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We report on large-scale numerical simulations of supensgtric Yang-Mills (SYM) theory by
the DESY-Minster Collaboration. The spectrum of light pasite particles is investigated and
confronted with theoretical expectations based on unlbrekgersymmetry for large volumes
and small gaugino masses.

1 Introduction

The recently found Higgs scalar particle at the Large Ha@oltider (LHC)'2 completes
the Standard Model (SMdf elementary particle interactions. All known matter isreo
posed of a small number of fundamental constituents, thekquand leptons. Subatomic
interactions of these particles, namely strong, weak aectr@imagnetic interactions, are
described in the Standard Model within the frameworkfantum Field Theory The
scalar field corresponding to the Higgs particle is the spofanasses of quarks and lep-
tons and of the vector boson fields mediating the interastiéfi known experimental data
in the presently available energy range can be describeteb8tandard Model.

In spite of the completeness and beauty of the Standard Meejuestion what hap-
pens at still higher energies cannot be answered with aogytaihe simplest possibility
would be that the Standard Model in the present form is valialeenergies till infinity.
Otherwise there are physical laws Beyond the Standard M&%\1). One argument in
favour of the existence of BSM physics is the large numbered parameters in the Stan-
dard Model. By just a minimal change of some free parameter®htire world would
become completely different from the one we know. For instarthe existence and sta-
bility of atoms and ordinary matter relies heavily on thetfdmt neutrons are slightly
more massive than protons. The reason for this small difterebesides the different
electromagnetic self-interactions, is the small mas®uifice of up- and down-quarks as
constituents. It is an intriguing question, why this smadlss difference happens to be just
the one realised in our world.

A theoretical hint towards the existence of BSM physics cefitem the investiga-
tion of the change of effective (“running”) couplings as adtion of the energy. It is
a long known fact that the three running couplings (elecagnetic, weak and strong)
become almost equal at high energies above, K&y, GeV. At this Grand Unification
Theory (GUT)scale the basic symmetry group underlying the Standard Mddmnges



from SU(3)2SU(2)2U(1) to a larger embedding group like SU@3U(4Y, SU(5Y, or
SO(10%. The small discrepancy of the three running couplings neaiGUT scale dis-
appears if the Standard Model is extendedsbhipersymmetry (SUS¥) a Supersymmet-

ric Standard Model (SSMBupersymmetry is an extension of the Poincaré symmetry of
space-time corresponding to an extension of the Poindgebi@ by one or several super-
symmetry charges tosuper-Poincag algebrathat relates bosons to fermions (for a review
see Ref. 6).
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The supercharges change the spin%by\ence the supersymmetry multiplets contain par-
ticles with different spins, in particular, bosons and femns at the same time. Since at
present energies no such supermultiplets with degenekedsan are observed, supersym-
metry — if it is realised in Nature — has to be a broken symmetry

Another important reason why BSM physics has to exist, igrikility of the infinite
cut-off limit: some renormalised couplings such as theted@eagnetic coupling, quartic
scalar coupling and (generalised) Yukawa couplings havandsh, i. e. such interactions
cannot be realised in the framework of a relativistic Quanttield Theory. In case of
the electromagnetic coupling this problem is traditiopakscribed by the emergence of
a Landau polé at high energies, where the running electromagnetic cogpliverges.
As a consequence of triviality in the Standard Model, fornaegicut-off there is a region
in parameter space of renormalised couplings that is atlowe the limit of an infinite
cut-off this region shrinks to the origin at zero renormadicouplings. Since the renor-
malised couplings in the Standard Model are known from thpegmentally known parti-
cle masses, there is a cut-off value at which the couplingsgthe border of the allowed
region. Higher cut-offs are impossible and therefore BSMsits has to appear not later
than at this energy scale. The allowed region of renornmdligeartic and Yukawa cou-
plings can be investigated in numerical simulations. (8e@ktance Ref. 8.) If the Higgs
boson mass is about 125-126 GeYV, it is in particular the Iddiggs boson mass bound
that can imply the values of the energy scale where new BS\ipyas to appear

Supersymmetry may also relieve the constraints arising friviality. For instance, in
N = 2 supersymmetric Yang-Mills (SY&eory every renormalisable quartic and Yukawa
coupling is proportional to the non-abelian gauge couplimigich is asymptotically free
and can, therefore, describe non-trivial interactions {seinstance Ref. 10,11). In case of
the Standard Model, an advantage of GUTs is that the U(1)@ayagmetry correspond-
ing to the electromagnetic interaction becomes part of aatmiian gauge symmetry and
therefore the Landau pole problem disappears. Also, frenpttint of view of the triviality
problem of quartic and Yukawa couplings, a SUSY GUT is bdtess restrictive) than a
GUT without supersymmetry. More generally, in SUSY thestlee radiative corrections
are less important and the infinities in renormalisatiorfener.



Every supersymmetric extension of the Standard Model aumtes a building block
the A/ = 1 SYM theory, which is the object of investigation in our prctjelt is the super-
symmetric extension of Yang-Mills theory describing therigas of gauge interactions, the
gauge particles, together with their supersymmetric gastrthe gauginos. Gauginos are
massless Majorana fermions, which are in the adjoint reyptasion of the gauge group.
In the continuum the (on-shell) Lagrangian of the theory is

1 1~ -
L=tr|—7EuF" + %AWDHA—%M : (1)

whereF),,, is the non-Abelian field strength formed out of the gauge $idld(z), A(z) is
the gaugino field, and,, denotes the gauge covariant derivative in the adjoint sepria-
tion. The supersymmetry of the theory is broken softly byghagino mass term. We are
presently investigating the simplest non-abelian SYM thedth gauge group SU(2). Our
nonperturbative studies are concentrating on the pragseofi the light particle spectrum.
In particular, we determine the masses of the lightest caitgpparticles by performing
numerical simulations in the lattice-regularised theoFpr our recent publications see
Refs. 12-15.

2 Supersymmetry on the lattice

Poincaré (Lorentz) symmetry is broken by lattice regsktion. Since SUSY generators
define an extension of the Poincaré algebra, it is not simgithat SUSY is, in general,
also broken by the lattice. There are some recently explexeeptions to this rule, espe-
cially in case of extended SUSY with several SUSY generdfgrs- 1) and in most cases
in lower dimensions (for a review see for instance Ref. 16)imteresting example in four
dimensions is\" = 4 SYM theory, which may be discretised in such a way as to pveser
one scalar supersymmetry at nonzero lattice spatin(rhe other 15 supersymmetries
are still broken by lattice artefacts 6f(a), wherea denotes the lattice spacing.) In case
of N = 1 SYM there is no such possibility, hence SUSY is broken in amyvkn lattice
formulation.

Our numerical calculations are based on the Curci-Venedattice actiof®, which is
built in analogy to the Wilson action of QCbfor the gauge field (“gluon”) and Wilson
fermion action for the gaugino (“gluino”). Both supersymnyeand chiral symmetry are
broken by lattice artefacts but are expected to be restaordédei continuum limit if the
gaugino hopping parameter (i.e. bare mass) is tuned toieatialue. The breaking of the
chiral symmetry for nonzero lattice spacings could be aioly using domain-waf:2*or
overlag? fermions and then there is no need of parameter tuning, BUSUSY breaking
remains and the required numerical effort for simulationsid substantially increase.

2.1 SYM theory on the lattice

The Curci-Veneziano lattice action for SYM theory is given b

S =S, + 5 . )



HereS, is the gauge field action
S, —62(1——ReTrUpl) , (3)
pl

with the gauge coupling = 2N../¢* for an SU(V.) gauge fieldU,, is the product of the
gauge link fields along a plaquette. The fermionic part ofattion (2) is

Sf = XQ)\

D=

L R = Ky [N Vaban (1 30X + X0V, (1= 3)Xa] } o
(4)
Here K is the hopping parameter which determines the gaugino masienotes a Dirac
matrix andV,, is the gauge field variable in the adjoint representatioheffauge group,
which is obtained from the gauge field links in the fundamkmejaresentatiod/,,,, by

Vb = 2Ty (U, TV T") (5)
(T* are the generators of SN()). The gaugino field\, satisfies the Majorana condi-
tion

with the charge conjugation Dirac matiix
Performing the path integral over the fermion figldesults in aPfaffian

/ [dNe 22X = / [dNe™ 2 MY = PE(M) )
whereM is the antisymmetric matrix defined as
M=CQ=-M". (8)
The square of the Pfaffidnf() ) is equal to the determinant of the fermion matgx
det(Q) = det(M) = [Pf(M)]* . (9)

The Monte Carlo simulations are performed by importancepdiaign with respect to a
positive measure. Since for finite lattice spacinthe Pfaffian is not always positive, its
sign has to be taken into account separately. Taking thenegative square root of the
determinant, the effective gauge field actiol¥is

Scv = ﬂz (1 — —ReTr Upl) — %1ogdet QU] . (10)

The factor% in front of log det () can be interpreted as corresponding to a flavour number
Ny = % of Dirac fermions. The gauge configuration for this fracibflavour number
can be created, for instance, by the-step polynomial Hybrid Monte Carlo (TSPHMC)
algorithn?3, which is our choice for Monte Carlo updating.

The omitted sign of the Pfaffian can be taken into account gighting:

<A> — <A SignPf(M)>CV

SenPI M) oy (D)




where(...)cv denotes expectation values with respect to the effectiuggactionScy .
The reweighting with the Pfaffian sign in (11) may lead tsign problemif a strong
cancellation occurs among contributions with opposita.sithis could lead to very large
statistical errors. However, as we have shown in previopgsby monitoring the sign of
the Pfaffiad® 25 for positive gaugino masses practically no sign problegucsbecause
the positive contributions dominate.

3 Light particle spectrum in SYM theory

The gauge coupling in SYM theory is asymptotically free atthénergies and becomes
very strong in the infrared limit. The low energy particleesfrum is expected to consist of
hadron-like colourless states due to confinement, simal@E€D. The difference to QCD
is that in SYM the quarks are replaced by Majorana fermiorikéradjoint representation.
Because of supersymmetry, the particles should belong &3 m@generate SUSY multi-
plets. The verification of this expectation is a central taskonperturbative studies in the
lattice regularisation.

3.1 Pseudoscalar and scalar mesons

The colourless states can be created from the vacuum stagauge invariant operators
which are built from the gluon and gluino field operators. tfiis section we shall call, in
analogy to QCD, the gauge field “gluon field” and the gauginthas'gluino”.) A simple
example of colourless composite states areatffjeint mesons(The name “adjoint” refers
to the fact that the composing fermions are in the adjointaggntation.) The adjoint
mesons are composite states of two gluinos with spin-péritand0—. We denote the
former bya-n’ and the latter by:- fo, where the prefix refers to the adjoint representation.
For projecting to these states we use the gluino bilinearadpes® = \I'\ wherel’ =
~s5, 1 respectively. The resulting meson propagator consistemfiected and disconnected
contributions:

s oo
z,y

Cr(t) = Vi > <Trsc[rQ;;]Trsc FQ, ] —2TrIQ;,TQ,.}]

disconnected connected (12)
2
1 /1 _
s t

where Tt denotes a trace over spin and colour indices. The connesmtedcan be used
to extract the mass:,.-, of the adjoint pion, which is an unphysical state in SYM (thst|
term in Eq. (12) is zero foI' = ~5). The vanishing pion mass is used to signal the chiral
limit.

The numerical evaluation of the disconnected propagatoashier demanding. In order
to reduce the large variance, the disconnected part haschérnated using the stochastic
estimator metho@. As it is the case in QCD, the disconnected diagrams aregitally
noisier than the connected ones and dominate the level sémothe total correlator.

An additional difficulty for calculating the mass of the smrainesoni' = 1in Eq. (12))
is that in this case, in contrast to the pseudoscalar mésen+s), the vacuum expectation



value appearing in the last term of Eq. (12) is non-zero. hhisto be subtracted or has to
be fitted as an additional contribution in the correlatorisidan be done, for instance, by
the method of fitting and error determination described ttisa 3.2 of Ref. 27, but the
effect of the additional fit parameter is an increase of thtistical error.

Scalar particles with the same quantum numberggsanda-fy can also be created
by purely gluonic operators built from the gauge links astinggauge theory or QCD. Itis
possible that the gluon operators create the same staties abdve gluino operators. For
this case the low energy effective theory was defined in R&f.The other possibility is
that there are two low-mass SUSY multiplets created by tlesvts of operators, which
can eventually also be mixed with each off{er

3.2 Gluino-glue

For completing a (chiral) SUSY multiplet, besides a scafadt pseudoscalar particle, a
Majorana fermion particle is also required. Such parti@es provided by theluino-

glueballs
An operator for the gluino-glue particle is in the continuum
Ogg = Y oputr [F*N], (13)
uv

whereo,,, = % [vu, 7] andF#* is the field strength tensor. A lattice version of this, which
can be used in numerical simulations, is

05 = > ot tr [PN7] (14)
1<j,B

where the indices and;j stand for the spatial directions. A choice #8y; with the proper
parity and time reversal transformation properties is thigharmitian part of the clover
plaquettel/ (<)

L g o
Pl] - 8190 (Uuu (Uuu ) ) . (15)
For its definition and more details see Ref. 13.

The gluino-glue correlator has been obtained using diffesmearing techniques. The
link fields are smeared using APE smearing, the fermionidgigking Jacobi smearing. In
order to decrease lattice artefacts and statistical fltiongin the Wilson-Dirac fermion
matrix ¢) of the lattice action (4)-(5), the gauge link variablég, have been replaced by
stout smearetinks®.

4 Conclusions and outlook

The results for light particle masses are summarised inlFighe masses are shown as a
function of the squared mass of the adjoint pion, which foakralues is proportional to
the gluino mass. Also shown are the extrapolations to thi¢ ifrvanishing gluino mass.
All figures include the gluino-glue mass for comparison.

The detailed investigation of finite volume effects shoWede lattice volumes are suf-
ficiently large, such that the finite volume effects are serdlian the statistical errors. The
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Figure 1. Light particle masses in SYM as a function of theasgd mass of the adjoint piong is the Sommer
scale parameter.

simulations are performed at non-zero gluino masses whersupersymmetry is softly
broken. The extrapolation to vanishing gluino mass, whaepesymmetry is expected,
is consistent with the emergence of a mass-degeneraté shpermultiplet. Of course,

besides the soft breaking by non-vanishing gluino maskess tare also additional SUSY
breaking lattice artefacts. This should and could be dishied in future simulations closer
to the continuum limit, that is at larger values@f
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