}{m_{W}}\right) M_{B_{q}} t_{B_{q}}^{2} \widehat{B}_{B_{q}}\left|V_{t q} V_{t b}\right|^{2}
$$

$f_{B_{q}}^{2} \widehat{B}_{B_{q}}:$ non-perturbative quantity to be computed on the lattice

B Physics and the lattice

the two smallest CKM-matrix elements $V_{u b}, V_{t d}$ (mixing between 1st \& 3rd generation) are the source of CP violation
b-quark decay inside the B meson always accompanied by a quark-gluon cloud
\rightsquigarrow extraction of fund. parameters from experimental data difficult
\rightsquigarrow lattice QCD is essential to calculate important B matrix elements
Example: $B^{0}-\bar{B}^{0}$ Mixing (2 neutral B mesons) with definitions of the

- mass difference (oscillation frequency) $(q=s, d)$

$$
\Delta M_{B_{q}}=\frac{G_{F}^{2} m_{W}^{2}}{6 \pi^{2}} \eta_{B} S_{0}\left(\frac{m_{t}}{m_{W}}\right) M_{B_{q}} t_{B_{q}}^{2} \widehat{B}_{B_{q}}\left|V_{t q} V_{t b}\right|^{2}
$$

$f_{B_{q}}^{2} \widehat{B}_{B_{q}}$: non-perturbative quantity to be computed on the lattice

- leptonic decay constant

$$
\mathrm{if}_{B_{q}} p_{\mu}=\langle 0| A_{\mu}\left|B_{q}(p)\right\rangle
$$

with a heavy-light axial-vector current $A_{\mu}=\bar{q} \gamma_{5} \gamma_{\mu} b$

B Physics and the lattice

- scale dependent B parameter $B_{B_{q}}$

$$
\left\langle\bar{B}_{q}^{0}\right| O^{\Delta B=2}(\mu)\left|B_{q}^{0}\right\rangle=\frac{8}{3} B_{B_{q}}(\mu) f_{B_{q}}^{2} M_{B_{q}}^{2}
$$

with the $\Delta B=2$ operator $O^{\Delta B=2}=\bar{q} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{q} \gamma_{\mu}\left(1-\gamma_{5}\right) b$
B_{d} and B_{s} mesons differ in the valence light quark mass

B Physics and the lattice

- scale dependent B parameter $B_{B_{q}}$

$$
\left\langle\bar{B}_{q}^{0}\right| O^{\Delta B=2}(\mu)\left|B_{q}^{0}\right\rangle=\frac{8}{3} B_{B_{q}}(\mu) f_{B_{q}}^{2} M_{B_{q}}^{2}
$$

with the $\Delta B=2$ operator $O^{\Delta B=2}=\bar{q} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{q} \gamma_{\mu}\left(1-\gamma_{5}\right) b$
B_{d} and B_{s} mesons differ in the valence light quark mass
\rightsquigarrow (as far as QCD is concerned) one can expect that the theoretical uncertainty largely cancels in the ratio

$$
\begin{array}{r}
\frac{\Delta M_{B_{s}}}{\Delta M_{B_{s}}}=\frac{\left[G_{F}^{2} m_{W}^{2} / 6 \pi^{2}\right] \eta_{B} M_{B_{s}} f_{B_{s}}^{2} \hat{B}_{B_{s}} S_{0}\left(\frac{m_{t}}{m_{W}}\right)\left|V_{t s} V_{t b}\right|^{2}}{\left[G_{F}^{2} m_{W}^{2} / 6 \pi^{2}\right] \eta_{B} M_{B_{d}} f_{B_{d}}^{2} \hat{B}_{B_{d}} S_{0}\left(\frac{m_{t}}{m_{w}}\right)\left|V_{t d} V_{t b}\right|^{2}} \\
\frac{\Delta M_{B_{s}}}{\Delta M_{B_{d}}}=\frac{\left|V_{t s}\right|^{2}}{\left|V_{t d}\right|^{2}} \xi^{2}, \quad \xi \equiv \frac{f_{B_{s}} \sqrt{M_{B_{s}}}}{f_{B_{d}} \sqrt{M_{B_{d}}}} \\
\text { and [Duncan et al, Phys.Rev. D51 (1995); "Properties of B mesons in lattice QCD"] }
\end{array}
$$

Lattice QCD

Facts to remember

- discretisation of space and time by introduction of a minimal length scale $a \rightsquigarrow$ (ultra violet) lattice cutoff $a^{-1} \sim \Lambda_{\text {UV }}$
- finite volume $L^{3} \times L$ to fit lattice into computers memory
- Lattice action $S[U, \bar{\psi}, \psi]=S_{G}[U]+S_{F}[U, \bar{\psi}, \psi]$ with

$$
\begin{aligned}
\text { gauge part: } & S_{G}=\frac{1}{g_{0}^{2}} \sum_{p} \operatorname{Tr}\{\mathbb{1}-U(p)\} \\
\text { fermionic part: } & S_{F}=a^{4} \sum_{x} \bar{\psi}(x) D[U] \psi(x)
\end{aligned}
$$

Lattice QCD

Facts to remember

- discretisation of space and time by introduction of a minimal length scale $a \rightsquigarrow$ (ultra violet) lattice cutoff $a^{-1} \sim \Lambda_{\mathrm{UV}}$
- finite volume $L^{3} \times L$ to fit lattice into computers memory
- Lattice action $S[U, \bar{\psi}, \psi]=S_{G}[U]+S_{F}[U, \bar{\psi}, \psi]$ with

$$
\begin{aligned}
\text { gauge part: } & S_{G}=\frac{1}{g_{0}^{2}} \sum_{p} \operatorname{Tr}\{\mathbb{1}-U(p)\} \\
\text { fermionic part: } & S_{F}=a^{4} \sum_{x} \bar{\psi}(x) D[U] \psi(x)
\end{aligned}
$$

Functional integral representation of expectation values:

$$
\begin{aligned}
\mathcal{Z} & =\int \mathcal{D}[U] \mathcal{D}[\bar{\psi}, \psi] \mathrm{e}^{-S[U, \bar{\psi}, \psi]}=\int \mathcal{D}[U] \prod_{\mathrm{f}} \operatorname{det}\left(D+m_{\mathrm{f}}\right) \mathrm{e}^{-S_{G}[U]} \\
\langle O\rangle & =\frac{1}{\mathcal{Z}} \int \prod_{x, \mu} \mathrm{~d} U_{\mu}(x) \prod_{\mathrm{f}} \operatorname{det}\left(D+m_{\mathrm{f}}\right) \mathrm{e}^{-S_{G}[U]}
\end{aligned}
$$

Lattice QCD

Facts to remember

- discretisation of space and time by introduction of a minimal length scale $a \rightsquigarrow$ (ultra violet) lattice cutoff $a^{-1} \sim \Lambda_{\text {UV }}$
- finite volume $L^{3} \times L$ to fit lattice into computers memory
- Lattice action $S[U, \bar{\psi}, \psi]=S_{G}[U]+S_{F}[U, \bar{\psi}, \psi]$ with

$$
\begin{aligned}
\text { gauge part: } & S_{G}=\frac{1}{g_{0}^{2}} \sum_{p} \operatorname{Tr}\{\mathbb{1}-U(p)\} \\
\text { fermionic part: } & S_{F}=a^{4} \sum_{x} \bar{\psi}(x) D[U] \psi(x)
\end{aligned}
$$

Functional integral representation of expectation values:

$$
\begin{aligned}
\mathcal{Z} & =\int \mathcal{D}[U] \mathcal{D}[\bar{\psi}, \psi] \mathrm{e}^{-\mathcal{S}[U, \bar{\psi}, \psi]}=\int \mathcal{D}[U] \prod_{\mathrm{f}} \operatorname{det}\left(\mathbb{D}+m_{\mathrm{f}}\right) \mathrm{e}^{-S_{G}[U]} \\
\langle O\rangle & =\frac{1}{\mathcal{Z}} \int \prod_{x, \mu} \mathrm{~d} U_{\mu}(x) \prod_{\mathrm{f}} \operatorname{det}\left(\mathbb{D}+m_{\mathrm{f}}\right) \mathrm{e}^{-S_{G}[U]} \quad \text { expensive }
\end{aligned}
$$

These days: from quenched case $\operatorname{det}(\cdots) \equiv 1$ to $N_{f}=2,3,4$

HQET - An asymtotic expansion of QCD

problems \& physical picture
Problem: light quarks too light \& b-quark to heavy

$$
\lambda_{\pi} \sim 1 / m_{\pi} \approx L \quad \lambda_{B} \sim 1 / m_{b} \approx a
$$

\rightsquigarrow propagating b on the lattice beyond today's computing resources
\rightsquigarrow need for an effective theory of heavy quarks:
Heavy Quark Effective Theory [Eichten, 1988; Eichten \& Hill, 1990]

HQET - An asymtotic expansion of QCD

problems \& physical picture
Problem: light quarks too light \& b-quark to heavy

$$
\lambda_{\pi} \sim 1 / m_{\pi} \approx L \quad \lambda_{B} \sim 1 / m_{b} \approx a
$$

\leadsto propagating b on the lattice beyond today's computing resources
\rightsquigarrow need for an effective theory of heavy quarks:
Heavy Quark Effective Theory [Eichten, 1988; Eichten \& Hill, 1990]
Physics: Momentum scales in heavy-light ($Q \bar{q}$) mesons

- Q almost at rest at bound state's center, surrounded by the light DOFs
- Motion of the heavy quark is suppressed by $\Lambda_{\mathrm{QCD}} / m_{Q}$

HQET - An asymtotic expansion of QCD

 problems \& physical pictureProblem: light quarks too light \& b-quark to heavy

$$
\lambda_{\pi} \sim 1 / m_{\pi} \approx L \quad \lambda_{B} \sim 1 / m_{b} \approx a
$$

\rightsquigarrow propagating b on the lattice beyond today's computing resources \rightsquigarrow need for an effective theory of heavy quarks:
Heavy Quark Effective Theory [Eichten, 1988; Eichten \& Hill, 1990]
Physics: Momentum scales in heavy-light ($Q \bar{q}$) mesons

- Q almost at rest at bound state's center, surrounded by the light DOFs

Formal: $\mathcal{L}_{\text {HQET }}=1 / m_{b}$-expansion of continuum QCD

$$
\begin{aligned}
- & \bar{\psi}_{\mathrm{b}}\left[\gamma_{\mu} D_{\mu}+m_{\mathrm{b}}\right] \psi_{\mathrm{b}} \rightarrow \mathcal{L}_{\text {stat }}+\mathcal{L}^{(1)}+\ldots \quad \mathcal{L}^{(1)} \sim O\left(1 / m_{b}\right) \\
- & \mathcal{L}_{\text {stat }}(x)=\bar{\psi}_{\mathrm{h}}(x)\left[\gamma_{0} D_{0}+m_{\mathrm{h}}\right] \psi_{\mathrm{h}}(x) \\
& P_{+} \psi_{\mathrm{h}}=\psi_{\mathrm{h}} \quad \bar{\psi}_{\mathrm{h}} P_{+}=\bar{\psi}_{\mathrm{h}} \quad \text { with } \quad P_{+}=\left(\mathbb{1}+\gamma_{0}\right) / 2 \quad \rightsquigarrow \quad 2 \text { d.o.f. }
\end{aligned}
$$

- Accurate expansion for $m_{\mathrm{h}} \gg \Lambda_{\mathrm{QCD}}$

the axial vector-current $A_{\mu}(x)=\bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)$

. . . between heavy and light quark
composite fields involving b-quarks, e.g. the time component of A_{μ}, also translate to the effective theory:

$$
\boldsymbol{A}_{0}(x)=\bar{\psi}_{1}(x) \gamma_{0} \gamma_{5} \psi_{b}(x) \xrightarrow{b \rightarrow h} \quad \boldsymbol{A}_{0}^{\text {stat }}(x)=\bar{\psi}_{1}(x) \gamma_{0} \gamma_{5} \psi_{\mathrm{h}}(x)
$$

What about renormalization?

the axial vector-current $A_{\mu}(x)=\bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)$

. . . between heavy and light quark
composite fields involving b-quarks, e.g. the time component of A_{μ}, also translate to the effective theory:

$$
\boldsymbol{A}_{0}(x)=\bar{\psi}_{1}(x) \gamma_{0} \gamma_{5} \psi_{b}(x) \quad \xrightarrow{b \rightarrow h} \quad \boldsymbol{A}_{0}^{\text {stat }}(x)=\bar{\psi}_{1}(x) \gamma_{0} \gamma_{5} \psi_{h}(x)
$$

What about renormalization?

- relativistic current in the continuum no need for renormalization $\left(Z_{A} \equiv 1\right)$ because of a corresponding axial Ward identity,

the axial vector-current $A_{\mu}(x)=\bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)$

. . . between heavy and light quark
composite fields involving b-quarks, e.g. the time component of A_{μ}, also translate to the effective theory:

$$
\boldsymbol{A}_{0}(x)=\bar{\psi}_{1}(x) \gamma_{0} \gamma_{5} \psi_{b}(x) \xrightarrow{b \rightarrow h} \quad A_{0}^{\text {stat }}(x)=\bar{\psi}_{1}(x) \gamma_{0} \gamma_{5} \psi_{\mathrm{h}}(x)
$$

What about renormalization?

- relativistic current in the continuum no need for renormalization $\left(Z_{A} \equiv 1\right)$ because of a corresponding axial Ward identity,
- on the lattice
it picks up a finite renormalization factor $Z_{A}=Z_{A}\left(g_{0}\right)=$ const

the axial vector-current $A_{\mu}(x)=\bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)$

... between heavy and light quark
composite fields involving b-quarks, e.g. the time component of A_{μ}, also translate to the effective theory:

$$
\boldsymbol{A}_{0}(x)=\bar{\psi}_{1}(x) \gamma_{0} \gamma_{5} \psi_{b}(x) \xrightarrow{b \rightarrow h} \quad A_{0}^{\text {stat }}(x)=\bar{\psi}_{1}(x) \gamma_{0} \gamma_{5} \psi_{\mathrm{h}}(x)
$$

What about renormalization?

- relativistic current in the continuum no need for renormalization $\left(Z_{A} \equiv 1\right)$ because of a corresponding axial Ward identity,
- on the lattice
it picks up a finite renormalization factor $Z_{A}=Z_{A}\left(g_{0}\right)=$ const
- in $\operatorname{HQET}\left(A_{\mu} \rightarrow A_{\mu}^{\text {stat }}\right)$
there is no Ward identity \rightsquigarrow static-light axial current becomes explicit renormalization scale μ dependent

$$
\left(A_{0}^{\text {stat }}\right)_{R}(\mu)=Z_{\mathrm{A}}^{\text {stat }}(\mu) \bar{\psi}_{1} \gamma_{0} \gamma_{5} \bar{\psi}_{\mathrm{h}}
$$

Generic structure of the HQET-expansion ...

\ldots of QCD matrix elements

$$
\Phi^{\mathrm{QCD}} \equiv f_{B} \sqrt{m_{B}}=Z_{A}\langle B| A_{0}|\mathbf{0}\rangle=Z_{A} \Phi
$$

\rightsquigarrow in HQET

$$
\Phi^{\text {stat }}(\mu)=Z_{A}(\mu)\langle B| A_{0}^{\text {stat }}|0\rangle
$$

focus on the μ \& scheme independent renormalization group invariant (RGI) matrix element

$$
\Phi_{\text {RGI }}^{\text {stat }}=\lim _{\mu \rightarrow \infty}\left[2 b_{0} \bar{g}^{2}(\mu)\right]^{-\gamma_{0} / 2 b_{0}} \times \Phi^{\text {stat }}(\mu)
$$

with anomalous dim. $\gamma(\bar{g})=\left(\mu / Z_{\mathrm{A}}^{\text {stat }}\right)\left(\partial Z_{\mathrm{A}}^{\text {stat }} / \partial \mu\right)=-\gamma_{0} \bar{g}^{2}+O\left(\bar{g}^{4}\right)$

$$
\beta(\bar{g})=\mu(\partial \bar{g} / \partial \mu)=-b_{0} \bar{g}^{3}+O\left(\bar{g}^{5}\right)
$$

Generic structure of the HQET-expansion...

\ldots of QCD matrix elements

$$
\Phi^{\mathrm{QCD}} \equiv f_{B} \sqrt{m_{B}}=Z_{A}\langle B| A_{0}|0\rangle=Z_{A} \Phi
$$

\rightsquigarrow in HQET

$$
\Phi^{\text {stat }}(\mu)=Z_{A}(\mu)\langle B| A_{0}^{\text {stat }}|0\rangle
$$

focus on the μ \& scheme independent renormalization group invariant (RGI) matrix element

$$
\Phi_{\mathrm{RGI}}^{\text {stat }}=\lim _{\mu \rightarrow \infty}\left[2 b_{0} \bar{g}^{2}(\mu)\right]^{-\gamma_{0} / 2 b_{0}} \times \Phi^{\text {stat }}(\mu)
$$

with anomalous dim. $\gamma(\bar{g})=\left(\mu / Z_{A}^{\text {stat }}\right)\left(\partial Z_{A}^{\text {stat }} / \partial \mu\right)=-\gamma_{0} \bar{g}^{2}+O\left(\bar{g}^{4}\right) \&$

$$
\begin{aligned}
\Phi^{\mathrm{QCD}} & =C_{\mathrm{PS}}\left(M_{b} / \Lambda_{\overline{\mathrm{MS}}}\right) \times \Phi_{\mathrm{RGI}}^{\text {stat }}+O\left(1 / M_{b}\right) \\
M_{b} & =\lim _{\mu \rightarrow \infty}\left[2 b_{0} \bar{g}^{2}(\mu)\right]^{-d_{0} / 2 b_{0}} \times \bar{m}_{b}(\mu) \\
\Lambda_{\overline{\mathrm{MS}}} & =\lim _{\mu \rightarrow \infty} \mu\left[b_{0} \bar{g}_{\overline{\mathrm{MS}}}^{2}(\mu)\right]^{-b_{1} / 2 b_{0}^{2}} \times \mathrm{e}^{-1 / 2 b_{0} \bar{g}_{\overline{\mathrm{MS}}}^{2}(\mu)}
\end{aligned}
$$

with $\tau(\bar{g})=(\mu / \bar{m})(\partial \bar{m} / \partial \mu)=-d_{0} \bar{g}^{2}+O\left(\bar{g}^{4}\right)$ and

$$
\beta(\bar{g})=\mu(\partial \bar{g} / \partial \mu)=-b_{0} \bar{g}^{3}+O\left(\bar{g}^{5}\right)
$$

What is the meaning of $C_{\mathrm{PS}}\left(M_{b} / \Lambda_{\overline{\mathrm{MS}}}\right)$

conversion to the matching scheme

Evaluation of the conversion factor for the axial current:

$$
\begin{aligned}
\Phi^{\mathrm{QCD}} & =C_{\mathrm{PS}}\left(M_{b} / \Lambda_{\overline{\mathrm{MS}}}\right) \times \Phi_{\mathrm{RGI}}^{\text {stat }}+O\left(1 / M_{b}\right) \\
& \stackrel{!}{=} C_{\mathrm{match}}\left(m_{b} / \mu\right) \times \Phi_{\overline{\mathrm{MS}}}+O\left(1 / m_{b}\right)
\end{aligned}
$$

What is the meaning of $C_{\mathrm{PS}}\left(M_{b} / \Lambda_{\overline{\mathrm{MS}}}\right)$

conversion to the matching scheme

Evaluation of the conversion factor for the axial current:

$$
\begin{aligned}
\Phi^{\mathrm{QCD}} & =C_{\mathrm{PS}}\left(M_{b} / \Lambda_{\overline{\mathrm{MS}}}\right) \times \Phi_{\mathrm{RGI}}^{\text {stat }}+O\left(1 / M_{b}\right) \\
& \stackrel{!}{=} C_{\text {match }}\left(m_{b} / \mu\right) \times \Phi_{\overline{\mathrm{MS}}}+O\left(1 / m_{b}\right) \\
\Rightarrow C_{\mathrm{PS}}\left(M_{b} / \Lambda_{\overline{\mathrm{MS}}}\right) & =C_{\mathrm{match}}(1) \times \frac{\Phi_{\overline{\mathrm{MS}}}(\mu)}{\Phi_{\mathrm{RGI}}} \quad \bar{g}=\bar{g}_{\mathrm{MS}}, \Lambda=\Lambda_{\overline{\mathrm{MS}}} \\
& =\left[2 b_{0} \bar{g}^{2}\left(m_{b}\right)\right]^{\gamma_{0} / 2 b_{0}} \exp \left\{-\int_{0}^{\bar{g}\left(m_{b}\right)} \mathrm{dg}\left[\frac{\gamma^{\text {match }}(g)}{\beta(g)}-\frac{\gamma_{0}}{b_{0} g}\right]\right\}
\end{aligned}
$$

What is the meaning of $C_{\mathrm{PS}}\left(M_{b} / \Lambda_{\overline{\mathrm{MS}}}\right)$

conversion to the matching scheme

Evaluation of the conversion factor for the axial current:

$$
\begin{aligned}
\Phi^{\mathrm{QCD}} & =C_{\mathrm{PS}}\left(M_{b} / \Lambda_{\overline{\mathrm{MS}}}\right) \times \Phi_{\mathrm{RGI}}^{\text {stat }}+O\left(1 / M_{b}\right) \\
& \stackrel{!}{=} C_{\mathrm{match}}\left(m_{b} / \mu\right) \times \Phi_{\overline{\mathrm{MS}}}+O\left(1 / m_{b}\right) \\
\Rightarrow C_{\mathrm{PS}}\left(M_{b} / \Lambda_{\overline{\mathrm{MS}}}\right) & =C_{\mathrm{match}}(1) \times \frac{\Phi_{\overline{\mathrm{MS}}}(\mu)}{\Phi_{\mathrm{RGI}}} \quad \bar{g}=\bar{g}_{\mathrm{MS}}, \Lambda=\Lambda_{\overline{\mathrm{MS}}} \\
& =\left[2 b_{0} \bar{g}^{2}\left(m_{b}\right)\right]^{\gamma_{0} / 2 b_{0}} \exp \left\{-\int_{0}^{\bar{g}\left(m_{b}\right)} \mathrm{dg}\left[\frac{\gamma^{\text {match }}(g)}{\beta(g)}-\frac{\gamma_{0}}{b_{0} g}\right]\right\}
\end{aligned}
$$

perturbatively under control
[Chetyrkin \& Grozin, 2003]

- anom. dim. in the matching scheme:

$$
\gamma^{\text {match }}(g)=\gamma^{\overline{\mathrm{MS}}}(g)+\rho(\bar{g})
$$

$\rho(\bar{g})$: contribution from $C_{\text {match }}$

- Advantage of RGI-ration M / Λ : can be fixed in lattice calculations without perturbative errors

Realisation

overall computational strategy

- introduce an intermediate finite-volume renormal. scheme

$$
\mathcal{O}_{\text {inter }}(\mu)=Z\left(g_{0}, a \mu\right) \cdot \mathcal{O}_{\text {bare }}\left(g_{0}\right)
$$

Realisation

overall computational strategy

- introduce an intermediate finite-volume renormal. scheme

$$
\mathcal{O}_{\text {inter }}(\mu)=Z\left(g_{0}, a \mu\right) \cdot \mathcal{O}_{\text {bare }}\left(g_{0}\right)
$$

- evolve from low to high energies by recursive finite size scaling

Realisation

overall computational strategy

- introduce an intermediate finite-volume renormal. scheme

$$
\mathcal{O}_{\text {inter }}(\mu)=Z\left(g_{0}, a \mu\right) \cdot \mathcal{O}_{\text {bare }}\left(g_{0}\right)
$$

- evolve from low to high energies by recursive finite size scaling
- connect this at one perturbative scale $\mu_{\text {pert }}$ with the RGI one at $\mu=\infty$

Realisation

overall computational strategy

- introduce an intermediate finite-volume renormal. scheme

$$
\mathcal{O}_{\text {inter }}(\mu)=Z\left(g_{0}, a \mu\right) \cdot \mathcal{O}_{\text {bare }}\left(g_{0}\right)
$$

- evolve from low to high energies by recursive finite size scaling
- connect this at one perturbative scale $\mu_{\text {pert }}$ with the RGI one at $\mu=\infty$
- Matching: convert into another scheme like $\overline{\mathrm{MS}}$

Renormalization Group Invariant (RGI)

- at high energies (pert. scale $\mu_{\text {pert }}$) use the perturbative evolution

$$
\begin{aligned}
& \Phi_{\mathrm{RGI}}=\Phi_{\text {inter }}\left(\mu_{\text {pert }}\right)\left[2 b_{0} \bar{g}^{2}\left(\mu_{\text {pert }}\right)\right]^{-\gamma_{0} / 2 b_{0}} \\
& \times \exp \left\{-\int_{0}^{\bar{g}\left(\mu_{\text {pert }}\right)} \mathrm{d} g\left[\frac{\gamma(g)}{\beta(g)}-\frac{\gamma_{0}}{b_{0} g}\right]\right\}
\end{aligned}
$$

to connect $\Phi_{\text {inter }}$ at this scale with Φ_{RGI}

Renormalization Group Invariant (RGI)

- at high energies (pert. scale $\mu_{\text {pert }}$) use the perturbative evolution

$$
\begin{aligned}
& \Phi_{\mathrm{RGI}}=\Phi_{\text {inter }}\left(\mu_{\text {pert }}\right)\left[2 b_{0} \bar{g}^{2}\left(\mu_{\text {pert }}\right)\right]^{-\gamma_{0} / 2 b_{0}} \\
& \times \exp \left\{-\int_{0}^{\bar{g}\left(\mu_{\text {pert }}\right)} \mathrm{d} g\left[\frac{\gamma(g)}{\beta(g)}-\frac{\gamma_{0}}{b_{0} g}\right]\right\}
\end{aligned}
$$

to connect $\Phi_{\text {inter }}$ at this scale with Φ_{RGI}

- the total renormalization is build out of

$$
\Phi_{\text {match }}(\mu)=\frac{\Phi_{\text {match }}(\mu)}{\Phi_{\mathrm{RGI}}} \times \frac{\Phi_{\mathrm{RGI}}}{\Phi_{\mathrm{inter}}\left(\mu_{\mathrm{min}}\right)} \times Z_{\mathrm{inter}}\left(g_{0}, \text { a } \mu_{\min }\right) \times \Phi_{\mathrm{bare}}\left(g_{0}\right)
$$

with

$$
\frac{\Phi_{\mathrm{RGI}}}{\Phi_{\text {inter }}\left(\mu_{\mathrm{min}}\right)}=\frac{\Phi_{\mathrm{RGI}}}{\Phi_{\text {inter }}\left(\mu_{\text {pert }}\right)} \times \underbrace{\frac{\Phi_{\text {inter }}\left(\mu_{\mathrm{pert}}\right)}{\Phi_{\text {inter }}\left(\mu_{\mathrm{min}}\right)}}_{\begin{array}{c}
\text { factor of } \\
\text { step scaling }
\end{array}}
$$

recursive finite size scaling

climbing up the scales

1. choose a lattice with $L /$ a points

recursive finite size scaling

climbing up the scales

1. choose a lattice with $L /$ a points
2. match the value of the bare coupling g_{0} to that of an effective coupling $\bar{g}^{2}(L)=u$

recursive finite size scaling

 climbing up the scales1. choose a lattice with $L /$ a points
2. match the value of the bare coupling g_{0} to that of an effective coupling $\bar{g}^{2}(L)=u$
3. simulate at the same value of g_{0} with double resolution and calculate $u^{\prime}=\bar{g}^{2}(2 L)$
$\leadsto \Sigma(u, a / L)$

recursive finite size scaling

 climbing up the scales1. choose a lattice with $L /$ a points
2. match the value of the bare coupling g_{0} to that of an effective coupling $\bar{g}^{2}(L)=u$
3. simulate at the same value of g_{0} with double resolution and calculate $u^{\prime}=\bar{g}^{2}(2 L)$
$\leadsto \Sigma(u, a / L)$
4. iterate 1 to 3 with several L / a and compute the continuum limit

The Schrödinger functional

Definition

- defined on a $T \times L^{3}$ cylinder in Euclidian space with
- periodic b.c. in space
- Dirichlet b.c. in time
- partition function:

$$
\mathcal{Z} \equiv \int_{T \times L^{3}} \mathcal{D}[U, \bar{\psi}, \psi] \mathrm{e}^{-S[U, \bar{\psi}, \psi]}
$$

- for convenience we set $T=L$

The Schrödinger functional

Definition

- defined on a $T \times L^{3}$ cylinder in Euclidian space with
- periodic b.c. in space
- Dirichlet b.c. in time
- partition function:

$$
\mathcal{Z} \equiv \int_{T \times L^{3}} \mathcal{D}[U, \bar{\psi}, \psi] \mathrm{e}^{-S[U, \bar{\psi}, \psi]}
$$

- for convenience we set $T=L$
- identify renormalization scale with inverse box length:

$$
\mu=1 / L
$$

The Schrödinger functional

Definition

- defined on a $T \times L^{3}$ cylinder in Euclidian space with
- periodic b.c. in space
- Dirichlet b.c. in time
- partition function:

$$
\mathcal{Z} \equiv \int_{T \times L^{3}} \mathcal{D}[U, \bar{\psi}, \psi] \mathrm{e}^{-S[U, \bar{\psi}, \psi]}
$$

- for convenience we set $T=L$
- identify renormalization scale with inverse box length:

$$
\mu=1 / L
$$

Properties: explicit gauge invariance \& mass independent \rightsquigarrow simple RGEs $\mu\left(\mathrm{d} \Phi_{\text {inter }}(\mu) / \mathrm{d} \mu\right)=\gamma(g) \cdot \Phi_{\text {inter }}(\mu)$

Lattice HQET setup

- starting point: discretization á la Eichten-Hill [1990]

$$
\begin{aligned}
S_{\mathrm{h}}^{\mathrm{EH}} & =a^{4} \sum_{x} \bar{\psi}_{\mathrm{h}}(x) \nabla_{0}^{*} \psi_{\mathrm{h}}(x) \\
\nabla_{0} \psi_{\mathrm{h}}(x) & =\frac{1}{a}\left[\psi_{\mathrm{h}}(x)-U^{\dagger}(x-a \hat{0}, 0) \psi_{\mathrm{h}}(x-a \hat{0})\right]
\end{aligned}
$$

with the usual gauge links U

- light quark in usual relativistic formulation

Problems in the past ...
(a) rapid grow of statistical errors

$$
\frac{\text { noise }}{\text { signal }} \propto \exp \left\{x_{0}\left(E_{\text {stat }}-m_{\pi}\right)\right\}
$$

(b) new parameters in each order in the effective theory due to operator mixing \rightsquigarrow continuum limit does not exist

Lattice HQET setup

- starting point: discretization á la Eichten-Hill [1990]

$$
\begin{aligned}
S_{\mathrm{h}}^{\mathrm{EH}} & =a^{4} \sum_{x} \bar{\psi}_{\mathrm{h}}(x) \nabla_{0}^{*} \psi_{\mathrm{h}}(x) \\
\nabla_{0} \psi_{\mathrm{h}}(x) & =\frac{1}{a}\left[\psi_{\mathrm{h}}(x)-U^{\dagger}(x-a \hat{0}, 0) \psi_{\mathrm{h}}(x-a \hat{0})\right]
\end{aligned}
$$

with the usual gauge links U

- light quark in usual relativistic formulation
... now solved
(a) alternative discretizations of HQET called SOX, HYP1, HYP2 uses generalized gauge links $V \rightarrow W$ with equal symmetries [Della Morte et al, 2003/2005] \rightsquigarrow better statistical precision
(b) Non-perturbative renormalization of HQET through a nonperturbative matching to QCD in finite volume. [J.H. \& Sommer, 2004]

Correlation functions in the SF

The QCD transfer matrix formalism in the SF
the euclidean transfer matrix, defined by

$$
\mathbb{T}=\exp \{-a \mathbb{H}\}, \quad \text { with QCD Hamiltonian } \mathbb{H}
$$

allows to extract informations about the energy spectrum from correlation functions

Correlation functions in the SF

The QCD transfer matrix formalism in the SF
the euclidean transfer matrix, defined by

$$
\mathbb{T}=\exp \{-a \mathbb{H}\}, \quad \text { with QCD Hamiltonian } \mathbb{H}
$$

allows to extract informations about the energy spectrum from correlation functions
for Wilson fermions \mathbb{T} can be constructed with all important properties (universality applies for $O(a)$ clover impr.) [Lüscher, 1977]

- self-adjoint and bounded
- gauge invariant
- strictly positive (i.e. all eigenvalues larger than zero)

Correlation functions in the SF

The QCD transfer matrix formalism in the SF

the euclidean transfer matrix, defined by

$$
\mathbb{T}=\exp \{-a \mathbb{H}\}, \quad \text { with QCD Hamiltonian } \mathbb{H}
$$

allows to extract informations about the energy spectrum from correlation functions
for Wilson fermions \mathbb{T} can be constructed with all important properties (universality applies for $O(a)$ clover impr.) [Lüscher, 1977]

- self-adjoint and bounded
- gauge invariant
- strictly positive (i.e. all eigenvalues larger than zero)
the action of \mathbb{T} on a energy state is given by

$$
\mathbb{T}\left|E_{n}^{(q)}\right\rangle=\exp \left\{E_{n}^{(q)}\right\}\left|E_{n}^{(q)}\right\rangle
$$

with energy level $n \geq 0$ of states with q.n. $(q)=(J, P, C, \cdots)$
we denote the vacuum state as usual by $|0\rangle$

Correlation functions in the SF

The QCD transfer matrix formalism in the SF
in the SF we can define vacuum states at the boundaries by

$$
\begin{array}{lll}
|i, 0\rangle & \text { for } & x_{0}=0 \\
|f, 0\rangle & \text { for } & x_{0}=T
\end{array}
$$

$\rightsquigarrow|f, 0\rangle=|i, 0\rangle$ carries the quantum numbers of the vacuum
now we can apply some operator \widehat{O} which creates a meson state

$$
\begin{array}{lll}
|i, M\rangle=\widehat{O}|i, 0\rangle & \text { at } & x_{0}=0 \\
|f, M\rangle=\widehat{O}^{\prime}|f, 0\rangle & \text { at } & x_{0}=T
\end{array}
$$

SF states are usual no eigenstates of \mathbb{T}

Correlation functions in the SF

The QCD transfer matrix formalism in the SF

in the SF we can define vacuum states at the boundaries by

$$
\begin{array}{lll}
|i, 0\rangle & \text { for } & x_{0}=0 \\
|f, 0\rangle & \text { for } & x_{0}=T
\end{array}
$$

$\rightsquigarrow|f, 0\rangle=|i, 0\rangle$ carries the quantum numbers of the vacuum
now we can apply some operator \widehat{O} which creates a meson state

$$
\begin{array}{lll}
|i, M\rangle=\widehat{O}|i, 0\rangle & \text { at } & x_{0}=0 \\
|f, M\rangle=\widehat{O}^{\prime}|f, 0\rangle & \text { at } & x_{0}=T
\end{array}
$$

SF states are usual no eigenstates of \mathbb{T} they are a mixture of all states with the same quantum numbers q

$$
\begin{aligned}
|i, 0\rangle & =c_{0}\left|E_{0}^{(0)}\right\rangle+c_{1}\left|E_{1}^{(0)}\right\rangle+\ldots \\
|i, M\rangle & =d_{0}\left|E_{0}^{(M)}\right\rangle+d_{1}\left|E_{1}^{(M)}\right\rangle+\ldots
\end{aligned}
$$

Correlation functions in the SF

 important correlation functionsthe partition function \mathcal{Z} can be written as a power of \mathbb{T}

$$
\mathcal{Z}=\langle i, 0| \mathbb{T}^{T / a} \mathbb{P}|i, 0\rangle
$$

with \mathbb{P} projecting onto the gauge-invariant sector

Correlation functions in the SF

 important correlation functionsthe partition function \mathcal{Z} can be written as a power of T

$$
\mathcal{Z}=\langle i, 0| \mathbb{T}^{T / a} \mathbb{P}|i, 0\rangle
$$

with \mathbb{P} projecting onto the gauge-invariant sector for correlation functions one obtains

$$
\begin{aligned}
f_{X}\left(x_{0}\right) & =\frac{1}{\mathcal{Z}} \frac{L^{3}}{2}\langle i, 0| \mathrm{e}^{-\left(T-x_{0}\right) H} \mathbb{P} \mathbb{X} \mathrm{e}^{-x_{0} H} \mathbb{P}|i, M\rangle \\
f_{1} & =\frac{1}{\mathcal{Z}} \frac{1}{2}\langle i, M| \mathbb{T}^{T / a} \mathbb{P}|i, M\rangle
\end{aligned}
$$

with $f_{X}=f_{A}, f_{P}$ and correponding operator $\mathbb{X}=A_{0}, P$

Correlation functions in the SF

 important correlation functionsthe partition function \mathcal{Z} can be written as a power of \mathbb{T}

$$
\mathcal{Z}=\langle i, 0| \mathbb{T}^{T / a} \mathbb{P}|i, 0\rangle
$$

with \mathbb{P} projecting onto the gauge-invariant sector for correlation functions one obtains

$$
\begin{aligned}
f_{X}\left(x_{0}\right) & =\frac{1}{\mathcal{Z}} \frac{L^{3}}{2}\langle i, 0| \mathrm{e}^{-\left(T-x_{0}\right) \mathrm{H}} \mathbb{P} \mathrm{Xe}^{-x_{0} \mathrm{H}} \mathbb{P}|i, M\rangle \\
f_{1} & =\frac{1}{\mathcal{Z}} \frac{1}{2}\langle i, M| \mathbb{T}^{T / a} \mathbb{P}|i, M\rangle
\end{aligned}
$$

with $f_{X}=f_{A}, f_{P}$ and correponding operator $\mathbb{X}=A_{0}, P$
spectral decomposition of correlator f_{A} :
$f_{A}\left(x_{0}\right)=\frac{L^{3}}{2} \frac{\sum_{n, m} \exp \left[-\left(T-x_{0}\right) E_{n}^{(0)}\right] \exp \left[-x_{0} E_{m}^{(M)}\right] c_{n} d_{m}\left\langle E_{n}^{(0)}\right| A_{0}\left|E_{m}^{(M)}\right\rangle}{\sum_{m} c_{m}^{2} \exp \left[-E_{m}^{(0)} T\right]}$

Correlation functions in the SF

important correlation functions

$$
f_{A}\left(x_{0}\right)=\frac{L^{3}}{2} \frac{\sum_{n, m} \exp \left[-\left(T-x_{0}\right) E_{n}^{(0)}\right] \exp \left[-x_{0} E_{m}^{(M)}\right] c_{n} d_{m}\left\langle E_{n}^{(0)}\right| A_{0}\left|E_{m}^{(M)}\right\rangle}{\sum_{m} c_{m}^{2} \exp \left[-E_{m}^{(0)} T\right]}
$$

Correlation functions in the SF

 important correlation functions$$
f_{A}\left(x_{0}\right)=\frac{L^{3}}{2} \frac{\sum_{n, m} \exp \left[-\left(T-x_{0}\right) E_{n}^{(0)}\right] \exp \left[-x_{0} E_{m}^{(M)}\right] c_{n} d_{m}\left\langle E_{n}^{(0)}\right| A_{0}\left|E_{m}^{(M)}\right\rangle}{\sum_{m} c_{m}^{2} \exp \left[-E_{m}^{(0)} T\right]}
$$

- $x_{0} \ll T / 2$ sizeable contributions from excited meson states

Correlation functions in the SF

 important correlation functions$$
f_{A}\left(x_{0}\right)=\frac{L^{3}}{2} \frac{\sum_{n, m} \exp \left[-\left(T-x_{0}\right) E_{n}^{(0)}\right] \exp \left[-x_{0} E_{m}^{(M)}\right] c_{n} d_{m}\left\langle E_{n}^{(0)}\right| A_{0}\left|E_{m}^{(M)}\right\rangle}{\sum_{m} c_{m}^{2} \exp \left[-E_{m}^{(0)} T\right]}
$$

- $x_{0} \ll T / 2$ sizeable contributions from excited meson states
- $x_{0} \gg T / 2$ contributions from vacuum excitations

Correlation functions in the SF

$$
f_{A}\left(x_{0}\right)=\frac{L^{3}}{2} \frac{\sum_{n, m} \exp \left[-T\left(E_{n}^{(0)}-E_{m}^{(M)}\right) / 2\right] c_{n} d_{m}\left\langle E_{n}^{(0)}\right| A_{0}\left|E_{m}^{(M)}\right\rangle}{\sum_{m} c_{m}^{2} \exp \left[-E_{m}^{(0)} T\right]}
$$

- $x_{0} \ll T / 2$ sizeable contributions from excited meson states
- $x_{0} \gg T / 2$ contributions from vacuum excitations
- $x_{0} \approx T / 2$ leading behaviour governed by lightest meson state $n=0$:

$$
f_{A}\left(x_{0} \approx T / 2\right) \propto\left\langle E_{0}^{(0)}\right| A_{0}\left|E_{0}^{(M)}\right\rangle=F_{\mathrm{PS}} m_{\mathrm{PS}} / \sqrt{2 m_{\mathrm{PS}} L^{3}}
$$

Correlation functions in the SF

$$
f_{A}\left(x_{0}\right)=\frac{L^{3}}{2} \frac{\sum_{n, m} \exp \left[-T\left(E_{n}^{(0)}-E_{m}^{(M)}\right) / 2\right] c_{n} d_{m}\left\langle E_{n}^{(0)}\right| A_{0}\left|E_{m}^{(M)}\right\rangle}{\sum_{m} c_{m}^{2} \exp \left[-E_{m}^{(0)} T\right]}
$$

- $x_{0} \ll T / 2$ sizeable contributions from excited meson states
- $x_{0} \gg T / 2$ contributions from vacuum excitations
- $x_{0} \approx T / 2$ leading behaviour governed by lightest meson state $n=0$:

$$
f_{A}\left(x_{0} \approx T / 2\right) \propto\left\langle E_{0}^{(0)}\right| A_{0}\left|E_{0}^{(M)}\right\rangle=F_{\mathrm{PS}} m_{\mathrm{PS}} / \sqrt{2 m_{\mathrm{PS}} L^{3}}
$$

insert static-light axial current at $x_{0}=T / 2$

boundary-boundary correlator f_{1} independent of x_{0}

Lattice Setup

special HQET observables

- renormalization condition for the static axial current, proposed in [Kurth, Sommer 2001]

$$
X(0, L)=Z_{A}^{\text {stat }}\left(g_{0}, L\right) X\left(g_{0}, L\right)
$$

with ratio

$$
\begin{gathered}
X\left(g_{0}, L\right)=\frac{f_{\mathrm{A}}^{\text {stat }}(L / 2)}{\sqrt{f_{1}^{\text {stat }}}} \\
f_{\mathrm{A}}^{\text {stat }}\left(x_{0}\right)=-\frac{1}{2} \int \mathrm{~d}^{3} \mathbf{y} \mathrm{~d}^{3} \mathbf{z}\left\langle\boldsymbol{A}_{0}^{\text {stat }}(x) \bar{\zeta}_{\mathrm{h}}(\mathbf{y}) \gamma_{5} \zeta_{1}(\mathbf{z})\right\rangle \\
f_{1}^{\text {stat }}=-\frac{1}{2 L^{6}} \int \mathrm{~d}^{3} \mathbf{u} \mathrm{~d}^{3} \mathbf{v} \mathrm{~d}^{3} \mathbf{y} \mathrm{~d}^{3} \mathbf{z}\left\langle\bar{\zeta}_{1}^{\prime}(\mathbf{u}) \gamma_{5} \zeta_{\mathrm{h}}^{\prime}(\mathbf{v}) \bar{\zeta}_{\mathrm{h}}(\mathbf{y}) \gamma_{5} \zeta_{1}(\mathbf{z})\right\rangle
\end{gathered}
$$

Lattice Setup

special HQET observables

- renormalization condition for the static axial current, proposed in [Kurth, Sommer 2001]

$$
X(0, L)=Z_{A}^{\text {stat }}\left(g_{0}, L\right) X\left(g_{0}, L\right)
$$

with ratio

$$
\begin{gathered}
X\left(g_{0}, L\right)=\frac{f_{\mathrm{A}}^{\text {stat }}(L / 2)}{\sqrt{f_{1}^{\text {stat }}}} \\
f_{\mathrm{A}}^{\text {stat }}\left(x_{0}\right)=-\frac{1}{2} \int \mathrm{~d}^{3} \mathbf{y} \mathrm{~d}^{3} \mathbf{z}\left\langle\mathcal{A}_{0}^{\text {stat }}(x) \bar{\zeta}_{\mathrm{h}}(\mathbf{y}) \gamma_{5} \zeta_{1}(\mathbf{z})\right\rangle \\
f_{1}^{\text {stat }}=-\frac{1}{2 L^{6}} \int \mathrm{~d}^{3} \mathbf{u} \mathrm{~d}^{3} \mathbf{v} \mathrm{~d}^{3} \mathbf{y} \mathrm{~d}^{3} \mathbf{z}\left\langle\bar{\zeta}_{1}^{\prime}(\mathbf{u}) \gamma_{5} \zeta_{\mathrm{h}}^{\prime}(\mathbf{v}) \bar{\zeta}_{\mathrm{h}}(\mathbf{y}) \gamma_{5} \zeta_{1}(\mathbf{z})\right\rangle
\end{gathered}
$$

- multiplicative renormal. $\zeta_{\mathrm{R}}=Z_{\zeta} \zeta, \ldots$ and $\left(A_{\mathrm{R}}^{\text {stat }}\right)_{0}=Z_{\mathrm{A}}^{\text {stat }} A_{0}^{\text {stat }}$ leads to

$$
\frac{\left(f_{\mathrm{A}}^{\text {stat }}\right)_{\mathrm{R}}}{\left(\left(f_{1}^{\text {stat }}\right)_{\mathrm{R}}\right)^{1 / 2}}=\frac{Z_{\zeta_{1}} Z_{\zeta_{\mathrm{h}}} Z_{\mathrm{A}}^{\text {stat }} f_{\mathrm{A}}^{\text {stat }}}{Z_{\zeta_{1}} Z_{\zeta_{\mathrm{h}}} \sqrt{f_{1}^{\text {stat }}}}=Z_{\mathrm{A}}^{\text {stat }} \frac{f_{\mathrm{A}}^{\text {stat }}}{\sqrt{\xi_{1}^{\text {stat }}}}
$$

and X scales like $X_{\mathrm{R}}=Z_{\mathrm{A}}^{\text {stat }} X$

Lattice Setup

Lattice Step Scaling Function

- use $O(a)$ improved ratio

$$
X_{\mathrm{I}}\left(g_{0}, L\right)=\frac{\stackrel{s}{\mathrm{~A}}_{s_{\mathrm{A}}^{\text {stat }}}(L / 2)+a a_{\mathrm{A}}^{\text {stat }} \delta_{\delta \mathrm{A}}^{\text {stat }}(L / 2)}{\sqrt{f_{1}^{\text {stat }}}}
$$

$c_{\mathrm{A}}^{\text {stat }}$: improvement coefficient (pert. known)
$f_{\delta A}^{\text {stat. }}$: $O(\mathrm{a})$ correction

- definition of the step scaling function

$$
\Sigma_{\mathrm{A}}^{\text {stat }}(u, a / L)=\frac{Z_{\mathrm{A}}^{\text {stat }}\left(g_{0}, 2 L / a\right)}{Z_{\mathrm{A}}^{\text {stat }}\left(g_{0}, L / a\right)}, \quad \text { with } \quad u=\bar{g}^{2}(L) \quad \text { and } \quad m_{\mathrm{q}}=0
$$

- so continuum limit exists and can be taken in each step i.e. for different coupling values $\{u\}$

$$
\left.\sigma_{\mathrm{A}}^{\text {stat }}(u) \equiv \lim _{a \rightarrow 0} \Sigma_{\mathrm{A}}^{\text {stat }}(u, a / L)\right|_{\bar{g}^{2}=u, m_{\mathrm{q}}=0}
$$

climbing up the scales

full step scaling factor

$$
\frac{\Phi\left(\mu_{\text {pert }}\right)}{\Phi\left(\mu_{\text {min }}\right)}=\frac{\Phi\left(\mu_{\text {pert }}\right)}{\Phi\left(\mu_{\text {pert }} / 2\right)} \frac{\Phi\left(\mu_{\text {pert }} / 2\right)}{\Phi\left(\mu_{\text {pert }} / 4\right)} \times \ldots=\left[\sigma_{\mathrm{A}}^{\text {stat }}\left(u_{n}\right)\right]^{-1} \cdots\left[\sigma_{\mathrm{A}}^{\text {stat }}\left(u_{0}\right)\right]^{-1}
$$

with $u_{k}=\bar{g}^{2}\left(L_{k}\right)$ and $\mu_{k}=1 / L_{k}=2^{k} / L_{\text {max }}$

climbing up the scales

full step scaling factor

$$
\frac{\Phi\left(\mu_{\text {pert }}\right)}{\Phi\left(\mu_{\text {min }}\right)}=\frac{\Phi\left(\mu_{\text {pert }}\right)}{\Phi\left(\mu_{\text {pert }} / 2\right)} \frac{\Phi\left(\mu_{\text {pert }} / 2\right)}{\Phi\left(\mu_{\text {pert }} / 4\right)} \times \ldots=\left[\sigma_{\mathrm{A}}^{\text {stat }}\left(u_{n}\right)\right]^{-1} \cdots\left[\sigma_{\mathrm{A}}^{\text {stat }}\left(u_{0}\right)\right]^{-1}
$$

with $u_{k}=\bar{g}^{2}\left(L_{k}\right)$ and $\mu_{k}=1 / L_{k}=2^{k} / L_{\text {max }}$

$$
\begin{aligned}
& L_{\text {max }}=\mathcal{O}\left[\frac{1}{2} \mathrm{fm}\right]: \quad \mathrm{HS} \quad \longrightarrow \quad \mathrm{SF}\left(\mu=\underset{\downarrow}{\left.1 / L_{\text {max }}\right)}\right. \\
& \mathrm{SF}\left(\mu=2 / L_{\text {max }}\right) \\
& \downarrow \\
& \operatorname{SF}\left(\mu \underset{\text { PT } \downarrow}{\left.\stackrel{\downarrow}{2^{n}} / L_{\text {max }}\right)} \quad \sigma_{\mathrm{A}}^{\text {stat }}\left(u_{n}\right)\right. \\
& \overline{\mathrm{MS}} \text {-scheme } \quad \stackrel{\mathrm{PT}}{\longleftarrow} \quad \Lambda_{\mathrm{QCD}}, M, \Phi_{\mathrm{RGI}}
\end{aligned}
$$

Lattice Results
 fit to continuum limit (CL)

Hyp1

L / a	$Z_{A}^{\text {stat }}\left(g_{0}, L / a\right)$	$Z_{A}^{\text {stat }}\left(g_{0}, 2 L / a\right)$	$\sum_{A}^{\text {stat }}(u, a / L)$
6	$0.9363(5)$	$0.9169(6)$	$0.9793(8)$
8	$0.9295(5)$	$0.9126(9)$	$0.9818(11)$
12	$0.9231(3)$	$0.9066(7)$	$0.9821(9)$

6	$0.8332(12)$	$0.7504(20)$	$0.9007(28)$
8	$0.8184(13)$	$0.7396(34)$	$0.9037(44)$
12	$0.8078(13)$	$0.7339(33)$	$0.9085(44)$

\checkmark well-behaved error, estimated by jackknife analysis within whole data set
$\checkmark O(a)$ improvement verified \Rightarrow fitting in $x=(a / L)^{2}$ possible
lattice step scaling function: $\left.\sigma_{\mathrm{A}}^{\text {stat }}(u) \equiv \lim _{a \rightarrow 0} \sum_{\mathrm{A}}^{\text {stat }}(u, a / L)\right|_{\bar{g}^{2}=u, m=0}$

(a) fit for each discretization $\Sigma_{\mathrm{A}, \mathrm{i}}^{\text {stat }}(u, x)=\sigma_{\mathrm{A}, \mathrm{i}}^{\text {stat }}(u)+b_{i} \cdot x$
(b) fit to universal CL

$$
\Sigma_{\mathrm{A}}^{\text {stat }}(u, x)=\sigma_{\mathrm{A}}^{\text {stat }}(u)+c_{i} \cdot x
$$

Continuum Results

continuum step scaling function

fitting step scaling function: $\sigma_{\mathrm{A}}^{\text {stat }}(u)=1+s_{0} u+s_{1} u^{2}+s_{2} u^{3}+\ldots$

Continuum Results

scale evolution of the renormalized matrix element
non-perturbative vs. perturbative evaluation of

$$
\Phi(\mu) / \Phi_{\mathrm{RGI}}=\left[2 b_{0} \bar{g}^{2}(\mu)\right]^{\gamma_{0} / 2 b_{0}} \exp \left\{\int_{0}^{\bar{g}(\mu)} \mathrm{d} g\left[\frac{\gamma(g)}{\beta(g)}-\frac{\gamma_{0}}{b_{0} g}\right]\right\}
$$

- 3-loop β-function

$$
\beta(\bar{g})=-\bar{g}^{3} \cdot\left(b_{0}+b_{1} \bar{g}^{2}+b_{2} \bar{g}^{4}\right)
$$

with universal b_{0}, b_{1}

- 2-loop γ-function

$$
\gamma(\bar{g})=-\bar{g}^{2} \cdot\left(\gamma_{0}+\gamma_{1} \bar{g}^{2}\right)
$$

with universal γ_{0}
rel. deviation at hadronic scale: 2.7\%

Results

$$
\Phi_{\text {match }}(\mu)=\frac{\Phi_{\text {match }}(\mu)}{\Phi_{\mathrm{RGI}}} \times \frac{\Phi_{\mathrm{RGI}}}{\Phi_{\text {inter }}\left(\mu_{\min }\right)} \times Z_{\text {inter }}\left(g_{0}, a \mu_{\min }\right) \times \Phi_{\text {bare }}\left(g_{0}\right)
$$

\checkmark Universal result referring to the continuum limit

$$
\frac{\Phi_{\text {inter }}(\mu)}{\Phi_{\mathrm{RGI}}}=1.143(16)
$$

or without coarsest lattice $L / a=6$ and fit to constant

$$
\frac{\Phi_{\text {inter }}(\mu)}{\Phi_{\mathrm{RGI}}}=1.136(10)
$$

at $\mu=1 / L_{\text {max }}$ or rather $\bar{g}^{2}\left(L_{\text {max }}\right)=4.61$
\checkmark determination of the Z-factor at the low-energy reference scale in the intermediate (SF) scheme (done rencently)

- conversion into the $\overline{\mathrm{MS}}$-scheme (matching scheme)

Outlook

Further improvements by new methods ...
Wave functions (still in use)

$$
\omega(r) \sim r^{n} \exp \left(-r / r_{H}\right)
$$

at the boundaries of the SF-cylinder to suppress excited B-meson state contributions to correlators [Duncan, 1992]

Outlook

Further improvements by new methods ...

Wave functions (still in use)

$$
\omega(r) \sim r^{n} \exp \left(-r / r_{H}\right)
$$

at the boundaries of the SF-cylinder to suppress excited B-meson state contributions to correlators [Duncan, 1992]

lower momenta strategy (in use) to reduce computational effort in some $1 / m$ correlators $\left(\propto L^{6}\right)$ by skipping higher momenta $k_{\text {min }} \leq k \leq k_{\text {max }}$
" 8 sources are better than one" [Billoire et al, 1985]

Outlook

... and new computers
APEnext

APEmille

