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Ising model on the square lattice
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The lattice has M rows and N columns, J > 0 are the coupling constants, H is the

external magnetic field.




Partition function:

Zmwn =Y exp [ —E[o]/(kpT)],

Free energy:
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Critical temperature (Kramers, Wannier, 1941):

2J
sinh - = 1.

Scaling, rotation invariance and universality at critical region:

AT =(T-T.)—0, H—DO.

Exact solution at H = 0, Onsager, 1944,




Ising Field Theory

Euclidean action:
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Majorana fermions v (x,y), ¥(x,y) obey at y = 0 anticommutational relations:
),

{v(x),v(x)} = —{vx), v} =2mid(x — x'), {Y(x),9(x)} =
Transformation under rotations z — e*®z
w(z) _ eia/2 w(ez’az)’ E(Z) _ 6—2’04/2 E(eiaz), a(z) _ 0—( .

After the Wick turn y — it IFT becomes Lorentz invariant.
Parameters m and h are related with parameters AT and H of the original

Ising model at AT — 0, H — O:
m = 21 Cy AT (1 + O(AT, H2)>, h=CpH (1 + O(AT, H2)).




Quantum Hamiltonian of the Ising field theory
H=Hrr +V.

Free fermionic Hamiltonian:
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with the dispersion law w(p) = 1/p? + m?2, and fermionic operators a, a;f,:
{ap,al} =218(p — ), {ap, ap} = {a},a},} = 0.

Interaction:




Order spin operator o(x):

dX, [X(X,a Y) ayX(X,a Y)] ’y:O’

oo 1px

dp e
2T \/w(p)

(aT_pew(p)y _ ape—w(p)y>,

where & = m1/821/12¢=1/8 43/2 g the zero-field vacuum expectation value of
the order field (spontaneous magnetization), A = 1.28243....

Formfactors (p1...pn|o(0)|p]...00:) = (0|ap1...apN0(O)a;;,1...a;ggv/|O> are

determined by the Wick theorem with connections:
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Quantum spin-1/2 Ising chain

N
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Here 0%, o are the Pauli matrices relating to the n-th site of the chain:
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Quantum Ising spin chain phase diagram at 7' =0
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Pikin, Tsukernik (1966)
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In the critical region quantum lIsing spin-1/2 chain is equivalent to the Ising
field theory.
Parameter correspondence:

m — (1—hx)Am, h = thh




Ising field theory phase diagram
h
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Physics of Ising field theory is determined by the single scaling parameter n:

m
= h8/15




Small-hA ferromagnetic regime. Confinement of fermions.
N
Hch = — Z(O';O';+1 + ha:O';c + hzo-]z')
j=1
1. h, =0, hy < 1. Two ferromagnetic ground states |®+(0)) and |®;(0)) with

spontaneous magnetizations (o) = +& and (07) = —& have the same energy
E+(0) = E;(0). Elementary excitations (free fermions) are the domain walls,

interpolating between the two degenerate vacua.
2. 1> h, > 0, hy < 1. Degeneration is removed: |®+(h)) is the ground state,
(@, (h)) is the metastable state; F4(h,) — E (h,) =~ —25h, N. Two domain walls

attract one another with the energy 26h,n. An isolated domain wall gains infinite
energy. Elementary excitations now are coupled pairs of fermions.
Experiment: M. Kenzelman et al., Phys. Rev. B 71, 094411 (2005).




Alternative interpretation. Ferromagnetic Ising field theory with h > 0 gives a
(1 4 1)-dimensional relativistic model of quark confinement.

Fermions are the "quarks”. Coupled pairs of fermions are the "mesons”.
What energy spectrum have the "mesons” in [FT?
Motivations:

e 2D statistical mechanics: universality of the Ising fixed point, described by
IFT;

e 1D condense matter: IFT describes exotic excitations in magnetic spin
chains:

e high-energy physics: IFT gives a nice relativistic model of quark confinement.

The meson energy spectrum E,(p) = (M2 + p?)1/? is determined by the
eigenvalue problem:

H | @n(p) = (En(p) + Evac) | n(p)), P [ 2n(p)) =p | Pn(p)),

where P is the momentum operator, Ey,. is the ground state energy, and M,
Is the meson mass.




Meson mass spectrum

stable : nonstable
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Meson mass spectrum at |h| — oo. (Zamolodchikov, 1989)

M, = (4,40490857...) |n|8/15,

T = (1,989...) My,

T = (2,956...) My,

= (3,891...) M,
T — (4,783...) Mj.

My = 2 M,y COS 35
My = 2 M, cos
M7 = 4 M> cos £ cos gg

Mg =4 M3 cos ¢ cos

My =2 M cos ¢ = (1,618...) My,
M4 = 2M2 COS (2, 405) Ml,
Mg = 2 M, cos 2= = (3,218...) M,
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Singular perturbation theory for the ferromagnetic Ising

field theory at small A > 0.

00 dp
H:/_oo%w(p)a;;ap—h/dxa(w),

with free fermionic spectrum w(p) = (p% +m?)1/2.

The meson masses spectrum M, is determined by the eigenvalue problem:
H | @p) = (Mn + Evac) | @n), P | ®n) =0.

Two-quark approximation:

P2HP2 | (bn> — Mn | (pn>7

where P, is the orthogonal projector onto the two-quark subspace F5 of the
Fock space F.




Bethe-Salpeter equation. (Fonseca, Zamolodchikov, 2003)

20(p) ~ Mo @0p) =0 h [ o
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The principal value integral is implied. The two-quark wave function in the rest

frame in the momentum representation is defined via

O,(p) = L2 (—p,p| ®,),

The function ®,(p) is odd ®,,(—p) = —P,,(p), and should be normalized as




Bethe-Salpeter equation in configuration space.

(2K — Mp)¢n(x) = =26h[x| ¢n(x) + 251U ¢n(x).

Here ¢, (x) denotes the configuration-space wave function

bulx) = [ SE e,
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¢n(_x) — —qbn(x),
and the integral operators K and U have the kernels
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Nonrelativistic, semiclassical and crossover regions

Here n is the serial number of the meson state: M,, < M,,.1, n=1,2,3,...

e Nonrelativistic: n < (™1, where { = 26h/m?.
Fonseca, Zamolodchikov (2003).

e Semiclassical: n > 1. R (2005).
o Crossover: 1 < n < (1.




Nonrelativistic approximation n < (=}

Relativistic kinetic energy operator K is replaced by its nonrelativistic

counterpart
1 d°
8m3 dx* 16mb> dxb

In this approximation the Bethe-Salpeter equation reduces to the perturbed

_|_...,

Airy equation
1 d°

<2m—Mn— ——)¢n(x)—|—26h|x| O (X)+0Vdn(x) =0,  ¢n(—%) = ¢n(x),

m dx?

yielding (Fonseca, Zamolodchikov 2003):

M, —2m
— —

1123 57
1400 280

2+ ) +0(6¥),

where ( is a dimensionless parameter proportional to h: ¢ = 26h/m?, and
—2n,n = 1,2, ... are zeros of the Airy function, Ai(—z,) = 0.
The leading term reproduces the old result of McCoy and Wu (1974).




Semiclassical (WKB) mass spectrum n > 1:
M, =mu, +(2A® + 348 4

where u,, solves equation
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In the crossover region 1 < n K ¢~1, the both nonrelativistic and the
semiclassical expansions can be reduced to the same form:
M, —2m b,% b;l N
m 20 96

1165 901 _
<6/3[1400 ~ 1480 ' O(b”3)] +0(C*),

where b,, = [3” (4n — 1)}2/3

3 > 1.




(2K — Mp)¢n(x) = —25h|x| ¢ (x) + 25U ¢y, (x).

Kon(z) = / b de' K(z — z') ¢ (2'),
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On(z) = —@n(—x), h—0, n>1,

and U(z,z') is localized in the region max(|z|, |z'|) < m™1.
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In the transport regions quarks move like classical particles, in the inner region
quantum scattering occurs.

Analogy with magnetic breakdown in normal metals.

1. Right transport region x > a: ¢, (x) = C ¢.(x, M,), where ¢, (x, My,) solves
equation

A

(2K — M,)¢.(x, M) = =26 hx ¢.(x, M},)
in R.

In momentum representation this equation reads as

(24/p? + m2 — M,)®,(p, M) = 2i h G 8,®,(p, My,),

providing




2. Left transport region x < —a: ¢,(x) = —C ¢ (—x, My).
3. Scattering region

dn(x) = 09 (x) + o (x) + ...
Qigzo) (x) = Asinpox, qb,(zl)(x) ~ h,

where po = [(M,,/2)? —m?]'/2. Joining at x ~ +a solutions of different regions
provides us the condition, which determines the discrete semiclassical mass
spectrum M,,:

M, = mu, + M? +0(?),

where u,, solves equation

u? 1

1/2
4" ) — arccosh(uy, /2) = (n - Z) 7 (,




Bohr-Sommerfeld quantization rule

Consider two interacting particles with coordinates x;(¢), x2(¢) € R described
by the classical Lorentz invariant action

Ac = —m/ dt[(1 —x)Y2 + (1 — x2)Y/?] - 2h5 S,

with § = / dt [x2(t) — x1(1)],

under the following constrains : x;(0) = x2(0), x1(t;n) = x2(t,m), and
x1(t) < x2(t) for 0 < t < t,,. Typical world paths of the particles look like:
t




The Bohr-Sommerfeld quantization condition can be written in a relativistic
invariant form:

2h<‘75’:27r(n— i)

It leads to the semiclassical mass spectrum M,, = mu,, of the pair with the

previous meaning of wu,:

Uy (U2 t2 L
o (Z — ) — arccosh(uy, /2) = (n — 1) TG,

Multi-quark corrections

Exact eigenvalue problem:
H | (I)n> — (Mn + Evac) | (I)n>7 P | cI)n> — 07

The exact meson eigenvector |®,,) contains four-quark, six-quark, ... contribu-
tions, which are ignored in the two-quark approximation.

Taking into account, multi-quark corrections modify the semiclassical meson
spectrum M,, = mu, + C2AZ + ¢34 1 . starting from the second order

in C.




Two-quark approximation:

scaftering
/ transport
-m -1 Om -1 X

fransport

e Transport regions: renormalization of w(p) and ha. Renormalization of the
quark mass (Fonseca, Zamolodchikov 2003): dm ~ 0, 03550540475 (2 m.

e Scattering region: Collision remains elastic.

o M, > 2M;. Nonelastic channels open. The meson decay rate can be
estimated from the Fermi's golden rule:

I, = 27‘(‘2 | {out | V| ®,) |? 6(muy — Eout).

out

where | ®,,) is the meson eigenvector in the two-quark approximation,
and <0ut |: <p2j ...P1 |




dpl dp2j 5

2mzi—2 0P+t py)

un] | (p2j---p1 | a(0) | o, —po) |* +O(¢*),

+po = i\/ M, /2)2 — m? are the momenta of two colliding quarks,
Jm = |un/2] stays for the integer part of u,, /2.

The extra h-factor here reflects, that quarks spend almost all the time in the
transport regions, and only rarely come up in the scattering region, from which

the decay then occurs.




Conclusions

Semiclassical excitation spectrum in the Ising field theory is obtained in the
weak confinement regime perturbatively in applied field h.

e It is shown, that the two-fermionic approximation is sufficient to determine
the entire spectrum up to the first order in h. The many body effects are
important in the second order.

e For energies above the stability threshold, the excitation decay width has
been determined in the leading h3order.




