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Abstract. Bayesian models are based on the combination of a likelihood model and
a prior model. The nonparametric Bayesian models discussed in this chapter combine
the likelihood models of density estimation, regression, and inverse quantum theory,
expressed in terms of ‘likelihood fields’, with nonparametric prior models for such
fields. Starting from Gaussian process priors, which, for example, are able to imple-
ment approximate symmetries for the likelihood fields, those are made more flexible
by introducing hyperparameters and, generalized to a hyperparameter valued function,
by hyperfields. In a joint Maximum A Posteriori approximation this results in coupled
equations for likelihood fields and hyperfields. An example of a useful application of
hyperfields is the adaption of the mean function of a Gaussian process prior.

1 Introduction

It is well known that empirical learning can not be based on observational data alone but does
always also depend on a priori information, explicitly or implicitly. For models with a small
number of parameters, the essential part of a priori information being in that case the restric-
tion of the model space, additional priors for the parameters are typically easily overwhelmed
by the data if the number of observations becomes large enough. The situation is completely
different for nonparametric approaches, where the number of data is too small to determine
all the degrees of freedom of the model. Thus, in nonparametric modeling it is essential that
all available a priori information is included in the model. To this end prior models are useful
which are formulated explicitly in terms of the likelihood of interest. Most priors used for
nonparametric models in practice are some kind of smoothness priors. In the following we
will discuss some possibilities to construct priors more general than smoothness priors and
present techniques to adapt general prior models to the available a priori knowledge. Before
we discuss specific nonparametric likelihood and prior models we first have to define the
basic quantities in empirical learning and their probabilistic relations.

2 The Bayesian framework

2.1 The basic probabilistic model

For empirical learning it is convenient to distinguish three groups of variables:

1. observable (visible) independent variables � representing ‘inputs’ or ‘controlled causes’,

2. observable (visible) dependent variables � representing ‘outputs’ or ‘measured effects’,
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3. not directly observable (hidden, latent) variables � describing the possible (pure) ‘states
of Nature’ considered in the model under study.

The joint probability can be factorized according to
��� ��� � � ����� �	� �	
 ��� ��� �	� ��
 � � �	� � �� (1)

The first factor �	� ��
 ��� ��� describes the probability (or probability density for continuous � )
of finding � given the visible variables are in state � under a specific model state (‘state of
Nature’) � . For given data, � = ( � , � ), the factor �	� ��
 ��� ��� is also known as the likelihood of
� under � .

The hidden variables � parameterize the space of possible states we are using to model the
probabilistic input–output relation between the � and the � . In ‘parametric’ models the hidden
variables � represent a (in many practical cases relatively small) number of parameters, while
in ‘nonparameteric’ models the hidden variables � form a function or ‘field’, so that expres-
sions like �	� ��
 � � represent a stochastic process [8, 11, 40, 36]. For example, in nonparametric
density estimation the function values of the likelihood itself, i.e., all the numbers � � ��� ��� =�	� �	
 ��� ��� for all � and � , can be considered as the primary degrees of freedom. A function
� � ��� ��� which determines the likelihood ��� ��
 ��� ��� will be called a likelihood field. Likelihood
fields which are different from � � ��� ��� = �	� �	
 ��� ��� will be discussed below. Similar to non-
parametric density estimation problems, we will speak of nonparametric regression if each
value of the regression function � � � � = ��� � � �	� �	
 ��� ��� is considered as a primary degree of
freedom. Another example is nonparametric inverse quantum theory where the function of
interest can be a function � � � � = � � � � describing a local quantum potential as function of a
coordinate � . The primary degrees of freedom � � ��� ��� or � � � � can then be related by explicit
prior information like a smoothness constraint. As the number of parameters in a parametric
model can become large, for instance, in a neural network, and also nonparametric models
must be discretized in some basis to perform numerical calculations, there is no sharp dis-
tinction between parametric and nonparametric models in practice. Nonparametric models
as we will understand them, however, try to formulate the available a priori information not
in terms of a parameters, which are often difficult to interpret, but explicitly in terms of the
function � of interest, e.g., in terms of the likelihood values �	� �	
 ��� ��� in density estimation
problems, or in terms of the regression function in regression problems.

In the following we will assume scenarios with � independent (tuples of) training data

����� � ����� � � ��
 �"!$#�!$�&%'�(� � �*)+� � ) �,% (2)

which are sampled according to the likelihood �	� � � 
 ���-� ��� and where the �.� and � � can be vec-
tors. The independent variables in the data, �/) = � ��� 
 �"!$#�!0�	% , may have been either fixed
in advance or sampled under some given �	� � � . We also assume, that �	� ��
 � � can be written
as �	� ��
1�32,� with �32 being that part of the independent visible variables which determines the
prior �	� ��
1�324� of the hidden variables � . We will call �52 the a priori information on � and�	� ��
 �62,� the prior for � . Under those assumptions, we end up with models of the form

�	� ��� � � ��
1�327��� �	� ��
1�324� ��� � ) 
 �*)8� ��� �	� �*) ��� �	� ��
1�32,�
9:

�<;�= ��� � � 
 ���-� ��� �	� ��� � � (3)

or, conditional on the independent variable � ,

�	� � � ��
 ��� �32,��� �	� � ) 
 �*)8� ��� �	� ��
1�32>���
9:

�<;�= �	� � � 
 ���-� ��� �	� ��
1�327�� (4)
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Figure 1: Graphical representation of the probabilistic model (4) with independent data, conditioned on the
independent variables ��� and the unknown state � .

2.2 Bayesian decision theory and predictive density

Empirical learning is used to make decisions. Hence, let us consider a set of possible actions� from which we want to choose an optimal one. In selecting an optimal action we want to
use all the information we have at hand, i.e., training data � and a priori information � 2 .
In particular, we will be interested in approximation problems, like density estimation where
the possible actions represent predictive densities ��� ��
 ����� � and our aim is to approximate the
true state ��� ��
 ��� ��������� � , by an optimal posterior predictive density �	� ��
 ��� � � ��27� . To define
optimality we select a loss function � � ��� � ��� � which describes the loss suffered in situation � if

� appears and action � has been selected. Then an optimal action (e.g., an optimal prediction)
minimizes, for given data � and prior �52 , the expected risk [1, 34]

������� � � �324���
�

� � � � ��� � � �	� �	
 ��� � � �32,� � � ��� � ��� �4� (5)

If we denote the expectation under the joint posterior predictive density �	� ��� ��
1� � � 2,� =�	� � � �	� �	
 � � �32,� by ! ������"$#&% ')( ) % )+* , we can write Eq. (5) as

���,��� � � �62,���-!.� � ��� � ��� � "$#/% '0( ) % )+* � (6)

We may remark that �	� � � is the density of � for the (test) data for which prediction is intended
and not the possibly different �	� � � which has been used for sampling the training data � . The
typical loss function for approximation problems is the log–loss

� � ��� � ��� ���2143�5 �	� �	
 ����� � � (7)

for which the expected risk becomes the ( � –averaged) Kull–Back–Leibler distance between�	� �	
 ����� � and �	� �	
 ��� � � �32,� . As it is not difficult to show by using Jensen’s inequality the
Kullback–Leibler–distance is minimal for ��� ��
 ����� � = �	� ��
 ��� � � �527� . Thus, under log–loss
the optimal model is the posterior predictive density

�	� ��
 ��� � � �327���
�

� � �	� ��
 ��� ��� �	� ��
1� � �32>�4� (8)
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In nonparametric models where � is a function the integral over � stands for a functional inte-
gral. Such integrals are mathematically well defined for Gaussian processes (‘generalized free
Euclidean fields’ or ‘generalized Brownian motion’ in the language of physics), but for more
general processes (‘(self–)interacting fields’) a general mathematical definition of functional
integrals is still an unsolved problem. One possible approach is to define a non–Gaussian
functional integral by renormalization procedures in perturbation theory [5] or on a lattice
[29], another simpler possibility is to discretize the function � in some appropriate basis so
the functional integral becomes a standard (but typically still extremely highdimensional) in-
tegral. The remaining highdimensional integrals can either be approximated by Monte Carlo
methods [16, 14, 12, 32, 19] or by the method of steepest descents (Laplace approximation),
in this context known as Maximum A Posteriori (MAP) approximation [7, 4, 34, 12]. The
latter assumes that �	� �	
 ��� � � �32,��� ��� ��
 ��� � � � (9)

for the ‘MAP solution’ � � which maximizes the posterior

� � � argmax � �	� ��
1� � �32,�� (10)

Hence, in a MAP approximation the integration over � is replaced by maximization over � .
Eq. (9) is a good approximation if the posterior �	� ��
1� � �52,� can be well approximated by a
single Gaussian and the factor ��� ��
 ��� ��� in Eq. (8) is slowly varying at the stationary point
� � compared to the posterior. This is often expected to be the case if the number of data is
sufficiently large. In principle one can also go beyond the MAP approximation by using the
MAP solution as starting point for a perturbation series, for example, graphically expressed
by Feynman diagrams [33, 17].

In Gaussian regression �	� ��
 ����� � is assumed to be of Gaussian form with fixed variance
and only the mean or regression function �*� � � = ! � " '0( � % � = �5� � � ��� ��
 ����� � is adapted. In
linear (parametric) Gaussian regression the regression function is chosen as a linear funtion in

� , i.e., ! � " '0( � % � � � 2�� ��= � , while in nonparametric Gaussian regression for each � the value! � " '/( � % � is treated as a single degree of freedom so that the form of the regression function
is not restricted. For Gaussian regression log–loss is equivalent to a squared error loss and
it is straightforward to check that the regression function which minimizes the expected risk
is the posterior regression function, i.e., the expectation of � under the posterior predictive
density � � � � � � ! � " '/( � % �	� � ! � " ')( � % ) % ) * � �

� � � �	� ��
 ��� � � �32,�� (11)

A typical loss function for classification problems (where a discrete dependent variable �
represents the class variable) is the 0–1–loss

� � � � ����� ��� 1�
� % ������� (12)

where 
 � % ������ stands for the Kronecker- 
 which is equal to one if � = �*� � � and zero otherwise.
In that case it turns out that the optimal ��� � � is a mode function ����� � ��� ��
 ��� � � �627� of the
predictive density. Table 1 lists the basic functions which appear in Bayesian models.

2.3 Bayes’ theorem: From prior and likelihood to the posterior

The short discussion of Bayesian decision theory in 2.2 showed that for density estimation,
regression, as well as for classification learning can be based on the posterior predictive den-
sity �	� ��
 ��� � � �32,� . Using ����� � = ����� �	��� � �3� for � � � and � = � , �	� �	
 ��� � � � � �62>� =
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�	� ��
 �62,� prior

�	� ��
1� � �327� posterior

�	� �	
 ��� ��� likelihood, predictive density for a pure state

�	� ��
 ��� �62,� prior predictive density

�	� �	
 ��� � � �327� posterior predictive density

Table 1: The basic probabilities (or densities, stochastic processes, respectively).

�	� �	
 ��� ��� , and �	� ��
 ��� � � �624� = �	� ��
1� � �327� the posterior predictive density can be expressed
as �	� ��
 ��� � � �32,���

�
� � �	� ��
 ��� ��� ��� ��
 � � �32 � � (13)

where the density (or the stochastic process in nonparametric models) �	� ��
1� � � 2,� is known
as the posterior.

The posterior, which we are interested in, is linked to the prior and likelihood, which are
assumed to be given, by Bayes’ theorem:

�	��� 
1� � � �	� � 
 � � ����� ��	� � � � (14)

Because �	� � � can not be zero for observed data, Eq. (14) is a direct consequence of the
definition of conditional probabilities,

����� � � ��� �	��� 
1� � �	� � � � �	� � 
 � � �	��� �� (15)

In a Bayesian context � represents the available data and � stands for the hidden variables
(hypotheses, theories, models) which in the nonparametric approaches we will study are de-
scribed by functions or likelihood fields, like � � � � in regression or � � ��� ��� in general density
estimation problems. The terms in Eq. (14) are commonly referred to as

�����	��
�	����� � 3 ����
 3 ���������������������


�������
 5�� 
 � (16)

where the evidence �	� � � is independent of � . Conditional on the independent training data
�*) = � ��� 
 � ! # ! �	% , denoting the a priori information explicitly by ��2 , and writing � for
� Bayes’ theorem (14) reads

�	� ��
 � ) � �*) � �324��� �	� � ) 
 �*)+� ��� �	� ��
1�32,��	� � ) 
 �*)+� �324� � (17)

According to Eq. (17) two ingredients are needed to calculate the posterior: a likelihood
model describing the measurement process from which the data are obtained and a prior
model implementing the available a priori information.
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3 Likelihood models

Likelihood or data models define the different problem classes. In the following we will
introduce the nonparametric likelihood models of density estimation, regression and inverse
quantum theory.

3.1 Log–probabilities, energies, and density estimation

In practice it is often more convenient to work with log–probabilities (or log–densities, log–
processes, respectively) �

� 3�5 � (18)

instead of probabilities � . Indeed, for log–probabilities no non–negativity constraint is nec-
essary because � = 
 � �

�
is non–negative for arbitrary real

�
. Another advantage of log–

probabilities is that products of probabilities become sums for log–probabilities,

�	� � � �3��� �	��� � �	� �3���
� ��� � �3���

� ��� � �
� � � �� (19)

In limits where the number of probability factors approaches infinity the corresponding sums
of log–probability terms become integrals, e.g., in the log–prior, which are more common
objects than the infinite products which appear for probabilities. For example, according to
Bayes’ theorem (17) the log–posterior� � ��
1� � �324��� 3�5 �	� ��
1� � �32,� (20)

becomes up to a � –independent constant the sum of the log–prior� � ��
1�324��� 3�5 �	� ��
1�324� � (21)

which in nonparametric approaches typically consists of an integral over � and/or � , and the
log–likelihood � � � ) 
 �*)+� ��� � �

�
� � � � 
 ���-� ����� 3�5 :

� �	� � � 
 ���-� ��� � (22)

which, in contrast to the log–prior, is a finite sum over data points. We remark that the log–
lilekihood can be related to the averaged conditional Kerridge inaccuracy ��� ,

� � � ) 
 �*)+� ����� �
�
� � � � 
 ����� �����21 �����
	 � ���� � ��� � � � � � �	� � � 
 ��� � ����� � (23)

in short
�

= � � � � = 1 ����� , where the averaged conditional Kerridge inaccuracy

����	 � ���� � � � � � � � � �	� � � 
 � � � �����*� 1 �
� � � � ���� � � � ����	 � ���� � � � 
 � � � � �	� � � 
 � � � ����� (24)

is the empirical expectation of the corresponding Kerridge inaccuracy of the conditional den-
sities, obtained by integrating over � with � ���� � � � � ,

��	 � ���� � � � 
 � � � � �	� � � 
 � � � �����*�21 �
� � � � ���� � � � 
 � � � 3�5 �	� � � 
 � � � ��� � (25)
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where the empirical densities for data � = � � �*�-� � � � 
 � !$#�! �&% are given by

� ���� � ��
 ��� � � � ���� � ����� ���� ���� � ��� � � (26)

� ���� � ��� ��� � �
�

9�
�<;�= 
 � � 1 ��� � 
 � � 1 � � � � (27)

� ���� � � � � �
�

9�
�<;�= 
 � � 1 ��� � � (28)

with ����� �*) so that � ���� � ��
 ��� � is defined. Denoting the likelihood vector by � � ��� with
components � � ��� ���4��� = ��� ��
 ��� ��� and defining the data vector � � ��� ��� = � � ���� � ��� ��� we can
also write for the likelihood, alternatively to Eq. (23),

� � � ) 
 �*)+� ����� 1 �
� � � � 3�5 �	� ��
 ��� ����� � ��� ��� �21��,3�5	� � ��� 

��� (29)

using the bra–ket notation with respect to � and � , i.e., �� 
���� = ��� � � �� � ��� ���
� � ��� ��� .
Besides being non–negative, probabilities (or densities) have to be normalized to one.

Like non–negativity, the normalization condition can be implemented in the parameterization
of a probability. Indeed, if we parameterize a probability as follows

��� � ��� 
 � � � 1���� � � �>�� � (30)

where the normalization factor or partition sum
�

is given by� �
�

� � 
 � � � 1���� � � � � � (31)

then �	� � � is normalized and non–negative for arbitrary real functions � � � � . In analogy to
statistical physics, we will call the function � energy. Clearly, the random variable � in
Eq. (30) can be replaced by any other random variable. Hence energies, for example, appear
as likelihood energy � � ��
 ��� ��� , prior energy � � ��
1�524� , or posterior energy � � ��
 � � �624� . The
factor � , which in statistical physics plays the role of an inverse temperature, can be useful
for several technical purposes, for example, when calculating the moments of the random
variable � � � � . We will set � = 1 in the following.

If searching for a maximum of �	� � � the � –independent normalization factor
�

is irrel-
evant. That means, when maximizing a probability, e.g., a posterior ��� ��
 � � � 2,� , then when
working with energies like � � ��
 � � �527� we do not have to implement non–negativity and nor-
malization constraints explicitly and we do not have to calculate the normalization factor

�
.

This is especially useful if
�

is an integral over a high dimensional � –space.
Summarizing, the terms in Eq. (30) can be referred to as

� ����� � ��� 3 ���
� � �
� � �	��������� 5 ��� � 
 � ��� 1 
 5 
���� �

� 
 � ��
� � �!� ��
#" � (32)

Table 2 lists some possible choices for the likelihood field � � ��� ��� in density estimation and
the corresponding constraints the field has to obey.
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field � � ��� ��� likelihood �	� �	
 ��� ����� constraints

likelihood � � ��� ��� norm non–negativity

unnormalized likelihood
� ��� % � ���� � � ��� % � � — non–negativity

log–likelihood 
 � � � � � ��� ���>� norm —

likelihood energy
���  ����� � � � % � � �� � � ���  �	��� � ��� % � � � — —

distribution function
� � ��� % � �� � boundary monotony

Table 2: Some choices of likelihood fields and the corresponding constraints.

3.2 Regression

In regression problems the only unknown parameter of the likelihood , i.e., the conditional
density �	� �	
 ��� ��� is assumed to be the mean or regression function

� � � ���
�

� � � �	� ��
 ��� ���� (33)

A common case is Gaussian regression where the likelihood is chosen as a Gaussian with
fixed variance ��� ��
 ��� ��� � �
 ���� 
 � � � 1 
 � 1 � � � ��
 ���� � " � (34)

An example of such a Gaussian likelihood is shown in Fig. 2.
Regression models, however, can not only be formulated with a Gaussian likelihood as in

Eq. (34) but also with different likelihood models. For example, in classical inverse problems
one assumes a likelihood of the form

�	� ��
 ��� ��� � �
 ���� 
 � ��� 1 
 � 1 ��� ��� � � � 
 ���� � " � (35)

In that case data � = � � �.�-� � � ��
 � ! # ! �	% are sampled for ��� ��� � � � and not for � � � � . The
operator � often represents an ‘instrument or apparatus function’. If it is linear, then

��� ��� � � ���
�

� � � �"� ��� � � �>� � � � �4� (36)

A regression model with a Poisson likelihood

�	� ��
 ��� ��� � 	 � � � ��� �
��� �

� � � ��� � � � � � � "�� (37)

can be useful for counting events ( � counts with mean � � � � at � ). Similarly , a binomial
likelihood

�	� �	
 ��� ���4��� � � � � � �
� " 	 � � � ��� � 	 � 1 � � � ��� 9 � ����� � � � � � � � !$� � � � � !0� !�� � (38)
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Figure 2: Example of a Gaussian likelihood ������� ��� �	� as in Eq. (34) where the regression function ��� �
� =�� ����������� ��� �	� (thick line) is sampled from a prior process ������� ����� which favors smooth and approximately
periodic functions. (The corresponding prior covariance is shown in Fig. 4.) The black dots represent data points
� = ��� � � ��� � ������� �!� "�# sampled from the given likelihood, the dashed line shows the $&% -range around the
mean function ��� �
� .
is appropriate if at � from � � � � binary events a number of � ‘ones’ and � � � �$1 � ‘zeros’
have been observed, � � � � being the probability of ‘one’ at � . Finally we may remark that
support vector machines for regression are formally equivalent to an regression model with' –insensitive likelihood energy �)( � � � � � � � � = * � 
 �/13� � � � 
 1 ' � � 
 �/13� � � � 
 1 ' � , * � � � denoting
the step function and ' a constant [37, 41, 35].

3.3 Inverse quantum theory

As an example of a specific application of nonparametric Bayesian methods we will give a
short introduction to the Bayesian approach to inverse quantum theory. In inverse quantum
theory a quantum system is determined by measurements. A typical example, is the recon-
struction of a quantum potential (which determines the force acting on a particle) from a finite
number of position measurements. Such problems are based on the specific likelihood model
of quantum theory: Measuring observable +, for a quantum system in a state described by
density operator - , e.g., depending on an unknown potential � , the probability to obtain value

� is given by [39, 28] ��� ��
�+, � �����/. ����021# % � - � ���>� � (39)

where Tr stands for the trace and 031# % � is the projector on the space of eigenfunctions of

operator +, with eigenvalue � . For a system in a state described by wave function 4 the
density operator is given by

-3� 
 4 � �54 
�54"
64 � � (40)
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Figure 3: Quantum time series data: Time evolution of a particle observed at times ��� = 5 and ��� = 10 at
positions ��� in a given potential ���	��
� � �
� unknown to the learner. (The potential ���	��
��� �
� is shown on the right
hand side of Fig. 7.) The figure shows the likelihood ��� ����� � ��� �� ������� �	��� �6��������
��6� of Eq. (42), where the dependent
variable � is represented by the measured coordinates ����� � � , the potential function is chosen as field ��� �	� , and
the Hamiltonian in (43) is the sum of a kinetic energy term and the local potential. In time–dependent inverse
quantum theory the aim is to reconstruct the potential by combining the likelihood of such times series data with
a (nonparametric) prior on �	� �	� .
for a system at (physical) temperature � � � the density operator of the corresponding (canon-
ical) ensemble is of the form (setting Boltzmann’s constant equal to 1) [23]

- � 
 � � � 1 � � � ���>�
. ��
 � � � 1�� � � ��� � � (41)

where � stands for the Hamiltonian of the system which depends on the field � (and which
may represent, for example, a potential). Similarly, the likelihood for quantum time series
data � ����� � for an observable +, measured at times � � , � !$#�!$� , reads [22]

�	� � ����� � 
�+, � � ����� � = � � ����� 
 � � � 
�� � 
 � � � = �&
 � (42)

where 
 � � � stands for the eigenfunction of +, with eigenvalue � ��� � � and (setting � = 1)

� � � 
 � � � 1 # ����� 1 ��� � = � � � (43)

is the time evolution operator of a quantum system with time–independent Hamiltonian � .
An example of the likelihood of a particle moving in a quantum potential is shown in Fig. 3.

In nonparametric Bayesian inverse quantum theory the likelihood model of quantum me-
chanics is combined with a prior model for the field � . Being interested in the reconstruction
of a quantum potential, the field � � � � may represent the diagonal elements � � � � of a local
potential (where this time � stands not for an independent variable but for the coordinates of
a quantum particle). The prior model for � then implements available a priori information on
� � � � , like smoothness or an approximate periodicity, the possibility of certain distortions or
a specific fractal structure. Such nonparametric prior models, useful for density estimation,
regression, and inverse quantum theory, will be discussed in the next section.
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4 Prior models

For nonparametric models, where the number of degrees of freedom (represented by the field
values � � � � or � � ��� ��� ) is large compared to the number � of data, learning requires the
combination of the likelihood model with an appropriate prior model.

4.1 Gaussian prior factors and approximate symmetries

The simplest but already very flexible nonparametric prior models are Gaussian process priors
[40, 42, 32, 18]

�	� ��
1�324��� � ��
 ����� " �� � � �� � � ��� 
 � 
 � ��� ���
�
�
	 � � ( )+* � � (44)

where

�-� 1 � 
 � 
 � 1 � � �
�

� � � � � � �+� � � � � � ��� ���/1 � � ��� ��� � � � ��� ��� � � � � � � � � � � � � � � �&1 � � � � � � � �>�
(45)

with � being the real symmetric positive semi–definite inverse covariance operator of the
Gaussian process and � � ��� ��� (or � � � � for regression) the mean function of the process. As
the � � ��� ��� with maximal prior is given by the mean function, � � ��� ��� will also be called a
reference function or ‘prior template’ for the field � .

A prior of the form (44) implements the a priori knowledge that the field � is expected to
be similar to the mean function � measured in a distance defined by the inverse covariance � .
Similarly, the a priori knowledge that the field � is expected to be similar to a reference field
�7= OR to a reference field � � , (measured in a distance being defined the by two inverse covari-
ances � = and � � ) can be implemented by using a sum of two Gaussian prior components
of the form (44). Generalized to more than two components this yields a Gaussian mixture
prior �	� ��
 �624� = ��� � � � � � ��� , with ��� � � = � , mean functions � � and inverse covariances � � .
In particular if the � � are all equal, then such mixture models are not much more difficult
to solve than models with a single Gaussian prior [20, 21]. An application of a mixture of
Gaussian priors is presented in Fig. 6.

We remark that a product of Gaussian likelihood factors (34) for regression problems can
be expressed in a form similar to that of the prior (44): The sum of mean squared error terms
appearing in the exponent of the likelihood product can be written [20]

9�
�<;�=


 � � 1 � � ��� � 
 ���� � � �� � � 1 � ) 
 � ) 
 � 1 � ) � � � �� )
(46)

with � –independent data variance  ) , data mean vector � ) = �
� =) � 9�<;�= � �	��� , inverse data

covariance � ) = � 9�<;�= � � , where � � � � � = � � and � � � ��� � � � = 
 � � 1 � � � 
 � � 1 ��� � � � � .
The inverse prior covariance � can be chosen to implement approximate invariance of

the field � under an operation � . Indeed, if we choose in (44)

� � ��� 1�� ��� ��� 1���� � (47)

� denoting the identity and � � the transpose of � , then fields which fulfill � = � � , i.e., which
are invariant under � , maximize the prior (44). Hence, a Gaussian prior (44) with an inverse



12 Jörg C. Lemm

20 40 60 80

20 40 60 80

-0.6
-0.4
-0.2

0.2
0.4
0.6
0.8

�

�

� � � �

Figure 4: Left hand side: Prior covariance � ��� � ����� � � (shown for fixed � � = 40 on mesh with 80 points) used
to generate the sample data in Fig. 2. Right hand side: Regression function (thick line) reconstructed from the
data points shown in Fig. 2 and using the prior covariance shown on the left. Also shown are: the data points
(dots), the true regression function (thin line), and a piecewise linear interpolation (dashed line).

covariance of the form (47) generates functions which are approximately invariant under � .
For example, if � is chosen as the translation of � by � units in � –direction, i.e., �

� � � � ��� ��� =
� � � 1�� � ��� , then the invariant fields are periodic in � and � = ��� 1 � � � � � ��� 1 � � � � implements
approximate periodicity in � –direction. A regression function sampled from a prior which
favors smooth and approximate periodic functions is shown in Fig. 2.

Similarly, approximate invariance under infinitesimal transformations � , generating a Lie
group � � � � = 
 � � � ��� � with parameter � , can be implemented by inverse covariances

� ��� ��� � (48)

A typical example is approximate invariance under infinitesimal translations (‘smoothness’),
say with respect to a � –dimensional vector � with components � � , for which � � = � � � � � so
that � = � 	

� ;�= � � � � � becomes (under approriate boundary conditions) the negative Laplacian

� = 1�
 = 1 ����� � � � � �� (being of the form of kinetic energy terms in Euclidean field theory).
In statistics one typically uses inverse covariances which also include higher order derivatives
and which result in ‘smoother’, i.e., more times differentiable fields � � as MAP solutions. One
such example is the Radial Basis Function (RBF) inverse prior covariance [15]

� �� ��
� ; 2

�� � � 1
� �2 
� " � �� 
 � � � 1 � �2 
� " � (49)

with parameters  and
� 2 .

For density estimation with likelihood fields where the non–negativity and normalization
constraints are not fulfilled automatically, those hard constraints have to be added to the
Gaussian prior of Eq. (44), resulting in

�	� ��
1�32 � norm, non–neg. � � :
� 
 � � � � �	� ��
 ��� ���/1 ��� :

� �
*
� �	� ��
 ��� ����� �	� ��
1�324� (50)

where the 
 –functions ensure normalization for all � and the step functions * non–negativity
of the likelihood for all � and � . The 
 –function can be transformed into a Lagrange multiplier
term for the log–prior, yielding

� � ��� � 1 � 3�5	� � ����
 ��� � �� �-� 1 � 
 � 
 � 1 � � � � � � ��� 
�� # � (51)

� 1 � 3�5	� � ����
 ��� � �� �-��
 � 
 � � 1 ���+
 � � � ��� � ����
�� # � ��� �
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with a Lagrange multiplier function � # � ��� ��� = � # � � � which is determined by the nor-
malization condition. A similar Lagrange multiplier term can be introduced for the non–
negativity condition, but calculating the posterior predictive density in MAP approximation
(see Eq. (10)) non–negativity terms are in many practical cases not necessary. Indeed, because
the likelihood is by definition larger than zero at all data points, the field � � with maximal
posterior can typically also not become smaller than zero between data points if we assume
some common smoothness prior. Technically speaking, the non–negativity constraint is for
smoothness priors typically not active at the stationary point � � . In the language of physics
the term � = � � in Eq. (51) represents an external field coupling to � � ��� ��� , similar, for ex-
ample, to a magnetic field. A non–zero field � leads to a non–zero expectation of � in the
no–data case. The � –independent � stands for the term

=
� � � 
 � 
 � � , which is for invertible �

equal to
=
� � � 
 � � = 
 � � , and can be skipped when minimizing � � ��� with respect to � .

A MAP solution � � , which maximizes the posterior �	� ��
1� � �52,� or, equivalently, min-
imizes the energy � � ��� can be found by setting the functional (Fréchet) derivative of the
functional � � ��� in (51) with respect to the function � � ��� ��� to zero, i.e., by solving the station-
arity equations 
 � � ��� � 
 � � ��� ��� = 0 for all � and � . The stationarity equations for � resulting
from (51) can easily be expressed in vector notation

� � � � � ��� � � = � ��� � 1 � � � ��� � # 1 � � � 1 � � � (52)

where the Lagrange multiplier function follows from the normalization constraints over � for
all � yielding, if

��� � � =
is invertible and � #��� � ,

� # � � # � � 1 ��� � � =
� � � 1 � � � � (53)

with identity on
,

, � # � ��� � � � � � � � � = 
 � � 1 � � � and diagonal likelihood operator

� � ��� � � � � � � � �4����� 
 � � 1 � � � 
 � � 1 � � ��� � ��� ���4��� � (54)

with Jacobian
� � � ��� ��� � � � � � �,����� 
 � � � � � � � �4���


 � � ��� ��� � (55)

Choosing the regression function as field the stationarity equation (52) is linear for (nonpara-
metric, nonlinear) regression problems provided the likelihood model and the prior model are
Gaussian. In general, however, the stationarity equation (52) is nonlinear and has to be solved
by iteration.

4.2 Hyperparameters and hyperfields

4.2.1 Hyperparameters and the boosting of parametric models

Hyperparameters are parameters of the prior [1, 2, 12, 6, 27], like the ‘regularization factor’ 
and the width

� 2 in Eq. (49). Introducing hyperparameters into a model means decomposing
the prior according to

�	� ��
1�324���
�

� � �	� ��
 � � �62,� �	� �*
1�324� (56)

denoting hyperparameters collectively by � . In many practical cases the integral over � in
Eq. (56) can not be calculated analytically; like the integral over � in Eq. (8) it then has
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Figure 5: Example of a mean function � � ������� with a five–dimensional hyperparameter vector (and a two–
dimensional � ) used for a Gaussian prior as in Eq. (44) with prior energy ��

� ��� ��� � ����� ��� . Such (graylevel)
mean functions � � ����� � have been used in image completion tasks (see Fig. 6) where the (graylevel) function��� �
� represents an image which has to be reconstructed from pixels sampled with Gaussian noise from the
original image [20, 21]. The five dimensional hyperparameter vector � which includes two translation, one
rotation, and two scaling parameters makes the mean function � an adaptable template for the image � . In a joint
MAP approximation the function ��� �	� and the hyperparameters � are optimized simultaneously.

to be calculated numerically, e.g., by Monte Carlo methods, or in Maximum A Posteriori
Approximation. In a joint MAP approximation the integral over � in Eq. (8) and the integral
over � in Eq. (56) are calculated simultaneously in Maximum A Posteriori Approximation,
resulting in coupled stationarity equations for � and � .

Hyperparameters can be used to adapt the mean function or the covariance of a Gaussian
process prior. An example of the latter is the Automatic Relevance Detection by MacKay
and Neal [31, 26, 25, 20]. Hyperparameters for the mean functions of a Gaussian process
have been used, for example, in image completion tasks (see Fig. 5 and Fig. 6). The adaption
of the mean function is technically simpler then changing the covariance because changing
the mean of a Gaussian process does not change the normalization constant but changing
the covariance normally does. Solving the coupled stationarity equations for � and � in a
joint MAP approximation for adapting the mean function of a Gaussian prior can be inter-
preted as a nonparametric boosting of a parametric model [20] where during iteration first a
parametric model � � ��� ��� � � is optimized with respect to the (hyper)parameters � and then
the optimal parametric solution � � ��� � � � � � is used as a mean function for the Gaussian prior
for � . Fig. 7 shows as an example the reconstruction of a quantum potential � � � � using as
reference potential a parametric solution � � � � � � � with a � � which is obtained in maximum
likelihood approximation (i.e., in a MAP approximation with uniform (hyper)prior for � ).
4.2.2 Local hyperfields and filtered differences

Under local hyperfields � � � � we understand a collection of hyperparameters indexed by the
visible variables � [20, 24]. It is straightforward to consider local hyperfields � � ��� ��� depend-
ing on both, � and � , but for the sake of simplicity we restrict to fields � � � � , having in mind,
for example, regression problems or the reconstruction of a quantum potential � � � � . Similarly,
nonlocal hyperfields can be introduced depending, for example, on more than one � –value.
Local hyperfields are useful to adapt the mean function or the inverse covariance of a Gaus-
sian process locally. To show this, we decompose a real–symmetric, positive (semi–)definite



Bayesian Field Theory 15

data mean � ) � � � first prior mean �7= � � � second prior mean � � � � �

original ��������� � � � local maximum � =� � � local maximum � � � � �
Figure 6: Image completion with a Gaussian mixture prior as an example of a regression problem [20, 21].
The data (first row on the left, for the definition of ��� see 46) have been sampled from the original image� �	��
�� � �
� (second row on the left) with Gaussian noise. The prior consists of a sum of two Gaussian priors
������� � � � =

��� � � �����	��� ���	� � � ���	� both components with a negative Laplacian covariance but with two different
mean functions (image templates) � � � �
� and ����� �
� as shown in the first row. Both mean functions �,� have
been made flexible using the five dimensional hyperparameter vector introduced in Fig. 5. Shown is a situation
where the mixture prior and also the posterior possesses two local maxima (’low temperature case’). The two
regression functions � � � �	� and � � � �
� representing the local maxima of the posterior are shown in the second
row, optimally scaled, shifted and rotated. The global maximum, which is � � � �
� , is the MAP reconstruction of
the true regression function � �	��
�� .
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Figure 7: Left hand side: Shown is a sample path of a quantum particle, obtained from 50 coordinate measure-
ments at fixed time intervals analogous to Fig. 3. Right hand side: An example of the numerical reconstruction
of a quantum potential from the 50 coordinate measurements with likelihood as in (42) and a Gaussian prior on
�
� �
� similar to Eq. (49). (For more details see [22].) Shown are the true potential � �	��
� � �
� (thin line), the best
parametric approximation used as reference potential � � �
� (dashed line), and the reconstructed potential ��� �	� =
�
� �
� (thick line).
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inverse covariance � � ��� � � � (defining for example a regression problem) into square roots,

� ��� ��� � (57)

i.e.,

� � ��� � � ���
�

� � � � � � � ��� � � � ��� � � � � � � � �4� (58)

We will call the real square roots � filter operators and define the corresponding filtered
differences

� � � ���
�

� � � � � ��� � � � 	 � � � � �&1 � � � � ��� � (59)

Using Eq. (59) the negative logarithm of a Gaussian prior like in Eq. (44) with mean function
� � � � and inverse covariance � � ��� � � � becomes, up to a � –independent normalization term,

�� � � 1 � 
 � 
 � 1 � � � ��
�

� � � � � � � � � 	 � � � � 1 � � � ����� � � ��� � � �
� � � � � � � � � � 	 � � � � � � 1 � � � � � ���

� ��
�

� � 
 � � � ��
 � � (60)

At this point we can introduce a local hyperfield by replacing the filtered difference � � � � by
a local mixture of two alternative filtered differences

� � � � � ��� 	<�$1 � � � ��� ��= � � � ��� � � � � � � � � � (61)

with the real local hyperfield � � � � � 	 � � �
� contolling the mixture of the two � � . Such a hy-
perfield � � � � can adapt the prior by selecting locally the best mixture of the two filtered dif-
ferences �&� . Similarly, additional hyperfields can be introduced to mix more then two filtered
differences.

One possibility to transform an unrestricted real hyperfield 1�� ! �� � � � !	� into a
bounded real hyperfield � � � � � 	 � � � � is given by

� � � � � � � �� � � �&1�
�� � (62)

with a threshold parameter 
 and the sigmoidal transformation

� � � ��� �
� � 
 � � � 1 �� � � � �� � � ��5 � � � � � �0���� (63)

In the limit
��� � where the sigmoid in Eq. (63) approaches a step function we obtain

a binary local hyperfield � � � � � � � � � % . In contrast to a ‘soft mixing’ with real functions with� ! � � � � ! � , a binary local hyperfield implements a ‘hard switching’ between alternative
filtered differences �&� .

For a prior depending on hyperfields

��� ��
 � � � 
 � � � 1 � � ��
 � �>� (64)

the prior energy � � ��
 � � can be written

� � ��
 � � � ��
�

� � 
 � � � � � � 
 � � 3�5 � � � � � (65)

� ��
�

� ����� 	 �$1 � � � ��� ��= � � � ��� � � � � � � � � ���
� � 3�5 � � � � �4�
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The normalization factor � � � � ���
�

� � 
 � � � 1 ��
�

� � 
 � � � � � ��
 � " (66)

can depend on � , if the filters � � of the �&� differ. If depending on � the normalization factor� � � � � has to be included when integrating over � or solving for the optimal � in Maximum A
Posteriori Approximation. For binary � mixed terms proportional to �8= � � vanish in Eq. (65),
because for binary � we have � � �$1 � � = � . In that case we can write

� � ��
 � ��� ��
�

� �
�
	<�$1 � � � ��� 
 � = � � � 
 � � � � � � 
 � � � � � 
 � � � 3�5 � � � � �4� (67)

4.2.3 Mixing reference functions

A filtered difference � � � � � � as in Eq. (61) can be obtained, for instance, by local mixing or
switching between two alternative reference functions �= � � � � and � � � � � �

� � � � � � � ��� 	 �$1 � � � ��� �7= � � � � ��� � � � � � � � � � � (68)

where the local reference functions � � � � � � � � are functions of � � and � : To obtain a filtered
difference � � � � � � at position � , one needs the reference function � � for all � � for which the
corresponding � � ��� � � � is nonzero,

� � � � � ���
�

� � � � � ��� � � �
	 � � � � �&1 � � � � � � � ��� � (69)

Thus, for every local filtered difference the whole template function � � � � � � � � , rather than
individual function values � � ��� � � , have to be adapted.

In contrast to the local reference functions � � � � � � used in Eq. (68) one global reference
function � � � � � can be adapted locally using

� � � � � � ��� 	 �$1 � � � � ��� �7=� � � � � � � � � � � � � � � �4� (70)

On the other hand, working with different reference functions � = % � � � � � , � � % � � � � � for different �

generalizes Eq. (68) to

� � � � � � � ��� 	 �$1 � � � ��� �7= % � � � � � ��� � � � � � % � � � � �� (71)

It is possible to use a nonlocal prior (i.e., a prior with � �� � , for example, when choosing
as � a differential operator because smooth functions are expected) and still avoid local
template functions � � � � � � � � . This can be achieved by taking the product of a Gaussian prior
with � = � and a second Gaussian prior with a nondiagonal inverse covariance � � and a zero
(or fixed) reference function, yielding for the combined prior energy

� � ��
 � � � �� � � 1��� � � � �� � 1��� � � ��� � �� �-��
 � � 
 ��� (72)

� �� � �-� 1 � � � �&
 � 
 � 1 � � � ��� � � �� � � � �� � 1 �
� = �� �� � � ��� " � (73)
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The second term in Eq. (73) is independent of � , the effective template � � � � is given by

� � � ��� �
� = �� � � � � (74)

and the effective inverse covariance � by

� � � � � � � (75)

Choosing as inverse prior covariance � a differential operator, the effective � � � � becomes a
smoothed version of �� � � � .
4.2.4 Mixing filter operators

Similar to Eq. (68) a mixed filtered difference � � � � � � can be obtained by mixing locally two
alternative filter operators � = � ��� � � � and � � � ��� � � �

� � ��� � � � � ��� 	<��1 � � � ����� = � ��� � � � � � � � ��� � � ��� � � �� (76)

Introducing

� � � � ����� � � � ��� �� � � � (77)

with vector � � � � � = � � ��� � � � � , we obtain from Eq. (76) for binary � � � � as inverse covariance

� � � � �
�

� � � � � � ���
�

� � � � � � ��� �� � � �
�

�
� ��� 	<�$1 � � � ����� = % � � �= % � � � � � ��� � % � ���� % ��� � (78)

4.3 Hyperpriors for hyperfields

Working with hyperfields typically requires non–uniform hyperpriors �	� � � . Indeed, allowing
completely unrestricted functions � and operators � just eliminates the corresponding prior
term. In nonparametric hyperfield models, where functions like � � � � are not restricted to
some parametric family, hyperpriors for hyperfields are stochastic processes, like priors for
the functions � � � � or � � ��� ��� . Such hyperpriors can, for instance, favor smooth hyperfields� � � � analogous to a smoothness prior for a function � . In analogy to (Euclidean) field theory
in physics the part � � ��
 � � may be interpreted as the ‘interaction’ between the fields � and �
while the hyperprior describes a ‘free’ hyperfield including possible ‘self–interactions’ of the
hyperfield.

As a smoothness prior for a real � � � � , for example, one can use a Laplacian prior with
hyperprior energy � � � ��� 1
	 � � � 
 
 
 ���/� (79)

where 	 is the analogue of a regularization constant. Parameters of the hyperprior like 	 in
Eq. (80) can be treated as higher level hyperparameters.

Another kind of ‘smoothness’ is implemented by the non–Gaussian hyperprior

�	� � � � 
 � � � 1�	 � � � �� � � � � " � (80)
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where

� � � � ��� ��� � � �� � " � 1�
 ��� (81)

with a sigmoid function
� � � � like in (63) and some constant 	 . For

� � � , where the
sigmoid approaches a step function, �

� � � � becomes 0 at locations where the square of the
first derivative is smaller than a certain threshold � ! 


� ! � , and 1 otherwise. Similarly,
one can penalize the number � � � � � of discontinuities, where � � � � � � � � = � , choosing

��� � � � 
 � �
� 1 	 � � � � � � �6� (82)

In the case of a binary field this means counting the number of times the field changes its
value.

Eq. (81) can be generalized to

� � � � ��� � � 
 � � � � � 
 � 1�
 � � � (83)

with filtered difference

� � � � ���
�

� � � � � � ��� � � �
	 � � � � �&1 � � � � � ��� � (84)

like in Eq. (59). The reference function � � � � � � in Eq. (84) gives the expected form for the
hyperfield � � � � , while the filter operator �

�
defines the measure which is used to measure

the distance of hyperfields � � � � from the reference � � � � � � .
4.4 Auxiliary fields

When working with hyperfields one introduces additional degrees of freedom which influence
the prior for � . Integrating over the hyperfields � � � � to obtain the predictive density in a
full Bayesian approach would leave us with a prior �	� ��� which is non–Gaussian in � , even
if all conditional priors �	� ��
 � � are Gaussian in � . Similarly, when solving the problem in
Maximum A Posteriori Approximation, the stationarity equation for � (linear for Gaussian�	� ��
 � � for given � ) and the nonlinear stationarity equation for � are coupled. Eliminating �
from the set of coupled equations leaves us with a nonlinear equation in � . Hence, instead
of introducing hyperfields as additional degrees of freedom one may try as well to directly
formulate a non–Gaussian prior for � .

One possibility to obtain a non–Gaussian prior from a Gaussian prior is to use as prior
energy instead of the square � � a non–quadratic function 4 � � � of the filtered difference,
corresponding to a prior

�	� ��
1�324� � 
 � � � 1 �
� � 4 � � � � � � " (85)

where for density estimation problems � can be replaced by the pair � ��� ��� . Typical choices
are ’cup’ functions with flat tails for which one large step is cheaper than many small ones
(see Fig. 8). Such non–Gaussian priors are, for example, used to deal with discontinuities
in images [14, 3, 30, 13, 45, 44] or in the identification of ‘outliers’ like the separation of
background and signal in experimental spectra [38, 9, 10].
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Figure 8: Two ’cup’ functions of the form �!� �
� = �	��� � � � ��� � � � �5� � � �
��� ��� �����5� [44] as example of a non–
quadratic function �!� �
� in Eq. (85). Left hand side: Winkler’s cup function [43] ( � =

�
, � = � � , � =

���
	
, � � =

�
).

Right hand side: Function with cusp ( � = � , � = � , � = � , �
� =
�
).

Another possibility to construct non–Gaussian priors is the introduction of auxiliary fields
� � � �4��� , or more general � � ��� ���,��� , whose function values are not independent variables but
are defined as functionals of � . (To simplify notation we will denote � � � �4��� by � � � � or
� � ��� , depending on the context.) Similar to hyperfields � � � � auxiliary fields can be used to
select locally the best adapted filtered difference from a set of alternative ��� , each of the form
of Eq. (59). As an example in analogy to Eq. (83) consider an auxiliary field

� � � � � � ��&� � �&1�
�� � (86)

with
�� � ��� 
 ��= � � � 
 � 1 
 � � � � ��
 � � (87)


 representing a threshold, and
� � � � a sigmoidal function like in (63). The ��� are filtered

differences defined in terms of � analogous to Eq. (59). In contrast to a hyperfield the auxiliary
field � � � � in Eq. (86) does not introduce new degrees of freedom because the ��� in Eq. (87)
are defined in terms of � . Note that if ��� � � � is nonlocal with respect to � � � � then also � � � �
is nonlocal, meaning that a value � � � � depends on more than one � � � � –value. For a negative
Laplacian prior in one–dimension, i.e.,

� � ��� � � ��� 1 
 � ��� � � � � �� � � (88)

(the 
 -function is usually skipped from the notation) Eq. (86) becomes (for appropriate bound-
ary conditions)

� � � ��� � � ���� �
� � 1 �7= �� �

����
� 1 ����

� � � 1 � � �� �
����
� 1�
 � � (89)

While auxiliary fields � � � � are directly determined by � , hyperfields � � � � are indirectly re-
lated to � , for instance through the stationarity equations of a Maximum A Posteriori Ap-
proximation or through integration over � � � � in a full Bayesian approach.

Auxiliary fields can be used similarly to hyperfields. They can help to adapt reference
functions � or filter operators � . For instance, to switch between two filtered differences one
can use a binary � � � �


 � � � � �3� 
 � � 	<�$1 � � � ��� 
 ��= � � � 
 � � � � � � 
 � � � � ��
 � � (90)

yielding a prior energy of a form similar to Eq. (67)

� � ����� ��
�

� � � 	 �$1 � � � ��� 
 � =� � � 
 � � � � � ��
 � � � � � 
 � � � (91)
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Resembling the role of hyperpriors �	� � � , additional prior factors

��� � � ���>� � 
 � �	� 1 ��� � ���>� � (92)

depending on � only over � � ��� , can be introduced. For example, if � � � �3� counts the number
of discontinuities of � � � � , the number of switchings is restricted by choosing

��� � ����� 	 � � � � � �� (93)

For real � � � � one can use terms of the form

��� � ����� 	 �
�

� � 
 � � � � � 
 � (94)

where
� � � � ���

�
� � � ��� � ��� � � � 	 � � � � �&1 � � � � � ��� (95)

is a filtered difference of � with some filter operator ��� and template � � . Non–quadratic
energies as in (83) become, now written for � ,

��� � ����� 	 �
�

� �� � � � � � (96)

with � � � � ��� � � 
 � � � � � 
 � 1�
�� � � (97)

The normalization factor � �
�

� � 
 � � � 1 � � ���&1 ��� � ��� � (98)

for a prior ��� ��� � 
 � � � 1 � � ���&1 ��� � ���>� � (99)

is by definition independent of � and can thus be skipped for calculations in Maximum A
Posteriori Approximation.

We have now encountered two methods for constructing prior models which may result
in quite similar looking expressions. For instance, combining prior energy (91) with (93) for
a binary auxiliary field (86) results in a prior

��� ��� � 
 � � � 1 ��
�

� � � 	 � 1 � � � ��� 
 � = � � � 
 � � � � � ��
 � � � � ��
 � � 1 	 � � � � �3� " � (100)

A similar looking prior model with a binary hyperfield can be obtained by combining a con-
ditional Gaussian prior (67) with the hyperprior (82)

�	� � � � � � �	� ��
 � � �	� � � � (101)


 � � � 1 ��
�

� ��� � �$1 � � � �>� 
 ��= � � ��
 � ��� � � � 
 � � � � � 
 �	� 1 	 � � � � � �&1 3�5 � � � � � " �
We can now compare the two models: Working with hyperfields means working with

conditional priors �	� ��
 � � , so that normalization factors which are in general � –dependent.
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Figure 9: Example of the reconstruction of a potential �	� �
� from coordinate measurements in a quantum system
at finite temperature with likelihood (41) and with a binary auxiliary field (left figure) or a binary hyperfield
(right figure), respectively, switching locally between two alternative mean functions (or reference potentials)
� � � �
� = � � � �
� and � � � �	� = � � � �	� of a nonparametric Gaussian smoothness prior [24]. In both figures the switch-
ing between the two reference potentials � � , � � (induced by the binary hyperfield or the binary auxiliary field,
respectively) is indicated by a thick black line above the potentials. Left hand side: Reconstruction with a bi-
nary auxiliary field defined in terms of ��� �
� = �
� �
� as step function � � �
� = ��� � � � � �
��� � � � � � � �
� � ��� , (which
corresponds to Eq. (86) with � =

�
in the limit where the sigmoid approaches a step function), using a prior

like in (91) switching between two alternative filtered differences and a penalty on the number of jumps of the
auxiliary field. Right hand side: Reconstruction with a binary hyperfield which switches locally between the
two nonzero reference potentials � � , ��� and a penalty on the number of jumps of the hyperfield as hyperprior.

Therefore the normalization factors have to be included for calculations in Maximum A Pos-
teriori Approximations. This is not the case if we are working with auxiliary fields. Hence,
in general MAP solutions for � , � � � � � , and � � , are different from the MAP solutions for� , � � � � � , and �

�
. If, however, the filtered differences � � in Eq. (101) differ only in their ref-

erence functions � � � � � , then the normalization term can be skipped. The two MAP equations
are then indeed equivalent for � � � � = * � 
 � = � � � 
 � 1 
 � � � � ��
 � � , if the threshold vanishes 
 =� and a hyperprior or additional � � is absent, i.e., if ��� � � � � and �	� � � � � . Furthermore it
is also easily seen that in that case � � � � = * � 
 � = � � ��
 � 1 
 � � � � � 
 � � is a selfconsistent solution
for � for every given � . Fig. 9 shows two reconstructions of a quantum potential, one using a
hyperfield and another one using an auxiliary field.

5 Summary

In nonparametric Bayesian models, where the number of the degrees of freedom of the like-
lihood is much larger than the number of available data points, the quality of learning does
depend essentially on the implemented a priori information. Starting from Gaussian process
priors we have discussed several methods to implement available a priori information explic-
itly in terms of the likelihood, for example, by choosing a specific prior covariance which
corresponds to some approximate symmetry of the likelihood or by adapting the mean func-
tion of a prior process using hyperfields. Those techniques for constructing nonparametric
priors can be used for many different likelihood models, including density estimation, regres-
sion and inverse quantum theory.
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