Appendix A
Runge-Kutta M ethods

The Runge-Kutta methods are an important family of iterative methods for the go-
proximation o solutions of ODE’s, that were develoved around 1900 byhe german
mathematicians C. Runge (1856—192Yand M.W. Kutta (1867—1944. We start with
the considereaion d the explicit methods. Let us consider an initail value problem

(IVP) ;
X
gt = [ x), (A1)

X(t) = (x1(t), X2(t), ... xa(t))T, f € [a, b] x R" — R", with an initial condtion
x(0) =Xop. (A.2)

We ae interested in a numericd approximation o the continuowsly diff erentiable

solution x(t) of the IVP (A.1)—(A.2) over the time interval t € [a, b]. To this aim

we subdvidetheinterval [a, b] into M equal subintervalsand seled the mesh points

tj [11, §]

b—a
VIR

tj=a+jh, j=0,1,...,M, h= (A.3)

Thevauehiscdled astep size.
The family of explicit Runge—Kutta (RK) methods of the m'th stage is given
by[11, 9]

m
X(tny1) == Xny1 =Xn+h Zciki : (A4)
i=

where

13



kl == f(tn, Xn),
ko = f(tn+ a2h, Xn + hB21K1 (th, Xn)),
ks = f(th+ azh, Xn + h(Ba1k1 (th, Xn) + Ba2ko(tn, Xn))),

m-1

=i

To spedfy a particular method, we need to provide the integer m (the number of
stages), and the ooefficients o (fori =2,3,...,m), Bij (for 1 < j <i<m), andg
(fori =1,2,...,m). These data ae usually arranged in a ao-cdl ed Butcher tableau
(after JohnC. Butcher) [11, 9]:

Table A.1 The Butcher tableau.

0
az| B2
03|31 Bs2
m|Bm B2 - ... .. Brom-1
CiT C ...... Cn-1 Cm
Examples
1. Leem=1.Then
k]_ == f(tn, Xn)7

Xn+j_ = Xn+ hC]_ f(tn, Xn) .
On the other hand, the Taylor expansion yields
Xn+l:Xn+h).(‘tn+"' :Xn+hf(tn,Xn)+ﬁ(h2) = C = 1.

Thus, thefirst-stage RK-methodis equivalent to the explicit Euler’smethod Note
that the Euler’s methodis of thefirst order of acarracy. Thuswe can spek abou
the RK method d the first order.

2. Now consider the case m= 2. In this case Eq. (A.4) is equivalent to the system



ki = f(tn, Xn), (A.5)
ko = f(th+ a2h, Xn+hBatka),
Xnt1 = Xn+ h(C1ks + C2k2).
Now let uswrite down the Taylor series expansion o x in the neighbahood d t,
upto the h? term, i.e.,
h? d?x
2 dt?

dx
Xn+1 = Xn+ h—

hd).
i +0(h°)

th

T
th

However, we know that x = f(t, ), so that
d’>  df(t,x) af(t,x) of(t,x)
— = L = ’ f(t -
dt2 dt ot % =5
Hencethe Taylor series expansion can be rewritten as

h [ df of
Xn+1thf(tn,Xn)+7(E+f&>

+0(h%). (A.6)
(tn,Xn)

On the other hand, the term k in the propcsed RK methodcan also expanded to
O(h%) as

of s
theaf | +o().

(tn,Xn)

of
ko= f(th+azh, xn+hB1ky) = hf(tnyxn)‘FhaZE

(tn,Xn)

Now, substituting this relation for ky into the last equation o (A.5), we adieve
the foll owing expresson:

+0(h%).
(tn,Xn)

of
2 il
+h*cofo1 f o

of
Xny1—Xn=h(c1+C2) f (tn, Xn)+h202 az ot

(tn,Xn)

Making comparisionthe last equation and Eq. (A.6) we can write down the sys-
tem of algebraic equationsfor unknavn coefficients

cit+c=1,
1

C2a2 = >

1

C2f21 = 5

The system involves four unknavnsin three @uations. That is, one alditional
condtion must be supied to solve the system. We discusstwo useful choices,
namely

a Letap =1 Thenc, =1/2,¢; =1/2, B21 = 1. The ocorrespondng Butcher
tableau reads:



Bl

212

Thus, in this case the two-stages RK methodtakes the form

Xpr1=Xn+ 5

h
> (f(tn, Xn) + f(ta +h, Xn + 0 (tn, xn))),

and is equivalent to the Heun's method, so we refer the last method to as
RK-method d the second ader.

b) Now let a; = 1/2. Inthiscasec; = 1, ¢ = 0, B21 = 1/2. The mrrespondng
Butcher tableau reads:

0
12|12

In this case the second-order RK method (A.4) can be written as

h h
Xn+1:Xn+hf(tn+—,Xn+§f(tn,Xn))

andis cdled the RK2 method.

RK 4 Methods

One member of the family of Runge—Kuttamethods (A .4) isoften referred to asRK4
method or classical RK method and represents one of the solutions correspondngto
the case m= 4. In this case, by matching coefficients with those of the Taylor series
one obtains the foll owing system of equations[8]



Ci+C+C3+Cs=1,
Bo1 = ay,
Ba1+ Bs2 = as,

Co02 + C303 + C404 =

Co03 4 C302 + c4a7 =

Co03 4 305 + c4a5 =

C302B32+ Ca(02B42+ Q3f43) =

C302030B32+ C404( 0242+ 3f43) =

IR OO, EFRPW RN

30232+ Ca(02 Baz+ 03 P43) =

Ca02B3243 =

NI

The system invalvesthirteen unknavnsin eleven equations. That is, two additi onal
condtionmust be suppied to solve the system. The most useful choicesis[9]

1
azzéa

The correspondngButcher tableauispresentedin Table A.2. Thetableau A.2 yields

B31=0.

Table A.2 The Butcher tableau correspondng to the RK4 method

12|12
20 12
1/0 0 1

1/6 V3 1/3 16

the equivalent correspondng equations defining the dasscd RK4 method

h
Xni1 = Xn+ é(k1+2k2+2k3+ Ks), (A7)

where



kl == f(tn, Xn),

h h
ko = f(th+ 5 Xn+ §k1)7

h h
k3: f(tn+—,Xn+§k2),

This method is reasonably simple and robust and is a good general candidate for
numericd solution of ODE’s when combined with an intelli gent adaptive step-size
routine or an embedded methods (,e.g., so-cdled Runge-Kutta-Fehlberg methods
(RKF45)).

Remark:

Notice that except for the dasscd method (A.7), one can aso construct other
RK4 methods. We mention orly so-cdled 3/8-Runge-Kutta method. The Brutcher
tableau, correspondngto this methodis presented in Table A.3.

Table A.3 The Butcher tableau correspondng to the 3/8- Runge-Kutta method

0

13| v3

213-13 1

11 11
|18 38 38 18

Geometrical inter pretation of the RK4 method

Let us consider a aurve x(t), obtained by (A.7) over a singe time step from ty
to tnr1. The next value of approximation X, 1 is obtained ty integrating the slope
function, i.e.,
thyt
Xne1 — Xn = / F(t,x)dt. (A.8)
th

Now, if the Simpson'srule is applied, the gpproximation to the integral of the last
equationreads[10]

thi1

/f(t,x)dmg<f(tn,x(tn))+4f(tn+g,x(tn+g)>+f(tn+1,x(tn+l)>>. (A.9)



On the other hand, the values k1, ko, k3 and k4 are goproximations for slopes of
the arvex, i.e., k isthe slope of theleft end o the interval, k, and ks describe two
estimations of the slopein the midd e of thetimeinterval, whereas k4 correspondsto
the slope & the right. Hence, we can choose f (th, X(th)) = kg and f (th41,X(tht1)) =
k4, whereas for the value in the middle we dhocse the average of k, andks, i.e.,

h h. k+ks
f(th+ va(tnﬁLE)) =75

Then Eq. (A.8) becomes

h 4(ky + k
Xn+l:Xn+6(kl+%+k4)a

which is equivalent to the RK4 schema (A.7).

Stage versus Order

The locd truncation error € for the method (A.7) can be estimated from the eror
term for the Simpson'srule (A.9) and equals[10, §]
4)
_ X
&nt1= " o8y

Now we can estimate thefinal global error E, if we suppasethat only the eror above
is presented. After M steps the acamulated error for the RK4 methodreads

x4 _boa

A — — 4
2880 2880 h=o(h").

E(x(b),h)=— Y h

k=1

That is, the RK4 method (A.7) is of the fourth order. Now, let us compare two
appximations, obtained using the time steps h and h/2. For the step sizeh we have

E(x(b), h) ~ Kh?*,
with K = const. Hence, for the step h/2 we get

4
E(x(b), g) =K % ~ 1—16E(x(b), h).

That is, if the step sizein (A.7) isreduced by the fador of two, the global error of
the methodwill be reduced by the factor of 1/16.

Remark:

In general there ae two ways to improve the acarracy:



1. One caxreducethetimestep h, i.e., the anourt of stepsincreases,
2. The method d the higher convergency order can be used.

However, increasing o the convergency order p isreasonable only upto somelimit,
given by so-cdled Butcher barrier [11], which says, that the amourt of stages m
grows faster, as the order p. In other words, for m > 5 there are no explicit RK
methods with the convergency order p = m (the corresponding system is unsolv-
able). Hence, in order to read convergency order five one neads sx stages. Notice
that further increasing of the stage m = 7 leads to the convergency order p=5 as
well.

A.0.1 Adaptive stepsize control and embedded methods

As mentioned abowe, one way to guarantee acaracgy in the solution o (A.1)—
(A.1) is to solve the problem twice using step sizes h and h/2. To ill ustrate this
approach, let us consider the RK method d the order p and denote an exadt solution
at the point tn,1 = tn + h by Xn.1, whereas x; and x, represent the goproximate
solutions, correspondng to the step sizes h and h/2. Now let us perform one step
with the step size h and after that two steps eat of size h/2. In this case the true
solutionand two numericd approximations are related by

Xni1 = X1 +ChPTL 4 G(hPF2) |
h p+1
Xny1 = X2+ 2C (§> + O(hP+2),

That is,
X1 — X2

(1—2-P)hpt+l’
Substituing the relation for C in the seandestimate for the true solution we get

1
X1 — Xp| = ChP*? (1_ﬁ) & C=

Xny1 = X2+ €+ ﬁ(hmz) ,

where
_ [xa—xqf
2 -1
can be considered as a convenient indicator of the truncaionerror. That is, we have
improved ou estimate to the order p-+ 1. For example, for p = 4 we get

X1 — Xp|

6
e o).

Xn1= X2+

This estimate is acaurate to fifth order, one order higter than with the original step
h. However, thismethodis not efficient. First of all, it requires a significant amourt



of computation (we shoud solve the equation threetimes at ead time step). The
seoond pant is, that we have no passbility to control the truncaion error of the
method (higher order means nat always higher acairacy).

However we can use an estimate ¢ for the step size control, namely we can compare
€ with some desired accuracy & (seeFig A.1).

[Inputj,x,-,so, hj, j :0)“
!

— | Calculate x(tj 4 hj, h )x(t,+h, )ande

?—>| Double step size hj1 := 2h; I

It,+1ftj+h, j=j+1

y&s

—| Halve step size hjq = h—zl Reiterate the step

Fig. A.1 Flow diagramm of the step size ontrol by use of the step doubi ng method

Alternatively, using the estimate €, we can try to formulate the foll owing problem of the adap-
tive step size control, namely: Using the given values x; andt;, find the largest possble step size
hnew, SO that thetruncaion error after the step with this gep sizeremains below some given desired
acaraoy &, i.e,

hnew \ P X1 — Xo|
p+1 new 1 2
Chhay <& < ( h ) T o0 <&.

1/p+1
&
hnew:h<?°) .

Then if the two answers are in close agreement, the gpproximation is accepted. If € > & the step
sizehasto be deaeased, whereas the relation € < & means, that the step size has to be increased
in the next step.

Notice that becaise our estimate of error is not exad, we shodd pu some "safety” fador
B ~1[11, 9]. Usualy, B = 0.8, 0.9. The flow diagramm, correspondng to the the aaptive step
size ontrol is shown onFig. A.2

Notice one aditional tedhnicd point. The chaise of the desired error &y depends on the VP
we ae interested in. In some gpplicationsit isconvinient to set &y propaiona to h[9]. In thiscase
the exporent 1/p+ 1 in the estimate of the new time step isnolonger corred (if hisreduced from
atoo-large value, the new predicted value hney Will fail to mee the desired acarragy, so insteal of
1/p+ 1 we shoud scde with 1/p (see[9] for detail5)). That is, the optimal new step size can be
written as

That is,

e = 1 (A0
B h(%") , £ < &,



[Inpu to, X0, &0, D, j = 0)‘

|

Calculate x(tj +h, h), x(t; +h, 1) and e ‘

yes 1/p+1
—> The step is accgoted; hpay ::Bh(%") 1=t +hew, ji=j+1

no

1/p
hnew 1= B h(e—g") Reiterate the step

Fig. A.2 Flow diagramm of the adaptive step size ontrol by use of the step doubing method
where 3 isa "safety” fador.

Runge-K utta-Fehlberg method

The dternative stepsize aljustment agorithm is based on the embedded Runge-Kutta formulas,
originally invented by Fehlberg andis cdl ed the Runge-Kutta-Fehlberg methods (RKF45) [11, 10].
At ead step, two different approximations for the solution are made and compared. Usualy an
fourth-order method with five stages is used together with an fifth-order method with six stages,
that uses al of the paints of the first one. The general form of a fifth-order Runge-Kutta with six
stagesis

ki = f(t,x),
ko = f(t+ azh, x+hBks),

5
ks = f(t+ash,x+hz Bsik;) .
=1
The embedded fourth-order formulais
6
Xnp1 = Xn+h Zq k+o(h°).
i=
And a better value for the solution is determined using a Runge-Kutta method d fifth-order:
Xhi1 =Xn+h Zﬁ ki+0(h°)
i=

The two particlular choises of unknavn parametrs of the method are given in Tables A.4-A 5.
The aror estimate is

6
€= |Xnp1—Xppa| = ‘zl(Ci —¢ki.



Table A.4 Fehlberg parameters of the Runge-Kutta-Fehlberg 4(5) method

14 14
3/8 3/32 932
12/13)19322197-72002197 72962197
1 | 439216 -8 3680513 -8454104
12 -8/27 2 -35442565 18584104 -11/40
25216 0 1408565 21974104 -1/5
16/135 0 665612825 2856856430 -9/50 255

Table A.5 Cash-Karp parameters of the Runge-Kutta-Fehlberg 4(5) method

15 15
3/10] 3/40 940
3/5 3/10 -9/10 65
1 -11/54 52 -1027 3527

7/8 (163155296 17812 57913828 4427810592 2581096
37/378 0 250621 123594 5121771
282527648 0 185718384 135255296 27714336 14

As was mentioned abowe, if we take the aurrent step h and produce an error ¢, the correspondng
"optimal” step hopy is estimated as
0.2
&
o =Bh(%2)

where & is a desired acaragy and 8 is a "safety” fador, 8 ~ 1. Then if the two answers are
in close agreament, the gproximation is acceted. If € > & the step size has to be deaeased,
whereas the relation € < & means, that the step size ae to beincreased in the next step.

Using Eq. (A.10), the optimal step can be often written as

0.2
&
Bh—%> ; £ &l

hopt = 0.25
&
Bh<%> ;€< &,



