# Symmetries On The Lattice

K.Demmouche

January 8, 2006

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

## Contents

• Background, character theory of finite groups

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The cubic group on the lattice  $O_h$
- Representation of  $O_h$  on Wilson loops
- Double group  ${}^2O$  and spinor
- Construction of operator on the lattice

# MOTIVATION

- Spectrum of non-Abelian lattice gauge theories ?
  - $\bullet\,$  Create gauge invariant spin j states on the lattice

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Irreducible operators
- Monte Carlo calculations
- Extract masses from time slice correlations

## Character theory of point groups

• Groups, Axioms A set  $G = \{a, b, c, \dots\}$ 

- $A_1$ : Multiplication  $\circ: G \times G \to G$ .
- $A_2$ : Associativity  $a, b, c \in G$ ,  $(a \circ b) \circ c = a \circ (b \circ c)$ .
- $A_3$ : Identity  $e \in G$ ,  $a \circ e = e \circ a = a$  for all  $a \in G$ .
- A<sub>4</sub> : Inverse,  $a \in G$  there exists  $a^{-1} \in G$  ,  $a \circ a^{-1} = a^{-1} \circ a = e$ .
- Groups with finite number of elements  $\rightarrow$  the *order* of the group G:  $n_G$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# The point group $C_{3v}$

• The point group  $C_{3v}$  (Symmetry group of molecule NH<sub>3</sub>)



 $G = \{R_a(\pi), R_b(\pi), R_c(\pi), E(2\pi), R_{\vec{n}}(2\pi/3), R_{\vec{n}}(-2\pi/3)\}$ noted  $G = \{A, B, C, E, D, F\}$  respectively.

# Structure of Groups

#### • Subgroups:

#### Definition

A subset H of a group G that is itself a group with the same multiplication operation as G is called a *subgroup* of G.

Example: a subgroup of  $C_{3v}$  is the subset E, D, F

• Classes:

#### Definition

An element g of a group G is said to be "**conjugate**" to another element g of G if there exists an element h of G such that

$$g\prime = hgh^{-1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: on can check that  $B = DCD^{-1}$ 

Conjugacy Class

#### Definition

A class of a group G is a set of mutually conjugate elements of G.

The group  $C_{3v}$  has three conjugate classes:  $\phi_1 = E$   $\phi_2 = A, B, C$  $\phi_3 = D, F$ 

Invariant subgroup

#### Definition

A subgroup H of a group G is said to be "invariant" subgroup if

$$ghg^{-1} \in H$$

for every  $h \in H$  and every  $g \in G$ .

All subgroups are invariant if the multiplication operation is *commutative*.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

#### • Group Isomorphism:

### Definition

If  $\Phi$  is one-to-one mapping of a group G onto a group  $G\prime$  of the same order such that

$$\Phi(g_1)\Phi(g_2) = \Phi(g_1g_2)$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for all  $g_1, g_2 \in G$ , then  $\Phi$  is said to be an "isomorphic" mapping.

#### Direct product groups

#### Theorem

The set of pairs  $(g_1, g_2)$  (for  $g_1 \in G_1, g_2 \in G_2$ ) form a group with the group multiplication

$$(g_1, g_2)(g'_1, g'_2) = (g_1g'_1, g_2g'_2)$$

for all  $g_1, g'_1 \in G_1$  and  $g_2, g'_2 \in G_2$ . This group is denoted by  $G_1 \otimes G_2$ , and is called the "direct product" of  $G_1$  with  $G_2$ .

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

# Representation theory of finite groups

Representation

#### Definition

The Homomorphism  $\mathcal{R}: G \to \operatorname{Aut}(V)$ ,  $g \mapsto \mathcal{R}(g)$  of G onto an operator group  $\mathcal{R}$  of linear vector space V is called *Representation* of the group Gwhere V as the *Representation space*, if the representation operators fullfill the multiplication operation as for the group G, i.e

$$\mathcal{R}(g_1)\mathcal{R}(g_2)=\mathcal{R}(g_1g_2).$$

 $d_{\mathcal{R}} = d_V$ 

One says the set  $\mathcal{R}(g), g \in G$  forms a linear  $d_V$ -dimensional representation of the group G. if the correspondence is one-to-one "isomorphism", then the representation is called *faithful*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Representation theory of finite groups

• 2d representation of  $C_{\mathbf{3}v}$ 

### Example

$$\mathcal{R}(E) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \mathcal{R}(A) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$
$$\mathcal{R}(B) = \begin{pmatrix} \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}, \ \mathcal{R}(C) = \begin{pmatrix} \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix},$$
$$\mathcal{R}(D) = \begin{pmatrix} \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{pmatrix}, \ \mathcal{R}(F) = \begin{pmatrix} \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{pmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• equivalence:

### Definition

Two *d*-dimensional representations  $\mathcal{R}$  and  $\mathcal{R}'$  of G are said to be *equivalent* if a "similarity transformation" exists,i.e

$$\mathcal{R}'(g) = S^{-1}\mathcal{R}(g)S\tag{1}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for every  $g \in G$  and where S is non-singular  $d \times d$  matrix.

# Irreducible Representation

#### Definition

Let V be a representation space associated to the representation  $\mathcal{R}$  of the group G, and let  $V_1$  be a subspace of V of less dimension.  $V_1$  is said to be *invariant subspace* of V, if for every  $\mathbf{x} \in V_1$  and  $g \in G$   $\mathcal{R}(g)(\mathbf{x}) \in V_1$ . If such (non-trivial) invariant subspace exists then  $\mathcal{R}$  is a "*Reducible*" representation of G.

#### Definition

A representation of a group G is said to be "irreducible" (*irrep.*) if it is not reducible.

• in several case, the reducible representation is decomposable into direct sum of irreps, where the invariant subspace are orthogonal. In this case,

#### Theorem

If G is a finite group then every reducible representation is G is completely reducible.

# Character of a representation

### Definition

The *Character*  $\chi^{\mathcal{R}}(g)$  of  $g \in G$  in a given  $\mathcal{R}$  representation is defined by

$$\chi^{\mathcal{R}}(g) = \operatorname{Tr} \mathcal{R}(g).$$

#### Theorem

In a given representation of a group G all the elements in the same class have the same character.

• due to the cyclic invariance of the trace

$$\mathsf{Tr}\left(D_{\mathcal{R}}\left(p\right)D_{\mathcal{R}}\left(g\right)D_{\mathcal{R}}\left(p^{-1}
ight)
ight)=\mathsf{Tr}D_{\mathcal{R}}\left(g
ight)$$

for every  $p \in G$ .

#### • Example:

in the 2-dimensional representation of the point group  $C_{3v}$  the character system is given by:

$$\chi^{\mathcal{R}} (\phi_1) = 2$$
  
$$\chi^{\mathcal{R}} (\phi_2) = 0$$
  
$$\chi^{\mathcal{R}} (\phi_3) = -1$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Great Orthogonality Theorem

$$\frac{d_{\mu}}{n_G}\sum_g D^{\mu\dagger}(g)_{ki}D^{\nu}(g)_{jl} = \delta_{\mu\nu}\delta_{ij}\delta_{kl}$$

where  $D^{\mu}$  is the matrix representation of dimension  $d_{\mu}$  of the group G.

#### Theorem

۲

The dimension parameters  $d_{\mu}$  of non-equivalent irreps satisfy

$$\sum_{\mu} d_{\mu}^2 = n_G \; ,$$

consequently the irreps characters satisfy

#### Theorem

$$\sum_{i} \frac{n_{i}}{n_{G}} \chi^{\mu \dagger} (C_{i}) \chi^{\nu} (C_{i}) = \delta_{\mu \nu}$$
$$\sum_{\mu} \frac{n_{i}}{n_{G}} \chi^{\mu} (C_{i}) \chi^{\mu \dagger} (C_{j}) = \delta_{ij}.$$

# Great Orthogonality Theorem

Decomposition of reducible representation onto irreps

#### Theorem

given one reducible representation  $\mathcal{R}$  of a finite group G, it decomposes onto direct sum with multiplicity  $a_{\mu}$  of irreps  $\mathcal{R}^{\mu}$  part of the group G,

$$a_{\nu} = \frac{1}{n_G} \sum_{i} n_i \, \chi^{\nu \dagger} \left( C_i \right) \chi^{\mathcal{R}} \left( C_i \right) \,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### The six important rules

 $\sum_{\mu} d_{\mu}^2 = n_G \; .$ 

 $\chi^{\mu}(\mathsf{E}) = d_{\mu}$ 

2:

1:

3: The characters of irreps act as a set of orthonormal vectors,

$$\sum_{i} \frac{n_i}{n_G} \chi^{\mu \dagger} (C_i) \chi^{\nu} (C_i) = \delta_{\mu \nu} .$$

4 :The characters of all elements of the same class are equal.5 :

$$n_{\text{irreps}} = n_{C_i}$$
 .

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

**6** :The number of elements in a class is a divisor of  $n_G$ .

# Application to $C_{3v}$ point group

- group :  $n_G = 6$
- irreps:  $n_{C_i} = 3 \text{ Classes} \rightarrow 3 \text{ irreps} : \Gamma_1, \Gamma_2, \Gamma_3,$
- dimensions of irreps: 1, 1, 2  $1^2 + 1^2 + 2^2 = 6$
- the elements:

| $C_{3v}$       | E     | A     | B     | C     | D     | F       |
|----------------|-------|-------|-------|-------|-------|---------|
| Γ <sub>1</sub> | 1     | 1     | 1     | 1     | 1     | 1       |
| $\Gamma_2$     | 1     | -1    | -1    | -1    | 1     | 1       |
| $\Gamma_3$     | $M_1$ | $M_2$ | $M_3$ | $M_4$ | $M_5$ | $M_{6}$ |

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• where

$$M_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, M_{2} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$
$$M_{3} = \begin{pmatrix} \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}, M_{4} = \begin{pmatrix} \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix},$$
$$M_{5} = \begin{pmatrix} \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{pmatrix}, M_{6} = \begin{pmatrix} \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{pmatrix}.$$

• Characters table :

$$\begin{array}{c|cccc} C_{3\upsilon} & \phi_1 & 3\phi_2 & 2\phi_3 \\ \hline \Gamma_1 & 1 & 1 & 1 \\ \Gamma_2 & 1 & -1 & 1 \\ \Gamma_3 & 2 & 0 & -1 \end{array}$$

<□ > < @ > < E > < E > E のQ @

## Hints

 $\bullet~ Q:$  how to compute the characters without the knowledge of the representation matrices ?

**A**: resolve the equation system given by the orthogonality theorem of the character . . .

(non linear system !)

- ロ ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4

 ${\bf Q}:$  why are the characters are necessary ?

A: allowing decomposition of given Reducible rep.

## Example: 3-dimensional rep. of $C_{3v}$ group

3-d rep ⇒ Reducible..
in ℝ<sup>3</sup> we choose a basis {*e*<sub>1</sub>, *e*<sub>2</sub>, *e*<sub>3</sub>}
hi
F = Rot<sub>*e*<sub>3</sub></sub>(<sup>2π</sup>/<sub>3</sub>)

$$F(\vec{e}_1) = \sqrt{\frac{3}{4}}\vec{e}_2 - \frac{1}{2}\vec{e}_1$$
$$F(\vec{e}_2) = -\sqrt{\frac{3}{4}}\vec{e}_1 - \frac{1}{2}\vec{e}_2$$
$$F(\vec{e}_3) = \vec{e}_3$$

then the matrix representation of the element  $\boldsymbol{F}$  is

$$\mathcal{D}(F) = \begin{pmatrix} \frac{-1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{-1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

◆□▶ <□▶ < □▶ < □▶ < □▶ = - のへで</p>

 $\bullet\,$  The characters in the reducible representation  ${\cal D}$  for the three classes are:

$$\chi^{\mathcal{D}}(\phi_1) = 3,$$
  
$$\chi^{\mathcal{D}}(\phi_2) = -1,$$
  
$$\chi^{\mathcal{D}}(\phi_3) = 0.$$

the multiplicity factors are then,

$$a_{\Gamma_1} = \frac{1}{6}(1.1.3 + 3.1.(-1) + 2.1.0) = 0,$$
  

$$a_{\Gamma_2} = \frac{1}{6}(1.1.3 + 3.(-1).(-1) + 2.1.0) = 1,$$
  

$$a_{\Gamma_3} = \frac{1}{6}(1.2.3 + 3.0.(-1) + 2.(-1).0) = 1.$$

then,

$$\mathcal{D} = \Gamma_2 \oplus \Gamma_3.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

# The lattice cubic group O

- 24 elements
- non abelian
- geometrical symmetric shape: The cube
- one **point of symmetry** (the center of the cube) fixed under action of all elements
- 13 axis of symmetry
- elements  $\implies$  rotations of:  $\pi$ ,  $\pm \frac{\pi}{2}$  and  $\pm \frac{2\pi}{3}$



## Order of the axis

- Ox, Oy and Oz: 4
- $O\alpha$ ,  $O\beta$ ,  $O\gamma$  and  $O\delta$  : 3
- Oa, Ob, Oc, Od, Oe and Of: 2

#### Counting the number of elements:

• 3 C<sub>4</sub>-axis C<sub>4i</sub>,  $i \in \{x, y, z\}$  *n*-times rotations of  $\frac{\pi}{2}$  (n = 1, ..., 4)• 4 C<sub>3</sub>-axis C<sub>3i</sub>,  $i \in \{\alpha, ..., \delta\}$  *n*-times rotations of  $\frac{2\pi}{3}$  (n = 1, 2, 3)• 6 C<sub>2</sub>-axis C<sub>2i</sub>,  $i \in \{a, ..., f\}$  *n*-times rotations of  $\pi$  (n = 1, 2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

the number of elements = 3.3 + 4.2 + 6.1 + 1 = 24

### Conjugate classes

•  $E = \{id\}$ : Identity •  $6C_2 = \{C_{2i}(\varphi)\}$  with  $i \in \{a, \dots, f\}$  and  $\varphi = \pi$ •  $8C_3 = \{C_{3i}(\varphi)\}$  with  $i \in \{\alpha, \dots, \delta\}$  and  $\varphi = \pm \frac{2\pi}{3}$ •  $6C_4 = \{C_{4i}(\varphi)\}$  with  $i \in \{x, y, z\}$  and  $\varphi = \pm \frac{\pi}{2}$ •  $3C_4^2 = \{C_{4i}(\varphi)\}$  with  $i \in \{x, y, z\}$  and  $\varphi = \pi$ 

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

# Irreps of O

• 5 conjugate classes  $\implies$  5 Irreps  $d_{\mu} = (d_1, d_2, d_3, d_4, d_5)$  where  $\sum_{\mu=1}^{5} d_{\mu}^2 = 24$ solution: dim =  $(1, 1, 2, 3, 3) \implies A_1, A_2, E, T_1, T_2.$ 

• Table of characters

| Conj-Classes   |       | E | $C_2$ | $C_3$ | $C_4$ | $C_4^2$ |
|----------------|-------|---|-------|-------|-------|---------|
| -              |       | 1 | 6     | 8     | 6     | 3       |
|                |       |   |       |       |       |         |
| Representation | $A_1$ | 1 | 1     | 1     | 1     | 1       |
|                | $A_2$ | 1 | -1    | 1     | -1    | 1       |
|                | E     | 2 | 0     | -1    | 0     | 2       |
|                | $T_1$ | 3 | -1    | 0     | 1     | -1      |
|                | $T_2$ | 3 | 1     | 0     | -1    | -1      |

## The full cubic group O<sub>h</sub>

٥

$$O_h\,=\,O\times\{e,I\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Inversions through the point symmetry of the cube.

- number of elements = 48
- 10 conjugate classes  $\implies$  10 irreps

# Table of characters

| Conj. Cl. |             | E | $C_2$ | $C_3$ | $C_4$ | $C_{4}^{2}$ | Ι  | $IC_2$ | $IC_3$ | $IC_4$ | $IC_{4}^{2}$ |
|-----------|-------------|---|-------|-------|-------|-------------|----|--------|--------|--------|--------------|
|           |             | 1 | 6     | 8     | 6     | 3           | 1  | 6      | 8      | 6      | 3            |
|           |             |   |       |       |       |             |    |        |        |        |              |
| Rep.      | $A_1^+$     | 1 | 1     | 1     | 1     | 1           | 1  | 1      | 1      | 1      | 1            |
|           | $A_2^+$     | 1 | -1    | 1     | -1    | 1           | 1  | -1     | 1      | -1     | 1            |
| P=1       | $E^{+}$     | 2 | 0     | -1    | 0     | 2           | 2  | 0      | -1     | 0      | 2            |
|           | $T_1^+$     | 3 | -1    | 0     | 1     | -1          | 3  | -1     | 0      | 1      | -1           |
|           | $T_2^+$     | 3 | 1     | 0     | -1    | -1          | 3  | 1      | 0      | -1     | -1           |
|           | $A_1^-$     | 1 | 1     | 1     | 1     | 1           | -1 | -1     | -1     | -1     | -1           |
|           | $A_2^-$     | 1 | -1    | 1     | -1    | 1           | -1 | 1      | -1     | 1      | -1           |
| P=-1      | $E^{-}$     | 2 | 0     | -1    | 0     | 2           | -2 | 0      | 1      | 0      | -2           |
|           | $T_{1}^{-}$ | 3 | -1    | 0     | 1     | -1          | -3 | 1      | 0      | -1     | 1            |
|           | $T_{2}^{-}$ | 3 | 1     | 0     | -1    | -1          | -3 | -1     | 0      | 1      | 1            |

# The spin (bosonic) states

| continuum SO(3) $\Longrightarrow$ subgroup O<br>$\mathcal{R}^{j}$ ; $j = 0, 1, 2, \ldots \Longrightarrow \mathcal{R}^{j}_{O}$ subduced representation |     |                    |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|--|--|--|
| S                                                                                                                                                     | pin | Decomposition into |  |  |  |
|                                                                                                                                                       | j   | Irreps of O        |  |  |  |

|    | •                                                   |
|----|-----------------------------------------------------|
|    |                                                     |
| 0  | $A_1$                                               |
| 1  | $T_1$                                               |
| 2  | $E \oplus T_2$                                      |
| 3  | $A_2 \oplus T_1 \oplus T_2$                         |
| 4  | $A_1 \oplus E \oplus T_1 \oplus T_2$                |
| 5  | $E\oplus 2T_1\oplus T_2$                            |
| 6  | $A_1 \oplus A_2 \oplus E \oplus T_1 \oplus 2T_2$    |
| 7  | $A_2 \oplus E \oplus 2T_1 \oplus 2T_2$              |
| 8  | $A_1 \oplus 2E \oplus 2T_1 \oplus 2T_2$             |
| 9  | $A_1 \oplus A_2 \oplus E \oplus 3T_1 \oplus 2T_2$   |
| 10 | $A_1 \oplus A_2 \oplus 2E \oplus 2T_1 \oplus 3T_2$  |
| 11 | $A_2 \oplus 2E \oplus 3T_1 \oplus 3T_2$             |
| 12 | $2A_1 \oplus A_2 \oplus 2E \oplus 3T_1 \oplus 3T_2$ |

each Irrep. of O can describe spin components of spin-jpirreps. A = -9 and A = -9

## Inverse problem !

| Irreps ${\mathcal R}$ of cubic group | contribution to spin $j$ in the continuum                               |
|--------------------------------------|-------------------------------------------------------------------------|
| $A_1 \\ A_2 \\ E \\ T_1 \\ T_2$      | 0, 4, 6, 8,<br>3, 6, 7, 9,<br>2, 4, 5, 6,<br>1, 3, 4, 5,<br>2, 3, 4, 5, |

 $\mathsf{O}\in\mathsf{SO}(3)\longrightarrow\mathcal{R}^j_\mathsf{O}$  is "subduced representation" of  $\mathcal{R}^j$ 

#### • Spin 2

#### Example

spin 2  $\longrightarrow$  doublet E and triplet  $T_2 \longrightarrow m(E)$  and  $m(T_2)$  in the continuum  $\longrightarrow m(E)/m(T_2) \approx 1$ 

## Representation theory of $O_h$ on the Wilson loops

• Gluball states: A physical state of a gauge theory on the lattice is created by the action of **lattice gauge invariant operators** on the vacuum, for example:

$$\psi(ec{x},t) = \sum_{i} c_{i} \mathcal{O}_{i}(ec{x},t) \mid \Omega 
angle \quad ext{with} \quad c_{i} \in \mathbb{C}$$
 $\mathcal{O}_{i}(ec{x},t) = \operatorname{Tr} U(\mathcal{C}_{i}) - \langle \operatorname{Tr} U(\mathcal{C}_{i}) 
angle$ 

 $C_i$  is a closed links product: "Wilson loops".

• The zero-momentum time slice operators are defined as

$$\mathcal{O}_{i}\left(t
ight)=rac{1}{\sqrt{L^{3}}}\sum_{ec{x}}\mathcal{O}_{i}\left(ec{x},t
ight)\;.$$

The trivial Wilson loop: the plaquette variable



(日) (雪) (日) (日) (日)

$$U_p = U_{x;\mu\nu} = U_{x;\nu}^{\dagger} U_{x+a\hat{\nu};\mu}^{\dagger} U_{x+a\hat{\mu};\nu} U_{x;\mu}$$

one constructs six simple space plaquettes

$$U_{(\vec{x};12)}, U_{(\vec{x};31)}, U_{(\vec{x};23)}, U_{(\vec{x};21)}, U_{(\vec{x};13)}, U_{(\vec{x};32)}$$

#### • Charge Conjugation:

۲

it changes the orientation of the Wilson loops,

$$\mathsf{Tr}\left\{CU_p\right\} = \left(\mathsf{Tr}\,U_p\right)^* \;.$$

for a given Wilson loop of length L it is represented by L-Tupel

$$(\mu_1,\ldots,\mu_L)$$
 with  $\sum_{i=1}^L \hat{\mu_i} = 0$ 

Wilson loop is invariant under cyclic permutation of the tupel

$$[\mu_1,\ldots,\mu_L]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### • C-transformation

$$C[\mu_1, \mu_2, \dots, \mu_L] \equiv [-\mu_L, \dots, -\mu_2, -\mu_1]$$
.

• *P*-transformation

$$P[\mu_1, \mu_2, \dots, \mu_L] \equiv [-\mu_1, -\mu_2, \dots, -\mu_L]$$
.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Example: Wilson loop of length 4



◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @ >

#### Adopting the convention



the three plaquettes are labeled

$$O_1 = [1, 2, -1, -2], \quad O_2 = [3, 1, -3, -1] \text{ and } O_3 = [2, 3, -2, -3]$$

• plaquettes are *P*-invariants, look for linear combinations to obtain *C*-eigenstates, these are defined by

$$[\mu_1, \ldots, \mu_L]_{\pm} \equiv [\mu_1, \ldots, \mu_L] \pm [-\mu_L, \ldots, -\mu_1],$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



this translates

$$CO_{3\pm} = \pm O_{3\pm}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへ⊙
# Transformation under the cubic group

• behaviour O<sub>3</sub> under C<sub>4y</sub>



• Representation  $\tilde{\mathcal{R}}(g)$ 

$$\tilde{\mathcal{R}}(g)\left(\left[\mu_1,\ldots,\mu_L\right]_{\pm}\right) \equiv \left[T(g)\,\hat{\mu}_1,\ldots,T(g)\,\hat{\mu}_L\right]_{\pm}$$

T(g) are the canonical 3d vector representation matrices. continue to the previous example:  $O_{3\pm} = [2, 3, -2, -3]_{\pm}$  and the element  $C_{4y} \in O$  with the representation matrix of  $T_1$ 

$$T(C_{4y}) = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

۲

$$\begin{split} \tilde{\mathcal{R}} \left( \mathsf{C}_{4y} \right) \left( [2, 3, -2, -3]_{\pm} \right) &= \left[ T \left( \mathsf{C}_{4y} \right) \hat{2}, \dots, T \left( \mathsf{C}_{4y} \right) \left( - \hat{3} \right) \right]_{\pm} \\ &= \left[ 2, -1, -2, 1 \right]_{\pm} \\ &= \left[ 1, 2, -1, -2 \right]_{\pm} \\ &= O_{1 \pm} \, . \end{split}$$

• continuing to  $\mathit{O}_1$  and  $\mathit{O}_2,\mathsf{C}=+1$ 

$$D_{ ilde{\mathcal{R}}^{++}}\left(\mathsf{C}_{4y}
ight)=\left(egin{array}{ccc} & 1 \ & 1 \ & 1 \end{array}
ight)$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

# Characters

• class E Id:  $O_{1 \pm} \longmapsto O_{1 \pm}$   $O_{2 \pm} \longmapsto O_{2 \pm}$  $O_{3 \pm} \longmapsto O_{3 \pm}$ 

• class  $C_2$ 

$$C_{2a}: \qquad O_{1\pm} \longmapsto CO_{1\pm} \\ O_{2\pm} \longmapsto O_{3\pm} \\ O_{3\pm} \longmapsto O_{2\pm}$$

• class C<sub>3</sub>

$$C_{3\alpha}: \qquad O_{1\pm} \longmapsto CO_{2\pm} \\ O_{2\pm} \longmapsto O_{3\pm} \\ O_{3\pm} \longmapsto CO_{1\pm}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

• class 
$$C_4$$
  
 $C_{4x}$ :  
 $O_{1\pm} \longmapsto O_{2\pm}$   
 $O_{2\pm} \longmapsto CO_{1\pm}$   
 $O_{3\pm} \longmapsto O_{3\pm}$ 

class 
$$C_4^2$$
  
 $C_{2x}$ :  
 $O_{1\pm} \longmapsto CO_{1\pm}$   
 $O_{2\pm} \longmapsto CO_{2\pm}$   
 $O_{3\pm} \longmapsto O_{3\pm}$ 

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

۲

# Decomposition

۲

$$a_{\mu} = \frac{1}{n_G} \sum_{i} n_i \, \chi^{\mu} \left( C_i \right) \chi^{\tilde{\mathcal{R}}} \left( C_i \right) \,,$$

◆□ > ◆□ > ◆臣 > ◆臣 > ―臣 = ∽ へ ⊙

# The case: C = +1

۲

$$\begin{aligned} a_{A_1} &= \frac{1}{24} \left( 1 \cdot 1 \cdot 3 + 6 \cdot 1 \cdot 1 + 8 \cdot 1 \cdot 0 + 6 \cdot 1 \cdot 1 + 3 \cdot 1 \cdot 3 \right) = 1 \\ a_{A_2} &= \frac{1}{24} \left( 1 \cdot 1 \cdot 3 + 6 \cdot (-1) \cdot 1 + 8 \cdot 1 \cdot 0 + 6 \cdot (-1) \cdot 1 + 3 \cdot 1 \cdot 3 \right) = 0 \\ a_E &= \frac{1}{24} \left( 1 \cdot 2 \cdot 3 + 6 \cdot 0 \cdot 1 + 8 \cdot (-1) \cdot 0 + 6 \cdot 0 \cdot 1 + 3 \cdot 2 \cdot 3 \right) = 1 \\ a_{T_1} &= \frac{1}{24} \left( 1 \cdot 3 \cdot 3 + 6 \cdot (-1) \cdot 1 + 8 \cdot 0 \cdot 0 + 6 \cdot 1 \cdot 1 + 3 \cdot (-1) \cdot 3 \right) = 0 \\ a_{T_2} &= \frac{1}{24} \left( 1 \cdot 3 \cdot 3 + 6 \cdot 1 \cdot 1 + 8 \cdot 0 \cdot 0 + 6 \cdot (-1) \cdot 1 + 3 \cdot (-1) \cdot 3 \right) = 0 \end{aligned}$$

.

<□ > < @ > < E > < E > E のQ @

The representation  $\tilde{\mathcal{R}}^{++}$  decomposes into

$$\tilde{\mathcal{R}}^{++} = A_1^{++} \oplus E^{++}$$

## the case: C = -1

۲

 $egin{array}{rcl} a_{A_1}&=&0\ a_{A_2}&=&0\ a_{E}&=&0\ a_{T_1}&=&1\ a_{T_2}&=&0\,, \end{array}$ 

one has

$$\mathcal{R}^{\tilde{+}-} = T_1^{+-} \; ,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

# Summarising the results

|                                    |       |        |            | •       |       |       |        |            |       |       |
|------------------------------------|-------|--------|------------|---------|-------|-------|--------|------------|-------|-------|
| irreps of O                        | $A_1$ | $A_2$  | E          | $T_1$   | $T_2$ | $A_1$ | $A_2$  | E          | $T_1$ | $T_2$ |
| dim of irreps                      | 1     | 1      | 2          | 3       | 3     | 1     | 1      | 2          | 3     | 3     |
| dim of $	ilde{\mathcal{R}}$ :<br>3 | 1     | С<br>0 | ' = +<br>1 | -1<br>0 | 0     | 0     | С<br>0 | ' = -<br>0 | -1    | 0     |

# Wave functions, The orthonormal basis

• One has at the end to determine the orthonormal basis corresponding to each invariant subspace of the 3-*d* representation space, these basis are formed by linear combinations of the Wilson loop operators treated above.

for this purpose we look for a basis where each  $D_{\tilde{\mathcal{R}}}(g)$  for all g have a block diagonal form, this happens when one finds a diagonalized matrix C which commutes with all  $D_{\tilde{\mathcal{R}}}(g)$  and when A is the matrix which diagonalizes C, one can read off directly the orthonormal basis of the invariant subspaces from the columns of the matrix  $A^{-1}$ . one can sum all the matrices of each class to obtain such a C matrix.

the case: C = +1

• 
$$C(E) = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix}$$
  
 $C(C_3) = \begin{pmatrix} 0 & 4 & 4 \\ 4 & 0 & 4 \\ 4 & 4 & 0 \end{pmatrix}$   
 $C(C_4^2) = \begin{pmatrix} 3 & & \\ & 3 & \\ & & 3 \end{pmatrix}$ .

◆□ > ◆□ > ◆臣 > ◆臣 > ―臣 = ∽ へ ⊙

# ONB

 $\bullet$  eigenvectors from  $A^{-1}$ 

$$A^{-1} = \left(\begin{array}{rrr} 1 & -2 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & -1 \end{array}\right) \;,$$

• Finally the orthonormal basis are summarized in the following table:

| Representation $\mathcal{\tilde{R}}$ | Plaquettes linear |
|--------------------------------------|-------------------|
| of O                                 | combinations      |

$$\begin{array}{ccc} A_1^{++} & O_{1\,+} + O_{2\,+} + O_{3\,+} \\ \hline E^{++} & -2O_{1\,+} + O_{2\,+} + O_{3\,+} & , \\ O_{2\,+} - O_{3\,+} & \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

## the case: C = -1

In this case the 3-d representation  $\tilde{\mathcal{R}}$  is irrep of O and it is exactly the vector representation  $T_1$  of O, and it has an eigenspace spanned by three Wilson loop operators, consequently the C matrices are diagonals

$$C(E) = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix} \qquad C(C_2) = \begin{pmatrix} -2 & & \\ & -2 & \\ & & -2 \end{pmatrix}$$
$$C(C_3) = \begin{pmatrix} 0 & & \\ & 0 & \\ & & 0 \end{pmatrix} \qquad C(C_4) = \begin{pmatrix} 2 & & \\ & 2 & \\ & & 2 \end{pmatrix}$$
$$C(C_4^2) = \begin{pmatrix} -1 & & \\ & & -1 & \\ & & -1 \end{pmatrix}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

# ONB

#### Table

| Rep. $	ilde{\mathcal{R}}$ | Plaquettes linear |
|---------------------------|-------------------|
| of O                      | combinations      |
|                           |                   |
| $T_{1}^{+-}$              | $O_{1-}$ ,        |
|                           | $O_{2-}$ ,        |
|                           | O <sub>3 -</sub>  |

• Plauettes In SU(2) gauge theory the matrices (links) have real trace, the trace of the plaquette is also real, a representation  $T_1^{+-}$  does not exist, in the case of SU(3) the ONB are given by the imaginary part of the Plaquette trace.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Wilson loop of length greater than 4

The same strategy is to be followed, for example: loops of length 6, there are three different prototypes which can be distinguished:

• double plaquettes (6):



• twisted plaquettes (4):



# Twisted plaquettes



◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @ >

Summary: The Irreps content of the cubic group representation on the Wilson loop up to length 6

- simple plaquette
- double plaquette
- twisted plaquette

| $A_{1}^{++}$ | $A_{2}^{++}$ | $E^{++}$ | $T_{1}^{++}$ | $T_{2}^{++}$ | $A_1^{+-}$ | $A_{2}^{+-}$ | $E^{+-}$ | $T_{1}^{+-}$ | $T_{2}^{+-}$ |
|--------------|--------------|----------|--------------|--------------|------------|--------------|----------|--------------|--------------|
| 1            | 1            | 2        | 3            | 3            | 1          | 1            | 2        | 3            | 3            |
|              | PC =         | +1, +1   |              |              | PC =       | +1, -1       |          |              |              |
| 1            | 0            | 1        | 0            | 0            | 0          | 0            | 0        | 1            | 0            |
| 1            | 1            | 2        | 0            | 0            | 0          | 0            | 0        | 1            | 1            |
| 1            | 0            | 0        | 0            | 1            | 0          | 1            | 0        | 1            | 0            |

### The orthonormal basis of twisted loops



(ロ)、(型)、(E)、(E)、 E、 のQの

# The double group $^{2}O$ of the cubic group O

#### Fermionic states

Double space groups come into play when fermion spin functions are introduced. Consider the l-th irrep of SO(3), the character satisfies

$$\chi^l(\alpha+2\pi)=(-)^{2l}\chi^l(\alpha),$$

for integer *l* one finds the expected results. For half-integer (such as occurs for SU(2) the universal covering group of SO(3)) this gives χ<sup>l</sup>(α + 2π) = -χ<sup>l</sup>(α). However,

$$\chi^l(\alpha \pm 4\pi) = \chi^l(\alpha) ,$$

then the rotation in this case through  $4\pi$  is the Identity E, and through  $2\pi$  is the symmetry operation J such that  $J^2 = E$ .

O is finite subgoup of SO(3) ⇒ <sup>2</sup>O is finite subgoup of SU(2).
 bosonic (tensor) irreps ⇒ bosonic and fermionic (spinor) irreps.

## double group elements

• The rotation of the cube through  $2\pi$  produces a negative identity.

1

 $\downarrow$ 

- the doubling of the order of the symmetry axis.
- The number of the double group elements is twice the number elements of the cubic group  $2 \times 24$ .
  - . ↓

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• but the number of the irreps is not necessary twice !

# The elements

#### They are summarized in the following:

| Conjugate classes of O                    | $\varphi$            | Conjugate classes of <sup>2</sup> O | $\varphi$                                                         |
|-------------------------------------------|----------------------|-------------------------------------|-------------------------------------------------------------------|
| $E = \{id\}$                              | 2π                   | $E = \{id\}$ $J = \{-id\}$          | 4π<br>2π                                                          |
| $6C_{2} = \{C_{2i}\left(\varphi\right)\}$ | π                    | $12C_{4}$                           | $\pm\pi$                                                          |
| $8C_{3} = \{C_{3i}\left(\varphi\right)\}$ | $\pm \frac{2\pi}{3}$ | $\frac{8C_6}{8C_6^2}$               | $\begin{array}{c}\pm\frac{2\pi}{3}\\\pm\frac{4\pi}{3}\end{array}$ |
| $6C_{4} = \{C_{4i}\left(\varphi\right)\}$ | $\pm \frac{\pi}{2}$  | $6C_8$<br>$6C_8'$                   | $\begin{array}{c}\pm\frac{\pi}{2}\\\pm\frac{3\pi}{2}\end{array}$  |
| $3C_4^2 = \{C_{4i}\left(\varphi\right)\}$ | π                    | $6C_8^2$                            | $\pm\pi$                                                          |

## Irreps

- <sup>2</sup>O has 8 classes  $\implies$  8 irreps.  $(d_{G_1}, d_{G_2}, d_H) = (2, 2, 4)$
- The irreps  $\mathcal{R}^j$  of SU(2) are subduced representations of  ${}^2O$  and they decompose into irreps of  ${}^2O$  to describe spin j particles on the lattice. The spin content are:

| SU(2) Spin | Its decomposition in       |
|------------|----------------------------|
| j          | irreps of <sup>2</sup> O   |
|            |                            |
| 1/2        | $G_1$                      |
| 3/2        | H                          |
| 5/2        | $G_2 \oplus H$             |
| 7/2        | $G_1 \oplus G_2 \oplus H$  |
| 9/2        | $G_1 \oplus 2H$            |
| 11/2       | $G_1 \oplus G_2 \oplus 2H$ |

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# The characters of $G_1$ , $G_2$ and H

Using the formula of charcters of SU(2) irreps,

| Conj. Class. E | J      | $C_4$  | $C_{6}^{2}$ | $C_{6}$      | $C_8$        | $C'_8$       | $C_{8}^{2}$ |          |
|----------------|--------|--------|-------------|--------------|--------------|--------------|-------------|----------|
| num. elem. 1   | 1      | 12     | 8           | 8            | 6            | 6            | 6           |          |
|                |        |        |             |              |              |              |             |          |
| $G_1$          | 2      | -2     | 0           | -1           | 1            | -√2          | $\sqrt{2}$  | 0        |
| $G_2$          | 2      | -2     | 0           | -1           | 1            | $\sqrt{2}$   | $-\sqrt{2}$ | 0        |
| H              | 4      | -4     | 0           | 1            | -1           | 0            | 0           | 0        |
|                |        |        |             |              |              |              |             |          |
| heta           | $4\pi$ | $2\pi$ | $\pm\pi$    | $\pm 4\pi/3$ | $\pm 2\pi/3$ | $\pm 3\pi/2$ | $\pm \pi/2$ | $\pm\pi$ |

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

# Spinors

- **Q:** In which Representation  $\tilde{\mathcal{R}}$  of <sup>2</sup>O transforms a spinor ?
- A: First, find the characters of its rotation matrices, and then apply the formula to find the mutiplicity of irreps within  $\tilde{\mathcal{R}}$ .

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Rotations

$$\psi_{\alpha} \longmapsto \psi'_{\alpha} = S_{\mathsf{Rot.}(\alpha\beta)}(n,\theta)\psi_{\beta} ,$$

where

$$S_{\text{Rot.}}(n,\theta) = \exp\left(\frac{i}{2}\theta\Sigma \cdot n\right).$$

Characters

۲

| Conj. Class.                                  | E | J  | $C_4$ | $C_{6}^{2}$ | $C_{6}$ | $C_8$        | $C'_{8}$    | $C_{8}^{2}$ |
|-----------------------------------------------|---|----|-------|-------------|---------|--------------|-------------|-------------|
| $\chi^{\tilde{\mathcal{R}}}(S_{Rot}(\theta))$ | 4 | -4 | 0     | -2          | 2       | $-2\sqrt{2}$ | $2\sqrt{2}$ | 0           |

• Using the fomula for the multiplicity of irreps occuring in  $\tilde{\mathcal{R}}$ ,

$$a_{G_1} = 2,$$
  
 $a_{G_2} = 0,$   
 $a_H = 0.$ 

$$\tilde{\mathcal{R}} = 2 G_1 = G_1 \oplus G_1 \; .$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 里 ○ ○ ○ ○

# Spinors

• To include the parity transformation the double group is extended by constructing the product  ${}^{2}O \otimes \{e, I\}$  to get the *the full double group*  ${}^{2}O_{h}$ , the spinor now is transforming in the *irreducible* representation  $\tilde{\mathcal{R}}^{\pm} = G_{1}^{\pm} \oplus G_{1}^{\pm}$  of the  ${}^{2}O_{h}$  group.

# Reprentation of ${}^{2}O_{h}$ on some Mixed Majorana fermion and Links operators

#### • Example of N=1 SU(2) SYM operators

- Goal: Spectrum of gauge theory on the lattice, Gluballs, Hadrons,...
- Generate field configuations of the theory.
- $\implies$  Construction of gauge invariant lattice operators (Observables) with given spin j and PC content, ONB.
- Monte Carlo simulation of lattice operators  $\rightarrow$  Time slice correlations.
- $\bullet\,$  Mass estimates in lattice unit  $\to\,$  Fit, estimating methods,  $\ldots\,$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## Majorana-Majorana operators

• Majorana spinor has 2 degrees of freedom occuring positive charge conjugation C.

$$\lambda = \begin{pmatrix} \lambda^R \\ \lambda^L \end{pmatrix},$$
$$\bar{\lambda} = \lambda^t C \\ \lambda^C = \lambda$$

• From two Majorana fermion  $\phi$  and  $\chi$  one can form bilinear covariants

$$\bar{\phi}M\chi = \{ \begin{array}{ll} +(\bar{\chi}M\phi) & M = 1, \ \gamma_5\gamma_\mu, \ \gamma_5\\ -(\bar{\chi}M\phi) & M = \gamma_\mu, \ [\gamma_\mu, \gamma_\mu] \end{array} \}$$

in particular, if from single Majorana, one can form only

 $\bar{\lambda}\lambda, \quad \bar{\lambda}\gamma_5\gamma_\mu\lambda, \quad \bar{\lambda}\gamma_5\lambda.$ 

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## 1- Adjoint scalar-like mesons

• First, the Majorana-Majorana operator is created on a lattice site by

$$\bar{\lambda}\lambda = \bar{\lambda}(x)\lambda(x)$$

and it transforms in the continum as a Lorentz scalar ! (true scalar)

$$\bar{\lambda}'\lambda' = \bar{\lambda}S^{-1}S\lambda = \bar{\lambda}\lambda \; .$$

• Under the action of elements of  ${}^{2}O$  which are also elements of the Lorentz group, this remains also a trivial scalar occuring P = +1 in the same it transforms in the irrep  $A_{1}^{++}$  of  ${}^{2}O_{h}$ . In the continum it transforms in (0,0) irrep of the Lorentz group with parity, it has the quantum number

$$J^{PC} = 0^{++} \Longrightarrow$$
 adjoint meson a- $f_0$ .

• In the same way one can create a non trivial scalar,

$$\bar{\lambda}\gamma_5\lambda$$

This is a Lorentz pseudoscalar with  $J^{PC} = 0^{-+}$  transforming in the  $A_1^{-+}$  irrep of  ${}^2O_h$ .

# 2- Adjoint vector-like mesons

• The vector supermultiplet of N=1 SYM contains also a vector particle (Boson / triplet), one candidate can be the **vector**  $A_{\mu} = \bar{\lambda}\gamma_5\gamma_{\mu}\lambda$ , the Lorentz transformation of Dirac matrices are

$$S^{-1}(\Lambda)\gamma_5(\Lambda)S = \gamma_5 ,$$
  

$$S^{-1}(\Lambda)\gamma^{\mu}(\Lambda)S = \Lambda^{\mu}_{\nu}\gamma^{\nu}$$

If we restrict the rotations A to the elements of the cubic group, this operator transforms in the  $T_1^{++}$  of  ${}^2O_h$ , and will dscribe a spin  $J^{PC} = 1^{++}$  particle.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# The Majorana-link-majorana

 This split-point operator gauge invariant and is formed of two links and two Majoran on two distant lattice sites,

$$O_{\mu} = \mathsf{Tr}\{\overline{\lambda}(x)U_{\mu}^{\dagger}(x)\mathsf{\Gamma}\lambda(x+a\hat{\mu})U_{\mu}(x)\}; \quad \mu = 1, 2, 3$$
  
 $\mathsf{\Gamma} = 1, \gamma_5.$ 

diagramatically represented by



• We distinguish three independent basic operators,

$$\lambda = O_1 \qquad \downarrow \qquad = O_2 \qquad \bar{\lambda} \longleftrightarrow \lambda = O_3$$

$$\bar{\lambda} \qquad = O_2 \qquad \bar{\lambda} \longleftrightarrow \lambda = O_3$$

PC

For  $\Gamma = 1$  this operator is PC = +1 invariant. The content of this operator has two sectors:

• Majorana sector:

The bilinear covariant  $\bar{\lambda}(x)\lambda(x+a\hat{\mu})$  is Lorentz trivial

$$\overset{\Downarrow}{\mathcal{R}_{MS}} = A_1^{++}$$

Links sector:

The transformation under the elements of  $O_h$  of the three basis  $O_1, O_2$  and  $O_3$  (three dimensions) shows that the representation matrices of  $\mathcal{R}_{LS}$  are the same one as the proper rotations in three dimensions.

$$\overset{\Downarrow}{\mathcal{R}_{LS} = T_1^{++} }$$

• *R* ?

We need now to combine the  $O_h$  representation of the Majorana bilinear with that of spatial links-loop. The combined operator  $O_\mu$  will lie in a representation given by the Glebsch-Gordon decomposition of representations.

# **Representations Product**

#### Theorem

For two given unitary irreps  $\mathcal{R}^{\mu}$  and  $\mathcal{R}^{\nu}$  of a group G with dimensions  $d_{\mu}$ and  $d_{\nu}$  respectively, represented by their representation matrices  $D^{\mu}(g)$ and  $D^{\nu}(g)$ , then the matrices

$$D^{\mu\otimes
u}(g):=D^{\mu}(g)\otimes D^{
u}(g)$$

for all  $g \in G$  are fixed in a unitary representation  $\mathcal{R}^{\mu} \otimes \mathcal{R}^{\nu}$  of dimension  $d_{\mu} \cdot d_{\nu}$ .

For the character of the representations tensor product, one has

$$\chi^{\mathcal{R}^{\mu}\otimes\mathcal{R}^{\nu}}(g) = \chi^{\mathcal{R}^{\mu}}(g) \ \chi^{\mathcal{R}^{\nu}}(g) \ .$$

The Majorana-link-Majorana operator transforms in

$$\mathcal{R}^{PC} = \mathcal{R}_{MS} \otimes \mathcal{R}_{LS} = A_1^{\pm +} \otimes T_1^{++} = T_1^{\pm +}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

irrep of  $O_h$ .

## The wave function of irreducible M-L-M operator:

• spin content:

The lowest spin content of Majorana-link-Majorana is J = 1 or also  $J = 3, 4, 5, \ldots$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Majorana-plaquette operator

It is given by

$$\operatorname{Tr} \left\{ U_{\mu\nu}(x)\lambda_{\alpha} \right\} = U_{\mu\nu}^{rs}(x)\lambda_{\alpha}^{a}(T^{a})^{sr}$$

• There are 12 = 3.4 independent operators of this form which can be built. The treatment of such operator is closely analog to the Wilson loop of length 8 L-plaquette

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# L-plaquette





Constuctions: First *P*-invariant



|▲□▶|▲□▶|▲目▶|▲目▶||目|||のへで
## Constructions: Second C-invariant

$$\boldsymbol{O}_{ij\,\pm}^{^{P}} \equiv \boldsymbol{O}_{ij}^{^{P}} \pm \boldsymbol{C}\boldsymbol{O}_{ij}^{^{P}}$$

### Representations

 In Plaquette sector: This is encode in the following

$$\begin{array}{rcl} \tilde{\mathcal{R}}_{\rm PS}^{++} &=& A_1^{++} \oplus E^{++} \oplus T_2^{++} \;, \\ \tilde{\mathcal{R}}_{\rm PS}^{+-} &=& A_2^{+-} \oplus E^{+-} \oplus T_1^{+-} \;, \\ \tilde{\mathcal{R}}_{\rm PS}^{-+} &=& T_1^{-+} \oplus T_2^{-+} \;, \\ \tilde{\mathcal{R}}_{\rm PS}^{--} &=& T_1^{--} \oplus T_2^{--} \;. \end{array}$$

• In Majorana sector:

Majorana fermion are self antiparticle. The parity commutes with Lorentz tranformations then the combination

$$\lambda \pm \lambda^P$$

is Parity invariant under Lorentz transformations. The representation of Maj-Plaq-op in Majorana sector is a 4-dimensional irrep of  ${}^2O_h$ 

$$\tilde{\mathcal{R}}_{\mathsf{MS}}^{\pm} = G_1^{\pm} \oplus G_1^{\pm}$$

# $$\begin{split} \tilde{\mathcal{R}}_1^{++} &= A_1^{++} \otimes \{G_1^{++} \oplus G_1^{++}\} \;, \\ \tilde{\mathcal{R}}_2^{++} &= E^{++} \otimes \{G_1^{++} \oplus G_1^{++}\} \;, \\ \tilde{\mathcal{R}}_3^{++} &= T_2^{++} \otimes \{G_1^{++} \oplus G_1^{++}\} \;, \end{split}$$

$$\begin{split} \tilde{\mathcal{R}}_{1}^{+-} &= A_{2}^{+-} \otimes \{G_{1}^{+-} \oplus G_{1}^{+-}\} , \\ \tilde{\mathcal{R}}_{2}^{+-} &= E^{+-} \otimes \{G_{1}^{+-} \oplus G_{1}^{+-}\} , \\ \tilde{\mathcal{R}}_{3}^{+-} &= T_{1}^{+-} \otimes \{G_{1}^{+-} \oplus G_{1}^{+-}\} , \end{split}$$

$$\begin{split} \tilde{\mathcal{R}}_1^{-+} &= T_1^{-+} \otimes \{G_1^{-+} \oplus G_1^{-+}\} , \\ \tilde{\mathcal{R}}_2^{-+} &= T_2^{-+} \otimes \{G_1^{-+} \oplus G_1^{-+}\} , \end{split}$$

$$\begin{split} \tilde{\mathcal{R}}_1^{--} &= T_1^{--} \otimes \{G_1^{--} \oplus G_1^{--}\} \\ \tilde{\mathcal{R}}_2^{--} &= T_2^{--} \otimes \{G_1^{--} \oplus G_1^{--}\} . \end{split}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @

## Decomposition

#### ۲

$$a_{\nu} = \frac{1}{48} \sum_{i} n_{i} \chi^{\nu} (C_{i}) \left[ \chi^{\tilde{\mathcal{R}}_{\mathsf{PS}}^{\mu}} (C_{i}) \cdot \left( \chi^{G_{1}} (C_{i}) + \chi^{G_{1}} (C_{i}) \right) \right] \,.$$

• The irreducible characters of  ${}^2O$  are encoded in the characters of O, and after explicit calculation for different PC one obtains

$$\begin{split} \tilde{\mathcal{R}}_1^{++} &= A_1^{++} \otimes \{G_1^{++} \oplus G_1^{++}\} &= G_1^{++} \oplus G_1^{++} = 2G_1^{++} \ , \\ \tilde{\mathcal{R}}_2^{++} &= E^{++} \otimes \{G_1^{++} \oplus G_1^{++}\} &= 2H^{++} \\ \tilde{\mathcal{R}}_3^{++} &= T_2^{++} \otimes \{G_1^{++} \oplus G_1^{++}\} &= 2G_2^{++} \oplus 2H^{++} \ . \end{split}$$

• 
$$P = +1$$
,  $C = -1$ 

$$\begin{split} \tilde{\mathcal{R}}_1^{+-} &= A_2^{+-} \otimes \{G_1^{+-} \oplus G_1^{+-}\} &= 2G_2^{+-} \\ \tilde{\mathcal{R}}_2^{+-} &= E^{+-} \otimes \{G_1^{+-} \oplus G_1^{+-}\} &= 2H^{+-} \\ \tilde{\mathcal{R}}_3^{+-} &= T_1^{+-} \otimes \{G_1^{+-} \oplus G_1^{+-}\} &= 2G_1^{+-} \oplus 2H^{+-} , \end{split}$$

• 
$$P = -1, C = \pm 1$$
  
 $\tilde{\mathcal{R}}_1^{-\pm} = T_1^{-\pm} \otimes \{G_1^{-\pm} \oplus G_1^{-\pm}\} = 2G_1^{-\pm} \oplus 2H^{-\pm}$   
 $\tilde{\mathcal{R}}_2^{-\pm} = T_2^{-\pm} \otimes \{G_1^{-\pm} \oplus G_1^{-\pm}\} = 2G_2^{-\pm} \oplus 2H^{-\pm}$ .

The irreducible wave function (ONB):  $\mathcal{R}_1^{++}$ 

| Representation $\tilde{\mathcal{R}}$ of $^2O_h$ | irr. operator<br>of Majorana-Plaquette                                              |
|-------------------------------------------------|-------------------------------------------------------------------------------------|
| $2G_1^{++}$ $dim = 4$                           | $O_{11+}^{+} + O_{12+}^{+} + O_{21+}^{+} + O_{22+}^{+} + O_{31+}^{+} + O_{32+}^{+}$ |

## And many other examples



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

## Summary

## How to Construct irreducibe lattice operators and determine their spin $j^{PC}$ content ?

- Create gauge invariant product of links and fermions (Tupel)
- $\bullet$  Determine the basis of  $\mathcal{R} :$  the set in different directions
- Combine to construct PC invariant basis
- Perform all possible rotations separatly for each sector (link, fermion)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $\bullet\,$  Compute the characters of  ${\cal R}$
- $\bullet$  Decomposition of  ${\cal R}$  into irreps
- Diagonalize and find the wave functions (ONB)

- F.Heitger, Diplomarbeit, University of Münster, March 2000.
- K.Johnson, Diplomarbeit, University of Münster, February 2002.
- J. F. Cornwell, *Group Theory in Physics*, Volume I, Academic Press, London, 1984
- B. Berg, A. Billoire, *Excited Glueball States in Four-Dimensional SU(3) Lattice Gauge Theory*, Phys. Lett. B114 (1982) 324
- B. Berg, A. Billoire, *Glueball Spectroscopy in 4d SU(3) Lattice Gauge Theory(I)*, Nucl. Phys. B221 (1983) 109

## Best wishes

< ロ > < 同 > < 言 > < 言 > < 言 > うへで