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the considered action

goal: estimate the expextation values

〈A〉 = Z−1

∫
[dφ] e−S[φ]A [φ]

the lattice action

Slat = Sg + Sf



SUSY Yang-Mills
on the Lattice

Alexander Ferling

contents

lattice action

fermion matrix

single step
approximation

TSMB

noisy correction

metropolis
algorithm

heatbath and
overrelaxation

speed methods

hybrid monte carlo

polynomial hybrid
monte carlo

the considered action

goal: estimate the expextation values

〈A〉 = Z−1

∫
[dφ] e−S[φ]A [φ]

the lattice action

Slat = Sg + Sf



SUSY Yang-Mills
on the Lattice

Alexander Ferling

contents

lattice action

fermion matrix

single step
approximation

TSMB

noisy correction

metropolis
algorithm

heatbath and
overrelaxation

speed methods

hybrid monte carlo

polynomial hybrid
monte carlo

the considered action

the continuum action

SSY M =

∫
d4x

{
1

4
F a

µν(x)F a
µν(x) +

1

2
λ

a
(x)γµDµλa(x)

}
gauge part

Sg [U ] = β
∑

x

∑
µν

[
1− 1

Nc
ReTrUµν

]
fermionic part

Sf

[
U, λ, λ

]
=

1

2

∑
x

λ(x)λ(x)

+
κ

2

∑
x

∑
µ

[
λ(x + µ̂)Vµ(x)(r + γµ)λ(x)

+λ(x)V T
µ (x) (r − γµ)λ(x + µ̂)]
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the involved magnitudes

the bare coupling

β =
2Nc

g

gauge field link in the adjoint representation

[Vµ(x)]ab ≡ 2Tr
[
U †

µ(x)T aUµ(x)T b
]

=
[
V ∗

µ (x)
]
ab

=
[
V T

µ (x)
]−1

ab

the generators T a in the SU(2) case

T a =
1

2
τa

the majorana fermions

λ = λC = CλT
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talking about κ

gluino breaks supersymmetry

L = LSY M + mg̃λλ

the hopping parameter

κ = (2m0 + 8r)−1

→ bare gluino mass, breaks chiral invariance

mg̃,0 ∝ κ−1

→ tune κ to a critical κc, so
the renormalized mass

mg̃ → 0
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the fermion matrix Qx,y

back to the fermion action

Sf

[
U, λ, λ

]
=

1

2

∑
x

λ(x)λ(x)

+
κ

2

∑
x

∑
µ

[
λ(x + µ̂)Vµ(x)(r + γµ)λ(x)

+λ(x)V T
µ (x) (r − γµ)λ(x + µ̂)]

→ the fermion matrix

Qx,y [U ] ≡ δx,y − κ
∑

µ

[δy,x+µ̂(1 + γµ)Vµ(x)

+δy+µ̂(1− γy+µ̂)V T
µ (y)

]
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the fermion matrix Qx,y

from this, we can write compactly

Sf =
1

2

∑
xy

λ(x)Qx,yλ(y)

→ the fermion matrix∫
[dλ] e−Sf =

∫
[dλ] e−

1
2
λQλ = ±

√
det Q

because of the pfaffian

pf(M) ≡ 1

N !2N
εα1β1...αNβN

Mα1β1 ...MαNβN

=

∫
[dλi] e

− 1
2
λαMαβλbeta



SUSY Yang-Mills
on the Lattice

Alexander Ferling

contents

lattice action

fermion matrix

single step
approximation

TSMB

noisy correction

metropolis
algorithm

heatbath and
overrelaxation

speed methods

hybrid monte carlo

polynomial hybrid
monte carlo

single step approximation

the polynomial approximation relies on

| det Q|Nf =
[
det (Q†Q)

]Nf
2 ≈ lim

n→∞

[
det P (Q̃2)

]−1

with Q̃2 = Q†Q

where the polynomial Pn(x) satisfies

lim
n→∞

Pn(x) = x−
Nf
2 for x ∈ [ε, λ]

and

ε ≤ min spec(Q†Q)

λ ≥ max spec(Q†Q)
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single step approximation

using roots of the polynomial rj

Pn(Q†Q) = Pn(Q̃) = r0

n∏
j=1

(Q̃2 − rj)

whith rj ≡ ρ∗ρ ≡ (µj + iνj)
2 , it follows

Pn(Q̃) = r0

n∏
j=1

((Q̃− ρ∗j )(Q̃− ρj))

the multi-boson representation of the fermion
determinant

r0

n∏
j=1

(det(Q̃− ρ∗j )(Q̃− ρj))
−1

∝
∫
D[Φ]e

−
Pn

j=1

P
xy Φ†

j(y)[(Q̃−ρ∗j )(Q̃−ρj)]
xy

Φj(x)
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two-step multi-bosonic scheme

problem: small fermion masses
→ hugh condition-number λ

ε ∼ O(104 − 106)

the key:

lim
n2→∞

P (1)
n1

(x)P (2)
n2

(x) = x−
Nf
2

we get

| det(Q)|Nf ' 1

det P
(1)
n1 (Q̃2) detP

(2)
n2 (Q̃2)
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two-step multi-bosonic scheme

relative deviation of the successive polynomial
approximation
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the noisy correction

test this approximation → fulfill the detailed balance

P (U → U ′)

P (U ′ → U)
=

exp−(Sg [U ′] + log
[
det Q̃

]Nf
2 )

exp−(Sg [U ] + log
[
det Q̃

]Nf
2 )

=
det
(
Q̃Nf [U ′]P

(1)
n1 Q̃2[U ′]

)
det
(
Q̃Nf [U ]P

(1)
n1 Q̃2[U ]

) eS(n1)[U ′,φ†,φ]

eS(n1)[U,φ†,φ]

since the update polynomial P
(1)
n1 fulfills

Pφ(U → U ′)

Pφ(U ′ → U)
=

eS(n1)[U ′,φ†,φ]

eS(n1)[U ′,φ†,φ]

we can use as an acceptance probability

PNC

(
U → U ′) = min

1,
det
(
Q̃Nf [U ′]P

(1)
n1 Q̃2[U ′]

)
det
(
Q̃Nf [U ]P

(1)
n1 Q̃2[U ]

)
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the noisy correction

following the idea of the multi-boson algorithm we will
approximate this new determinant by another

polynomial P
(2)
n2(

det Q̃2
)Nf

2 det P (1)
n1

(Q̃2) ' 1

det P
(1)
n1 (Q̃2)

=

∫
D[η†]D[η]eη†P 2

n2
(Q̃2)η

and this second polynomial P
(2)
n2 fulfills

lim
n2→∞

P (2)
n2

(x) = x−
Nf
2 P (1)

n1
(x)−1 ∀x ∈ [ε, λ]
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the noisy correction

using the correction, first one has to generate a complex
gaussian random vector η according to the normalized
gaussian distribution

dρ(η) =
e−η†P

(2)
n2

(Q̃2)η∫
D[η]e−η†P

(2)
n2

(Q̃2)η

and then accept the change of the gauge fiels
[U ]→ [U ′] with the probability measure

PNC = min

(
1, e

−η†
“
P

(2)
n2

(Q̃[U ′]2)−P
(2)
n2

(Q̃[U ]2)
”
η
)

the needed noisy estimator η is easily obtained from a
simpel gaussian distributed vector η′

dρ(η′) =
e−η†η′∫
D[η′]e−η′†η′

and η = P (2)
n2

(Q̃†)−
1
2 η′
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the metropolis algorithm

the probability for going from one configuration
[φ] to [φ′] is given by

P ([φ′]← [φ]) ∝ F

(
e−S[φ′]

e−S[φ]

)
(1)

with any function, that maps [0,∞] to [0, 1] and fullfills

F (x)

F
(

1
x

) = x

usually for F one chooses

F (x) = min(1, x)



SUSY Yang-Mills
on the Lattice

Alexander Ferling

contents

lattice action

fermion matrix

single step
approximation

TSMB

noisy correction

metropolis
algorithm

heatbath and
overrelaxation

speed methods

hybrid monte carlo

polynomial hybrid
monte carlo

the metropolis algorithm

the probability for going from one configuration
[φ] to [φ′] is given by

P ([φ′]← [φ]) ∝ F

(
e−S[φ′]

e−S[φ]

)
(1)

with any function, that maps [0,∞] to [0, 1] and fullfills

F (x)

F
(

1
x

) = x

usually for F one chooses

F (x) = min(1, x)



SUSY Yang-Mills
on the Lattice

Alexander Ferling

contents

lattice action

fermion matrix

single step
approximation

TSMB

noisy correction

metropolis
algorithm

heatbath and
overrelaxation

speed methods

hybrid monte carlo

polynomial hybrid
monte carlo

the metropolis algorithm

the probability for going from one configuration
[φ] to [φ′] is given by

P ([φ′]← [φ]) ∝ F

(
e−S[φ′]

e−S[φ]

)
(1)

with any function, that maps [0,∞] to [0, 1] and fullfills

F (x)

F
(

1
x

) = x

usually for F one chooses

F (x) = min(1, x)



SUSY Yang-Mills
on the Lattice

Alexander Ferling

contents

lattice action

fermion matrix

single step
approximation

TSMB

noisy correction

metropolis
algorithm

heatbath and
overrelaxation

speed methods

hybrid monte carlo

polynomial hybrid
monte carlo

the metropolis algorithm

so, first a randomly chosen configuration is generated

→ every configuration with a lower action (higher
Boltzman factor) is accepted, while otherwise just with

e−(S[φ′]−S[φ])

or even rejected
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generalization of the metropolis algorithm

a generalization to (1) is to generate P by a proposed
change and an accept reject step P = PAPC with

PC ([φ′]← [φ])

is an arbitrary probability distribution for the proposed
change of the configuration [φ]→ [φ′] and

PA ([φ′]← [φ])

the acceptance probability is defined in such way, that it
compensates for PC , namely

PA ([φ′]) ∝ min

{
1,

PC([φ]← [φ′])Wc [φ′]

PC([φ]← [φ′])Wc [φ]

}
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heatbath algorithm and overrelaxation

the heatbath algorithm

in every step just a part of the field variables, e.g. the
gauge link at one particular lattice site, ist changed
by combining many such steps, ergodicity can be
archieved

the overrelaxation algorithm

the configurations are changed in a way, which leaves
the action invariant and ensures

[φ]
update→

[
φ′
] update→ [φ]

in each single update step, always with PA = 1

→ the action is left unchanged, so this algorithm is not
ergodic.
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speed up the code: preconditioning

preconditioning decreasing the condition number λ
ε by

even-odd preconditioning

decompose the fermion matrix Q̃ in subspaces,
containing the odd, respectively the even points of the
lattice

Q̃ = γ5Q =

(
γ5 −κγ5Moe

−κγ5Meo γ5

)
for the fermion determinant we have

det Q̃ = det Q̂, with Q̂ ≡ γ5 −K2γ5MoeMeo
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two-step multi-bosonic scheme

−6 −5 −4 −3 −2
lg(Λ_min)

0

0.05

0.1

0.15
β=2.3, K=0.196, 6  x12 3 

preconditioned
not
preconditioned

distribution of the smallest eigenvalues of the squared
preconditioned fermion matrix Q̃2 versus the
non-preconditioned one
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speed up the code: determinant breakup

use the factorization of the fermionic determinant in
several factors, also allowing for some ”fractional”
number of flavours

| det (Q̃)|Nf =

[
| det (Q̃2)|

Nf
2nB

]nB

measurement correction: reweighting

lim
n4→∞

P (1)
n1

(x)P (2)
n2

(x)P (4)
n4

(x) with P (4)
n4

(x) =
1√
P

(2)
n2

after reweighting, the expectation value of a quantity A
is given by

〈A〉 =

〈
A exp

{
η†
[
1− P

(4)
n4 (Q†Q)

]
η
}〉

U,η〈
exp

{
η†
[
1− P

(4)
n4 (Q†Q)

]
η
}〉

U,η
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the polynomials

P (1)
n1
' 1

xα

P (2)
n2
' 1

P
(1)
n1 (x)xα

P (4)
n4

(x) =
1√

P
(2)
n2 (x)
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the polynomials

P (1)
n1
' 1

xα

P (2)
n2
' 1

P
(1)
n1 (x)xα

P (4)
n4

(x) =
1√

P
(2)
n2 (x)
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hybrid monte carlo

basic idea: move the configuration through
configuration space → in each step all field variables are
updated by computing their trajectory through a
coupled set of equations of motions

why not simply random walks? → a molecular
dynamics trajectory is assumed to move more rapidly
away from the original configuration

for the derivation of the equations of motions, we need
to look at

H [P,U, φ] ≡ 1

2

∑
xµj

P 2 + Sg[U ] +
∑
xy

φ(x)Q̃2
x,yφ

∗(y)
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hybrid monte carlo

H [P,U, φ] ≡ 1

2

∑
xµj

P 2 + Sg[U ] +
∑
xy

φ(x)Q̃2
x,yφ

∗(y)

during a (lepfrog...) trajectory the pseudofermion field
φ is constant and generated from a simple gaussian

dηdη†e−(ηη†)

φ = ηQ̃→ η = φQ̃−1 → dφdφ†e−φQ̃−2φ†

at the beginning of the trajectory the conjugate
momenta P are generated according to the distribution

dPe−
1
2
P 2
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the polynomials

with the corresponding canonical differential equations

Ṗ (x, µ, j) = −Dx,µ,jS[U ]

U̇(x, µ) = iP (x, µ)U(x, µ)

this derivative is defined as

Dxµjf(U(x, µ)) =
d

dα

∣∣∣∣
α=0

f
(
eiαTjU(x, µ)

)
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the leapfrog trajectory

a step of length ∆τ in P

P ′
xµj = Pxµj −Dxµj∆τS[U ]

a step in Uxµ

U ′
xµ = Uxµe

P3
j=1 ∆τiTjPxµj

the trajectory is a succesive approximation of

T (∆τ) = TP

(
∆τ

2

)
TU (∆τ)TP

(
∆τ

2

)
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multiple time scales

in case of the hamiltonian, we have

H[P,U ] =
1

2
P 2 +

k∑
i=1

Si[U ] (k ≥ 1)

for a trajectory with length τ , we define decreasing time
steps

∆τi =
∆τi+1

Ni
=

τ

NkNk−1 · · ·Ni

with Ni = step number, (0 ≤ i ≤ k), (∆τk+1 ≡ τ)
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multiple time scales

we can change the gauge field as before by

TU (∆τ) : U ′
xµ = Uxµei∆τ

P3
j=1 TjPxµj

and define a step in P by

TSi(∆τ) : P ′
xµj = Pxµj −Dxµj∆τSi[U ]
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sexton-weingarten higher order integrator

let us define

T0(∆τ0) = TS0

(
∆τ0

2

)
TU (∆τ0)TS0

(
∆τ0

2

)

and for i = 1, 2, . . . , k

Ti(∆τi) = TSi

(
∆τi

2

)
{Ti−1 (∆τi−1)}Ni−1TSi

(
∆τi

2

)
sexton-weingarten

T0(∆τ0) =

TS0

(
∆τ0

6

)
TU

(
∆τ0

2

)
TS0

(
2∆τ0

3

)
TU

(
∆τ0

2

)
TS0

(
∆τ0

6

)
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polynomial hybrid monte carlo

in polynomial hmc one approximates the Q-matrices
with polynomials

(λQ̃−2λ) ' (λP (Q̃2)λ)

instead of Nf = 2 one can although work with
determinant breakup

(det Q̃2)
Nf
2 =

[(
det Q̃

)α]Nb

→
Nb∑

nb=1

(
λnb

P (Q̃)2λ
)

unsing the product rule in the derivative

DxµjQ̃
2 = Q̃(DxµjQ̃) + (DxµjQ̃)Q̃
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