next up previous contents
Next: Prior mixtures for regression Up: Non-Gaussian prior factors Previous: Mixtures of Gaussian prior   Contents


Prior mixtures for density estimation

The mixture approach (535) leads in general to non-convex error functionals. For Gaussian components Eq. (535) results in an error functional

$\displaystyle E_{\theta,\phi}$ $\textstyle =$ $\displaystyle -(\ln P(\phi),\,N)
+ (P(\phi),\, \Lambda_X )$  
    $\displaystyle -
\ln \sum_j e^{-\left(
\frac{1}{2}
\left(\phi-t_j(\theta),\,{{\b...
...heta)\,(\phi-t_j(\theta))\right)
+\ln Z_\phi (\theta,j)+E_{\theta,j}
\right)}
,$ (536)
  $\textstyle =$ $\displaystyle -\ln \sum_j e^{-E_{\phi,j}-E_{\theta,j}+c_j},$ (537)

where
\begin{displaymath}
E_{\phi,j} =
-(\ln P(\phi),\,N)
+ (P(\phi),\, \Lambda_X )
+\...
...-t_j(\theta),\,{{\bf K}}_j (\theta)\,(\phi-t_j(\theta))\Big)
,
\end{displaymath} (538)

and
\begin{displaymath}
c_j
=
-\ln Z_\phi (\theta,j)
.
\end{displaymath} (539)

The stationarity equations for $\phi $ and $\theta$
$\displaystyle 0$ $\textstyle =$ $\displaystyle \sum_j^m \frac{\delta E_{\phi,j}}{\delta \phi}\,
e^{-E_{\phi,j}-E_{\theta,j}+c_j},$ (540)
$\displaystyle 0$ $\textstyle =$ $\displaystyle \sum_j^m \left( \frac{\partial E_{\phi,j}}{\partial \theta}
+\fra...
...bf Z}_j^\prime Z_\phi^{-1}(\theta,j) \right)
e^{-E_{\phi,j}-E_{\theta,j}+c_j}
,$ (541)

can also be written
$\displaystyle 0$ $\textstyle =$ $\displaystyle \sum_j^m \frac{\delta E_{\phi,j}}{\delta \phi}\,
p(\phi,\theta,j\vert\tilde D_0),$ (542)
$\displaystyle 0$ $\textstyle =$ $\displaystyle \sum_j^m \left( \frac{\partial E_{\phi,j}}{\partial \theta}
+\fra...
...\bf Z}_j^\prime Z_\phi^{-1}(\theta,j) \right)
p(\phi,\theta,j\vert\tilde D_0)
.$ (543)

Analogous equations are obtained for parameterized $\phi(\xi)$.


next up previous contents
Next: Prior mixtures for regression Up: Non-Gaussian prior factors Previous: Mixtures of Gaussian prior   Contents
Joerg_Lemm 2001-01-21