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the aim of investigations

the expectation value of an Operator A is defined
nonpertubatively by the functional integral

〈A〉 = Z−1

∫
(Dφ) e−S[φ]A [φ]

normalization constant Z is chosen, such that
< 1 >= 1
(Dφ) is the appropriate functional measure
S [φ] is the given action

In QFT there is one integration per degree of freedom

we are dealing with an infinite dimensional functional
integral
well-defined only in euclidean space-time
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the strategy

lattice regularisation by the functional integral

continuum limit (lattice spacing a→ 0)
thermodynamic limit (physical volume V →∞)

problem:

hoplessly many integrations

solution: Monte Carlo integration

power sampling is based on the identification of
probabilities with measures
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how does it work?

start: generate a sequence of random field
configurations {φ1, φ2, φ3, ..., φN} chosen from the
probability distribution

P (φt)D(φt) =
1

Z
e−S[φt]

use the Markov process

consider stochastic transitions to generate the correct
probability distribution Q

P : Q1 → Q2

the transitions are ergodic
distribution converges to a unique fixed point

Q̄ = lim
n→∞

PnQ1
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the Markov Chain

again:

start with an arbitrary state
iterate the Markov process until it has thermalised
sucessive configurations will be distributed according to
Q̄

Markov chain

detailed balance

P (y ← x)Q̄(x) = P (x← y)Q̄(y)

Markov step

P (x← y) = min

(
1,

Q̄(x)

Q̄(y)

)
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the thermalisation

when do we have reached the equilibrium?

measure the value of A on each configuration and
compute the average

Ā ≡ 1

N

N∑
t=1

A(φt)

limit of large numbers guarantees

〈A〉 = lim
N→∞

Ā

central limit theorem guarantees

〈A〉 ∼ Ā + O

(√
σ

N

)
with

σ ≡
〈
(A− 〈A〉)2

〉
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the thermalisation
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claim on the algorithm

we want an algorithm which

updates the fields globally
→ since single updates are expensive for non-local
actions

takes large steps through configuration space
→ in order to decorrelate successive configuration

does not introduce systematical errors
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Hybrid Monte Carlo

the Hybrid Monte Carlo method is an useful algorithm
with these properties

the central idea is to introduce a fictitious momentum p
conjugate to each dynamical degree of freedom q

next find a Markov Chain with fixed point

∝ e−H(p,q)

with the Hamiltonian

H(p, q) =
1

2
p2 + S(q)

the action S(q) of the underlying QFT plays the role of
the potential in a fictitious classical mechanics system
the hamiltonian gives the evolution in a fifth dimension,
fictitious or Monte-Carlo time

ignoring the momenta p, this generates the desired
distribution S(q)
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the considered action

the SYM action consists of two parts

SSY M = Sg + Sf

in detail the continuum action

SSY M =

∫
d4x

{
1

4
F a

µν(x)F a
µν(x) +

1

2
λ

a
(x)γµDµλa(x)

}
with Majorana Spinors instead of the quark fields
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the lattice

discretize euclidean space-time

hypercubic L4-lattice with lattice spacing a

derivatives → finite differences

integrals → sums

gauge potentials Aµ in Fµν → link matrices Uµ
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the lattice action

discrete gauge part

Sg [U ] = β
∑

x

∑
µν

[
1− 1

Nc
ReTrUµν

]
the fermionic part is more involved. a naive
discretization would result in 2d = 16 fermions on the
lattice (Nielsen Ninomiya theorem)

giving the doublers the weight O(a−1) leads to the
Wilson Fermions

Sf

[
U, λ, λ

]
=

1

2

∑
x

λ(x)λ(x)

+
κ

2

∑
x

∑
µ

[
λ(x + µ̂)Vµ(x)(r + γµ)λ(x)

+λ(x)V T
µ (x) (r − γµ)λ(x + µ̂)]
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the involved magnitudes

the bare coupling

β =
2Nc

g

the hopping parameter

κ = (2m0 + 8r)−1

with the Wilson parameter r taken to be 1 here

gauge field link in the adjoint representation

[Vµ(x)]ab ≡ 2Tr
[
U †

µ(x)T aUµ(x)T b
]

=
[
V ∗

µ (x)
]
ab

=
[
V T

µ (x)
]−1

ab

the generators T a in the SU(2) case

T a =
1

2
τa
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the majorana fermions

the majorana fermions

λ = λC = CλT

(with the charge conjugation matrix C)
with the rescaled fermion fields

λ→
√

1

2κ
λ

with Majorana fields constructed from the dirac fields

λ1 =
1√
2

(
φ + Cφ̄T

)
, λ2 =

1√
2

(
−φ + Cφ̄T

)
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the pseudofermion representation

defining the fermion matrix

Qx,y [U ] ≡ δx,y − κ
∑

µ

[δy,x+µ̂(1 + γµ)Vµ(x)

+δy+µ̂(1− γy+µ̂)V T
µ (y)

]
leads to a compactly representation of S

Sf =
1

2

∑
xy

λ(x)Qx,yλ(y)

it´s not feasible to simulate Grassmann fields directly,
because e−SF = e−φ̄Dφ is not positive → poor
importance sampling

we therefore integrate out the fermion fields to obtain
the fermion determinant∫

[dλ] e−Sf =

∫
[dλ] e−

1
2
λQλ = ±

√
det Q
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the Pfaffian

a unique definition of the path integral is given by∫
[dλ] e−

1
2
λQλ =

∫
[dλ] e−

1
2
λMλ = Pf [M]

the complex antisymmetric matrix M is defined as

M = CQ = −MT

M has the same determinant as Q. Pf [M] is the
so-called Pfaffian of M

pf(M) ≡ 1

N !2N
εα1β1...αNβN

Mα1β1 ...MαNβN

=

∫
[dλi] e

− 1
2
λαMαβλβ

with 1 ≤ αβ ≤ 2N and the totally antisymmetric tensor
ε.

note the sign problem of the theory
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the discrete equation of motion

move the configuration through configuration space →
in each step all field variables are updated by computing
their trajectory through a coupled set of equations of
motions
generate a sequence of p, U with the correct probability
distribution:

update pµ(x) using Gaussian random noise
update φ using Gaussian random noise via φ = D†η
evolve p, U according to the Hamiltonian

H [p, U, φ] ≡ 1

2
p2 + Sg[U ] + Sf [U ]

accept/reject the final configuration p′, U ′ with
probability

Paccept = min(1, e−(H[p′,U ′]−H[p,U ]))
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the leapfrog trajectory

the discrete Hamilton equations of motion dictate the
following update for p and U

TU (δτ) : U → eiδτpU

Tp(δτ) : p → p + δτF

with the force F due to the variation of the gauge field

F = −δH

δU
= Fg[U ] + Ff [U ]

in detail a step in Uxµ

U ′
xµ = Uxµe

P3
j=1 i∆τTjpxµj

and p
p′xµj = pxµj −Dxµj∆τS[U ]
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the fermionic force

in here we have

Dxµj∆τSf [U ] = Dxµj

∆τ
1

2

∑
x′y′

λ(x′)Qx′,y′λ(y′)


with the now known fermion matrix

Qx′,y′ [U ] ≡ δx′,y′ − κ
∑
µ′

[
δy′,x′+µ̂(1 + γµ′)Vµ′(x

′)

+δy′+µ̂(1− γy′+µ̂)V T
µ′ (y

′)
]

and gauge field link in the adjoint representation[
Vµ′(x

′)
]
ab
≡ 2Tr

[
U †

µ′(x
′)T aUµ′(x

′)T b
]

we get

Dxµj

[
Vµ′(x

′)
]
ab

= 2εbjk

[
Vµ′(x

′)
]
ak
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the gauge force

gauge part

DxµjSg [U ] = Dxµjβ
∑
x′

∑
µ′ν′

[
1− 1

Nc
ReTrUµ′ν′(x

′)

]

with the derivative

Dxµjf (Uxµ) =
∂

∂α
f

[
ei2αTjUxµ

]
α=0

note that the gauge part is taken in the fundamental
representation while in the fermionic part the adjoint
representation is used
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the leapfrog integration scheme

one observes that Fg [U ]� Ff [U ]

introduce two time steps:

a short one associated with the large but cheap gauge
force Fg [U ]
a long one associated with the small, but expensive
fermionic force Ff [U ]

moreover, the fermionic force can be split into two or
more pieces and put on different time scales according
to their size

T (∆τ) = TP

(
∆τ

2

)
TU (∆τ) TP

(
∆τ

2

)
split the force such that the most expensive piece
contributes the least
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multiple time scales

in case of the hamiltonian, we have

H[p, U ] =
1

2
p2 +

k∑
i=1

Si[U ] (k ≥ 1)

for a trajectory with length τ , we define decreasing time
steps

∆τi =
∆τi+1

Ni
=

τ

NkNk−1 · · ·Ni

with Ni = step number, (0 ≤ i ≤ k), (∆τk+1 ≡ τ)
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sexton-weingarten higher order integrator

let us define

T0(∆τ0) = TS0

(
∆τ0

2

)
TU (∆τ0)TS0

(
∆τ0

2

)
and for i = 1, 2, . . . , k

Ti(∆τi) = TSi

(
∆τi

2

)
{Ti−1 (∆τi−1)}Ni−1TSi

(
∆τi

2

)
sexton-weingarten

T0(∆τ0) =

TS0

(
∆τ0

6

)
TU

(
∆τ0

2

)
TS0

(
2∆τ0

3

)
TU

(
∆τ0

2

)
TS0

(
∆τ0

6

)
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improvements of HMC
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polynomial filtering

the polynomial approximation relies on

| det Q|Nf =
[
det (Q†Q)

]Nf
2 ≈ lim

n→∞

[
det P (Q̃2)

]−1

with Q̃2 = Q†Q

where the polynomial Pn(x) satisfies

lim
n→∞

Pn(x) = x−
Nf
2 for x ∈ [ε, λ]

and

ε ≤ min spec(Q†Q)

λ ≥ max spec(Q†Q)

the approximation covers the UV part of Q̃2

only a low order polynomial is needed, since ε is large

P (x) is easy to invert and yealds a large force
contribution
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single step approximation

using roots of the polynomial rj

Pn(Q†Q) = Pn(Q̃) = r0

n∏
j=1

(Q̃2 − rj)

whith rj ≡ ρ∗ρ ≡ (µj + iνj)
2 , it follows

Pn(Q̃) = r0

n∏
j=1

((Q̃− ρ∗j )(Q̃− ρj))

the multi-boson representation of the fermion
determinant

r0

n∏
j=1

(det(Q̃− ρ∗j )(Q̃− ρj))
−1

∝
∫
D[Φ]e

−
Pn

j=1

P
xy Φ†

j(y)[(Q̃−ρ∗j )(Q̃−ρj)]
xy

Φj(x)
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two-step polynomial approximation

problem: small fermion masses
→ hugh condition-number λ

ε ∼ O(104 − 106)

the key:

lim
n2→∞

P (1)
n1

(x)P (2)
n2

(x) = x−
Nf
2

we get

| det(Q)|Nf ' 1

det P
(1)
n1 (Q̃2) detP

(2)
n2 (Q̃2)
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comparison of polynomial orders

relative deviation of the successive polynomial
approximation



Lattice SYM and
Monte Carlo

methods

Alexander Ferling

contents

aim of the game

Markov process

Hybrid Monte
Carlo

lattice action

pseudofermion
representation

the trajectory

fermionic and
bosonic force

multiple time
scales

polynomial filtering

matrix
preconditioning

determinant
breakup

some results

the noisy correction in detail

using the correction, first one has to generate a complex
gaussian random vector η according to the normalized
gaussian distribution

dρ(η) =
e−η†P

(2)
n2

(Q̃2)η∫
D[η]eη†P

(2)
n2

(Q̃2)η

and then accept the change of the gauge fiels
[U ]→ [U ′] with the probability measure

PNC = min

(
1, e

−η†
“
P

(2)
n2

(Q̃[U ′]2)−P
(2)
n2

(Q̃[U ]2)
”
η
)

the needed noisy estimator η is easily obtained from a
simpel gaussian distributed vector η′

dρ(η′) =
e−η†η′∫
D[η′]e−η′†η′

and η = P (2)
n2

(Q̃†)−
1
2 η′
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matrix preconditioning

preconditioning decreasing the condition number λ
ε by

even-odd preconditioning

decompose the fermion matrix Q̃ in subspaces,
containing the odd, respectively the even points of the
lattice

Q̃ = γ5Q =

(
γ5 −κγ5Moe

−κγ5Meo γ5

)
for the fermion determinant we have

det Q̃ = det Q̂, with Q̂ ≡ γ5 −K2γ5MoeMeo
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−6 −5 −4 −3 −2
lg(Λ_min)

0

0.05

0.1

0.15
β=2.3, K=0.196, 6  x12 3 

preconditioned
not
preconditioned

distribution of the smallest eigenvalues of the squared
preconditioned fermion matrix Q̃2 versus the
non-preconditioned one
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speed up the code: determinant breakup

use the factorization of the fermionic determinant in
several factors, also allowing for some ”fractional”
number of flavours

| det (Q̃)|Nf =

[
| det (Q̃2)|

Nf
2nB

]nB

measurement correction: reweighting

lim
n4→∞

P (1)
n1

(x)P (2)
n2

(x)P (4)
n4

(x) with P (4)
n4

(x) =
1√
P

(2)
n2

after reweighting, the expectation value of a quantity A
is given by

〈A〉 =

〈
A exp

{
η†

[
1− P

(4)
n4 (Q†Q)

]
η
}〉

U,η〈
exp

{
η†

[
1− P

(4)
n4 (Q†Q)

]
η
}〉

U,η
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some results

some results from the SUSY simulation

energy after conj. momenta: 1.526861e+03
energy after scalar fields: 7.600982e+03
energy after gauge fields: 5.581101e+03

energies: 5.581101e+03, 5.581198e+03 diff= -9.690565e-02

Noisy correction exponent for kapNum=0: 6.465429e+01
Average absolute value of DeltaH: 1.287792e+00
Average exponential of DeltaH: 9.879714e-01
Average acceptance rate in HMC-Trajectory: 5.000000e-01
Average absolute value of gauge force: 1.978851e+00
Average maximal value of gauge force: 8.895543e+00
Average absolute value of quark force: 5.223487e-01
Average maximal value of quark force: 3.770504e+00
Average acceptance rate of NoisyCorr: 0.000000e+00
Average exponential of NoisyCorr: 6.384178e+01
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