Übungen zur Quantentheorie I (WS 2002/2003)

Blatt 5

Aufgabe 16: Spinmatrizen zu Spin 1 (3 Punkte)

Finden Sie die 3×3 -Matrizen, mit denen der Spin 1 beschrieben werden kann. Dabei soll S_3 diagonal sein. Überprüfen Sie, dass \vec{S}^2 den richtigen Wert hat.

Aufgabe 17: Spinor-Wellenfunktion (5 Punkte)

Ermitteln Sie die Normierungskonstante N der Spinorwellenfunktion

$$\psi(\vec{r}) = \begin{pmatrix} \psi_{+}(\vec{r}) & = & N e^{-\frac{\vec{r}^2}{2d^2}} \\ \psi_{-}(\vec{r}) & = & N e^{-\frac{(x-a)^2 + y^2 + z^2}{2d^2}} \end{pmatrix}$$

Berechnen Sie den Erwartungswert des Operators $\vec{S} \cdot \vec{Q}$ im Zustand der Spinorwellenfunktion $|\psi\rangle$.

Aufgabe 18: Die Unschärfe eines Spins (2 Punkte)

Sei $|\chi\rangle$ ein Eigenzustand zu S_3 für ein Teilchen mit Spin $\frac{1}{2}$. Berechnen Sie $\langle S_1\rangle$, $\langle S_2\rangle$, $\langle S_1^2\rangle$ und $\langle S_2^2\rangle$. Überprüfen Sie, ob die Unschärferelation für S_1 und S_2 erfüllt ist.

Aufgabe 19: Messwahrscheinlichkeiten (3 Punkte)

- a) Wie lauten die Eigenzustände zu S_1 und S_2 für Spin $\frac{1}{2}$?
- **b)** Wie groß sind im Eigenzustand von S_1 mit dem Eigenwert $\frac{\hbar}{2}$ die Wahrscheinlichkeiten dafür, dass bei einer Messung von S_3 der Messwert $\frac{\hbar}{2}$ bzw. $-\frac{\hbar}{2}$ gefunden wird?
- c) Ein Teilchen sei im Eigenzustand S_3 mit dem Eigenwert $\frac{\hbar}{2}$. Es werde der Spin in einer Richtung gemessen, die mit der z-Achse der Winkel Θ einschliesst. Wie gross ist die Wahrscheinlichkeit, dass hierbei der Wert $\frac{\hbar}{2}$ gefunden wird?