Die Dicke von Grenzflächen

Melanie Müller

Forschungsseminar Quantenfeldtheorie 2. Dezember 2003

Welche Grenzflächen?

- Grenzflächen zwischen zwei verschiedenen (Phasen von) Gasen / Flüssigkeiten / Festkörpern
- 3-dimensionale Systeme \Rightarrow 2-dimensionale Grenzfläche
- Grenzfläche zwischen zwei koexistierenden Phasen im *Gleichgewicht*
- in der Nähe der kritischen Temperatur T_c \Rightarrow universell, viele Fluktuationen
- Grenzfläche senkrecht zur z-Achse
- Beschreibung auf verschiedenen Längenskalen
 - $\leftrightarrow verschiedene \ Fluktuationen$

Was ist eine Grenzfläche?

Aristoteles: Grenze = der letzte Punkt eines Dinges, jenseits dessen es kein Teil des Dinges gibt, diesseits dessen alle Teile des Dinges sind.

⇒ scharfe Grenze zwischen zwei Stoffen / Phasen

Molekulare Mechanik

- bis ins 19. Jahrhundert
- scharfe Grenzfläche $\phi_g(z) \sim \Theta(z-h)$
- mechanisch-statische Betrachtung: Moleküle sind in Ruhe in Minima potenzieller Energie
- Berechnung aufgrund von kurzreichweitigen Anziehungskräften zwischen Molekülen. Rayleigh 1890: ,,the attractive forces were left to perform the impossible feat of balancing themselves"

Van der Waals

- van der Waals 1893 (20 Jahre nach seiner Gleichung)
- kontinuierliches Grenzflächenprofil $\phi_g(z)$
- thermodynamische Argumentation
- Einführen einer Freien Energie-Dichte aus Betrachtung intermolekularer Kräfte und Taylor-Entwicklung:

$$\mathcal{L}(\phi(z)) = V(\phi(z)) + \frac{1}{2}(\phi'(z))^2$$

Minimum von $\mathcal{L}(\phi(z))$ ist das Grenzflächenprofil $\phi_g(z)$ im Gleichgewicht.

Van der Waals

Freie Energie-Dichte:

 $\mathcal{L}(\phi(z)) = \left(V(\phi(z))\right) + \left(\frac{1}{2}(\phi'(z))^2\right)$

Term (A): Freie Energie-Dichte einer hypothetischen Flüssigkeit mit homogener Dichte $\phi^{fl} < \phi_g(z) < \phi^g$. Keine Maxwell-Konstruktion!

Term (B): Starke Fluktuationen kosten Energie.

Van der Waals

Freie Energie-Dichte:

$$\mathcal{L}(\phi(z)) = \left(V(\phi(z))\right) + \left(\frac{1}{2}(\phi'(z))^2\right)$$

nur Term (A): scharfe Grenzfläche, Oberflächenspannung = 0 nur Term (B): Grenzfläche unendlich diffus, Oberflächenspannung = 0

beide Terme (C) = A + B: kontinuierliches Profil $\phi_g(z)$ mit endlicher Breite, endlicher Oberflächenspannung

Landau-Theorie

- Landau 1937
- mean-field-Theorie, entspricht van der Waals-Theorie
- universelle Gültigkeit in der Nähe des kritischen Punktes T_c
- Ordnungsparameter φ: Dichte bei Flüssigkeitsgemisch, spontane Magnetisierung bei Ferromagneten

• Postulate über Analytizität und Symmetrie der Freien Energie, Taylor-Entwicklung um kritischen Punkt

$$\Rightarrow \mathcal{L}(\phi) = \frac{1}{2}(\partial\phi)^2 + \frac{g}{4!}(\phi^2 - 1)^2$$

Landau-Theorie

Freie Energie-Dichte $\mathcal{L}(\phi) = \frac{1}{2}(\partial \phi)^2 + \frac{g}{4!}(\phi^2 - 1)^2$

- Grenzflächen-Profil aus Minimierung von \mathcal{L} $\Rightarrow \phi_g(z) = \tanh(\frac{1}{2\xi}(z-h))$
- Dicke $\sim \xi$ Korrelationslänge (der homogenen Phase)
- ϕ_g ,,intrinsisches" Profil, hängt nicht von äußeren Parametern ab

Landau-Theorie

- van der Waals- und Landau-Theorie = mean-field-N\"aherungen Wann g\"ultig? ↔ Welche Fluktuationen?
- Grenzflächenprofil $\phi_g(z)$ aus mikroskopischer Theorie durch Grobkörnung
 - \Rightarrow "Wegmitteln" mikroskopischer Fluktuationen
 - \Rightarrow Wellenlängen $\lambda > a$ mikroskopische Länge (Gitterkonstante)
- mean-field-Näherung \leftrightarrow Vernachlässigen von Fluktuationen $\lambda > B_{intr}$ Cutoff $B_{intr} \sim \xi$ Korrelationslänge

Zusammenfassung Landau-Theorie

- Landau-Theorie liefert stetiges Grenzflächenprofil ϕ_g mit endlicher Dicke
- Dicke wird verursacht durch thermodynamische Fluktuationen der Dichten der homogenen Phasen
- Berücksichtigung von Fluktuationen

$$a < \lambda < B_{\text{intr}} \sim \xi$$

- mikroskopischer Cutoff *a* unproblematisch: mikroskopische Details uninteressant
- Cutoff B_{intr} problematisch: langwellige Fluktuationen der Grenzfläche wichtig

- Buff, Lovett, Stillinger 1965
- Grenzfläche
 schwingende Membran
- scharfe Grenzfläche $\phi_g(z) \sim \Theta(z-h)$
- 2D-Membran h(x, y) schwingt mit langwelligen Fluktuationen kleiner Amplitude

 \rightarrow ,,Kapillarwellen"

• Freie Energie für die Kapillarwellen-Fluktuationen der Membran h(x, y):

$$F_{KW}$$
 = Oberflächenspannung × Fläche
= $\sigma \int dx dy \sqrt{1 + h_x^2 + h_y^2}$

- treibende Kraft: thermische Fluktuationen rücktreibende Kraft: Oberflächenspannung
- Herleitung aus Landau-Theorie möglich

- Freie Energie $F_{KW} = \sigma \int dx dy \sqrt{1 + h_x^2 + h_y^2}$
- langsame Variation von $h(x, y) \Rightarrow$ Gradient-Entwicklung

$$\Rightarrow F_{\scriptscriptstyle KW} = \sigma \int \mathrm{d}x \mathrm{d}y \left(h_x^2 + h_y^2\right)$$

⇒ Gaußsche Theorie⇒ alle Mittelwerte berechenbar

• mittlere quadratische Fluktuation einer Mode $\tilde{h}(\vec{q})$:

$$\langle |\tilde{h}(\vec{q})|^2 \rangle = \frac{k_B T}{\sigma q^2}$$

(Gleichverteilungssatz)

- Grenzflächen-Dicke durch Fluktuationen der Membran: divergent!
- Welche Fluktuationen beschreibt das Kapillarwellen-Modell?

- Welche Fluktuationen?
- Gradient-Expansion \leftrightarrow langwellige Fluktuationen \Rightarrow nur große $\lambda > B_{KW} \Rightarrow q < \frac{2\pi}{B_{KW}}$
- Wie groß ist B_{KW} ? Grenzflächenprofil $\phi_g(z) \sim \Theta(z-h)$, eigentlich Profil mit Breite $\sim \xi \qquad \Rightarrow B_{KW} \sim \xi$
- endliches System der Länge L $\Rightarrow \lambda < L \implies q > \frac{2\pi}{L}$

• insgesamt: $\frac{2\pi}{L} < q < \frac{2\pi}{B_{KW}}$

• Grenzflächen-Dicke:

$$\langle (h(x,y))^2 \rangle = \frac{k_B T}{2\pi\sigma} \int_{\frac{2\pi}{L}}^{\frac{2\pi}{B_{KW}}} \mathrm{d}q \, \frac{1}{q} = \frac{k_B T}{2\pi\sigma} \mathrm{ln} \frac{L}{B_{KW}} \quad <\infty$$

- divergent im thermodynamischen Limes $L \to \infty$, Infrarot-Divergenz aus $q \to 0$
- physikalische Divergenz: langwellige Fluktuationen kosten kaum Energie
- "roughening" bei Festkörpern:
 - $T < T_R$: Oberfläche zeigt anisotrope Facetten, Oberflächen-Fluktuationen schwach
 - $T > T_R$: Oberflächen-Anisotropie verschwunden unter Oberflächen-Fluktuationen
- im Ising-Modell: $T_R \approx 0.5 T_c$

Landau-Theorie und Kapillarwellen

Landau-Theorie (1893,1937):

• intrinsisches stetiges Grenzflächenprofil $\phi_g(z)$, Dicke $w_{intr} \sim \xi$

• beschreibt Fluktuationen $a < \lambda < B_{intr} \sim \xi$

Kapillarwellen-Theorie (1965):

- schwingende Membran h(x, y), scharfe Grenzfläche, Dicke $w_{\scriptscriptstyle KW} \sim \ln L$
- beschreibt Fluktuationen $\xi \sim B_{\scriptscriptstyle KW} < \lambda < L$

Landau-Theorie und Kapillarwellen

- Grenzflächen zeigen <u>alle</u> Fluktuationen
- Wie passen die beiden Beschreibungen zusammen?
- einfachstes Modell: mean-field-Fluktuationen und Kapillarwellen-Fluktuationen wechselwirken nicht

\Rightarrow ,,Faltungsnäherung"

Faltungsnäherung

- Vorstellung: intrinsisches Profil $\phi_g(z)$ ist an schwingende Membran h(x, y), "geheftet": $\phi_g(z h(x, y))$
- Gesamtprofil:

$$c(z) = \langle \phi_g(z-h) \rangle = \int dh \phi_g(z-h) P(h) = \phi_g(z) * P(z)$$

P(h) = Wahrscheinlichkeit, dass Grenzfläche die Höhe z = h hat.

• aus Kapillarwellen-Modell: P(h) =Normalverteilung $\mathcal{N}(0, s^2)$ mit Varianz $s^2 = \langle (h(x, y)^2 \rangle = \frac{k_B T}{2\pi\sigma} \ln \frac{L}{B_{KW}}$

Faltungsnäherung

• Gesamtprofil

 $c(z) = \phi_g(z) * \mathcal{N}(0, s^2)$

- ⇒ Intrinsisches Profil mit Normalverteilung "verschmiert"
- Faltung ↔ stochastische Unabhängigkeit

• Dicke des Profils c(z):

Grenzflächen-Theorien

Ebenen-Schnitt: Blick seitlich auf die Grenzfläche:

mean-field -Theorie Kapillarwellen-Theorie Faltungsnäherung

Fragen

φ

Theorien:

- mean-field-Landau-Theorie: intrinsisches Profil, Fluktuationen $a < \lambda < B_{intr}$
- Kapillarwellen-Theorie: schwingende Membran, Fluktuationen $B_{\scriptscriptstyle KW} < \lambda < L$

Fragen:

- Bedeutung der Cutoffs:
 - unproblematisch: a, L
 - problematisch: B_{intr} , B_{KW} , beide $\sim \xi$. Wie groß? Übergangsbereich?
- "wirkliche" Grenzfläche: Gesamtprofil und Gesamtbreite
 - \Rightarrow Kann man die beiden Theorien trennen?
 - \Rightarrow Konzept eines "intrinsischen Profils" sinnvoll?

Computer-Simulation

- 3D-Ising-Modell
- Ordnungsparameter: spontane Magnetisierung, Grenzfläche zwischen Spin-up- und Spin-down-Domänen

- Monte-Carlo-Simulation mit Wolff-Cluster-Algorithmus
- periodische Randbedingungen in x, y-Richtung, antiperiodische Randbedingungen in z-Richtung ⇒ System bildet eine Grenzfläche aus
- knapp unter der kritischen Temperatur
 → Universalität, Landau-Theorie, roughening
- z. B. $T = 1\% T_c \implies \xi = 4.56$

Computer-Simulation

φ

Ziel:

- Cutoffs B_{intr} , B_{KW} ?
- intrinsisches Profil mit intrinsischer Breite?

Methode:

Betrachten der Grenzfläche auf verschiedenen Größenskalen B, Messen der Dicke w. Erwartung:

- $B < B_{intr}$: Landau-Theorie, $w^2 \sim w_{intr}^2 \sim \xi^2$
- $B > B_{KW}$: Kapillarwellen-Theorie, $w^2 \sim w_{KW}^2 \sim \ln L$

• $B \sim B_{\text{intr}}, B_{KW}$: Übergangsbereich

Praktische Probleme:

- starke Fluktuationen
- Grenzflächen-Position und -Dicke nicht wohldefiniert

Computer-Simulation

Blick auf die x, z-Ebene

Verschiedene Längenskalen

Bilden von Blocks der Größe $B \times B \times D$, $B = 1, 2, 4, \dots, L$

Grenzflächenprofil auf der Längenskala B:

$$\phi_g(z) = \frac{1}{B^2} \sum_{x,y \in B} S(x,y,z)$$

Profile auf verschiedenen Längenskalen

B = 1, 2

UĎ

Grenzflächenposition

Definition der Grenzflächenposition?

- Nulldurchgang des Profils
- Minimum des Profilbetrags
- Integration des Profils: $h = \frac{1}{\phi_{\text{max}}} \sum_{z} \phi_g(z)$

Probleme:

. . .

- Fluktuationen
- Translationsinvarianz
- ⇒ Münster: Rand-Schiebe-Verfahren

Grenzflächenpositionen

Rand-Schiebe-Verfahren:

 Translationsinvarianz durch Verschieben der antiperiodischen Randbedingungen

• Wenn maximal viele Werte dasselbe Vorzeichen haben, ist die Grenzfläche auf dem Rand.

Grenzflächenpositionen

ф

Verteilung der Grenzflächenpositionen

Kapillarwellen-Theorie $\Rightarrow P(h)$ Gauß-Verteilung

 \Rightarrow Kapillar wellen-Theorie erfüllt für $B>5\xi$

 $\Rightarrow B_{\scriptscriptstyle KW} \approx 5\xi$

Verteilung der Grenzflächenpositionen

Kapillarwellen-Theorie $\Rightarrow P(h)$ Gauß-Verteilung mit Varianz $s^2 = \frac{k_B T}{2\pi\sigma} \ln \frac{L}{B_{KW}} \sim \ln L$

\Rightarrow Größenordnung stimmt

Profile

Profilform nicht gut entscheidbar

 \Rightarrow besser Breiten testen

Dicken

Wie Breite messen? \rightarrow Nicht eindeutig! \rightarrow Am besten als zweites Moment einer Gewichtsfunktion p

p berücksichtigt Profilform, Peak an Grenzfläche Wahl der Gewichtsfunktion p

- $p(z) \sim |\phi'_g(z)|$ üblich in der Literatur
- $p(z) \sim (\phi'_g(z))^2$ hat physikalische Interpretation als Energiedichte: $\mathcal{L}(\phi_g(z)) = \frac{1}{2}(\phi'_g(z))^2 + V(\phi_g(z)) \sim (\phi'_g(z))^2$ zweites Moment \Rightarrow numerisch nicht so robust

 $p(z) \sim |\phi_q'(z)|$

 $\Rightarrow B_{\text{intr}} \sim 5\xi$

 $p(z) \sim (\phi'_q(z))^2$

$$\Rightarrow B_{\rm intr} \sim 10\xi$$

 \Rightarrow Intrinsische Breite nicht beobachtbar

Dicken

 $p(z) \sim |\phi_g'(z)|$

 $p(z) \sim (\phi'_g(z))^2$

 \Rightarrow Größenordnungen stimmen

φ

Dicken

 $p(z) \sim |\phi_g'(z)|$

- \Rightarrow Abschätzen von $B_{\scriptscriptstyle KW}$
 - für $p(z) \sim |\phi'_g(z)|$: $B_{KW} \approx 2\xi$ \rightarrow realistisch, wie aus Grenzflächenposition-Verteilung
 - für $p(z) \sim (\phi'_g(z))^2$: $B_{KW} \approx 40\xi$ \rightarrow unrealistisch

Zusammenfassung

Beschreibung von Grenzflächen in der Nähe von T_c :

- Landau-mean-field-Theorie: $a < \lambda < B_{intr}$
- Kapillarwellen-Theorie: $B_{KW} < \lambda < L$
- Faltungsnäherung: $w^2 = w_{intr}^2 + w_{_{KW}}^2$

Ergebnis der Monte-Carlo-Simulation:

- qualitativ gute Übereinstimmung mit der Theorie
- Abschätzung B_{intr} , $B_{KW} \approx 5-10\xi$
- Resultat hängt von der Definition der Dicke ab
- intrinsisches Verhalten nicht beobachtbar

Ausblick

- bessere Simulationen
 - näher an T_c
 - größere Gitter
- bessere Theorien:
 - mean-field \rightarrow Loop-Rechnung (Küster 2001)
 - Kapillarwellen → höhere Terme in
 Gradient-Entwicklung (Meunier 1987)
 - Faltungsnäherung → Berücksichtigung der Wechselwirkung der Fluktuationen

Ψ