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We report on large-scale numerical simulations of supersymmetric Yang-Mills (SYM) theory by
the DESY-Münster Collaboration. The spectrum of light composite particles is investigated and
confronted with theoretical expectations based on unbroken supersymmetry for large volumes
and small gaugino masses.

1 Introduction

The recently found Higgs scalar particle at the Large HadronCollider (LHC)1, 2 completes
the Standard Model (SM)of elementary particle interactions. All known matter is com-
posed of a small number of fundamental constituents, the quarks and leptons. Subatomic
interactions of these particles, namely strong, weak and electromagnetic interactions, are
described in the Standard Model within the framework ofQuantum Field Theory. The
scalar field corresponding to the Higgs particle is the source of masses of quarks and lep-
tons and of the vector boson fields mediating the interactions. All known experimental data
in the presently available energy range can be described by the Standard Model.

In spite of the completeness and beauty of the Standard Modelthe question what hap-
pens at still higher energies cannot be answered with certainty. The simplest possibility
would be that the Standard Model in the present form is valid at all energies till infinity.
Otherwise there are physical laws Beyond the Standard Model(BSM). One argument in
favour of the existence of BSM physics is the large number of free parameters in the Stan-
dard Model. By just a minimal change of some free parameters the entire world would
become completely different from the one we know. For instance, the existence and sta-
bility of atoms and ordinary matter relies heavily on the fact that neutrons are slightly
more massive than protons. The reason for this small difference, besides the different
electromagnetic self-interactions, is the small mass difference of up- and down-quarks as
constituents. It is an intriguing question, why this small mass difference happens to be just
the one realised in our world.

A theoretical hint towards the existence of BSM physics comes from the investiga-
tion of the change of effective (“running”) couplings as a function of the energy. It is
a long known fact that the three running couplings (electromagnetic, weak and strong)
become almost equal at high energies above, say,1016 GeV. At this Grand Unification
Theory (GUT)scale the basic symmetry group underlying the Standard Model changes
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from SU(3)⊗SU(2)⊗U(1) to a larger embedding group like SU(4)⊗SU(4)3, SU(5)4, or
SO(10)5. The small discrepancy of the three running couplings near the GUT scale dis-
appears if the Standard Model is extended bysupersymmetry (SUSY)to a Supersymmet-
ric Standard Model (SSM). Supersymmetry is an extension of the Poincaré symmetry of
space-time corresponding to an extension of the Poincaré algebra by one or several super-
symmetry charges to asuper-Poincaŕe algebrathat relates bosons to fermions (for a review
see Ref. 6).
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The supercharges change the spin by1

2 , hence the supersymmetry multiplets contain par-
ticles with different spins, in particular, bosons and fermions at the same time. Since at
present energies no such supermultiplets with degenerate masses are observed, supersym-
metry – if it is realised in Nature – has to be a broken symmetry.

Another important reason why BSM physics has to exist, is thetriviality of the infinite
cut-off limit: some renormalised couplings such as the electromagnetic coupling, quartic
scalar coupling and (generalised) Yukawa couplings have tovanish, i. e. such interactions
cannot be realised in the framework of a relativistic Quantum Field Theory. In case of
the electromagnetic coupling this problem is traditionally described by the emergence of
a Landau pole7 at high energies, where the running electromagnetic coupling diverges.
As a consequence of triviality in the Standard Model, for a given cut-off there is a region
in parameter space of renormalised couplings that is allowed. In the limit of an infinite
cut-off this region shrinks to the origin at zero renormalised couplings. Since the renor-
malised couplings in the Standard Model are known from the experimentally known parti-
cle masses, there is a cut-off value at which the couplings are at the border of the allowed
region. Higher cut-offs are impossible and therefore BSM physics has to appear not later
than at this energy scale. The allowed region of renormalised quartic and Yukawa cou-
plings can be investigated in numerical simulations. (See for instance Ref. 8.) If the Higgs
boson mass is about 125–126 GeV, it is in particular the lowerHiggs boson mass bound
that can imply the values of the energy scale where new BSM physics has to appear9.

Supersymmetry may also relieve the constraints arising from triviality. For instance, in
N = 2 supersymmetric Yang-Mills (SYM)theory every renormalisable quartic and Yukawa
coupling is proportional to the non-abelian gauge coupling, which is asymptotically free
and can, therefore, describe non-trivial interactions (see for instance Ref. 10,11). In case of
the Standard Model, an advantage of GUTs is that the U(1) gauge symmetry correspond-
ing to the electromagnetic interaction becomes part of a non-abelian gauge symmetry and
therefore the Landau pole problem disappears. Also, from the point of view of the triviality
problem of quartic and Yukawa couplings, a SUSY GUT is better(less restrictive) than a
GUT without supersymmetry. More generally, in SUSY theories the radiative corrections
are less important and the infinities in renormalisation arefewer6.
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Every supersymmetric extension of the Standard Model contains as a building block
theN = 1 SYM theory, which is the object of investigation in our project. It is the super-
symmetric extension of Yang-Mills theory describing the carriers of gauge interactions, the
gauge particles, together with their supersymmetric partners, the gauginos. Gauginos are
massless Majorana fermions, which are in the adjoint representation of the gauge group.
In the continuum the (on-shell) Lagrangian of the theory is

L = tr

[

−
1

4
FµνF

µν +
i

2
λ̄γµDµλ−

mg

2
λ̄λ

]

, (1)

whereFµν is the non-Abelian field strength formed out of the gauge fieldsAµ(x), λ(x) is
the gaugino field, andDµ denotes the gauge covariant derivative in the adjoint representa-
tion. The supersymmetry of the theory is broken softly by thegaugino mass term. We are
presently investigating the simplest non-abelian SYM theory with gauge group SU(2). Our
nonperturbative studies are concentrating on the properties of the light particle spectrum.
In particular, we determine the masses of the lightest composite particles by performing
numerical simulations in the lattice-regularised theory.For our recent publications see
Refs. 12–15.

2 Supersymmetry on the lattice

Poincaré (Lorentz) symmetry is broken by lattice regularisation. Since SUSY generators
define an extension of the Poincaré algebra, it is not surprising that SUSY is, in general,
also broken by the lattice. There are some recently exploited exceptions to this rule, espe-
cially in case of extended SUSY with several SUSY generators(N > 1) and in most cases
in lower dimensions (for a review see for instance Ref. 16). An interesting example in four
dimensions isN = 4 SYM theory, which may be discretised in such a way as to preserve
one scalar supersymmetry at nonzero lattice spacing17. (The other 15 supersymmetries
are still broken by lattice artefacts ofO(a), wherea denotes the lattice spacing.) In case
of N = 1 SYM there is no such possibility, hence SUSY is broken in any known lattice
formulation.

Our numerical calculations are based on the Curci-Veneziano lattice action18, which is
built in analogy to the Wilson action of QCD19 for the gauge field (“gluon”) and Wilson
fermion action for the gaugino (“gluino”). Both supersymmetry and chiral symmetry are
broken by lattice artefacts but are expected to be restored in the continuum limit if the
gaugino hopping parameter (i.e. bare mass) is tuned to a critical value. The breaking of the
chiral symmetry for nonzero lattice spacings could be avoided by using domain-wall20, 21or
overlap22 fermions and then there is no need of parameter tuning, but the SUSY breaking
remains and the required numerical effort for simulations would substantially increase.

2.1 SYM theory on the lattice

The Curci-Veneziano lattice action for SYM theory is given by

S = Sg + Sf . (2)
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HereSg is the gauge field action

Sg = β
∑

pl

(

1−
1

Nc

ReTrUpl

)

, (3)

with the gauge couplingβ ≡ 2Nc/g
2 for an SU(Nc) gauge field.Upl is the product of the

gauge link fields along a plaquette. The fermionic part of theaction (2) is

Sf ≡ 1
2λQλ

≡ 1
2

∑

x{λ
a

xλ
a
x −K

∑4
µ=1

[

λ
a

x+µ̂Vab,xµ(1 + γµ)λ
b
x + λ

r

xV
T
ab,xµ(1− γµ)λ

b
x+µ̂

]

} .

(4)
HereK is the hopping parameter which determines the gaugino mass,γµ denotes a Dirac
matrix andVxµ is the gauge field variable in the adjoint representation of the gauge group,
which is obtained from the gauge field links in the fundamental representationUxµ by

V ab
xµ ≡ 2Tr

(
U †
xµT

aUxµT
b
)

(5)

(T a are the generators of SU(Nc)). The gaugino fieldλx satisfies the Majorana condi-
tion

λx = λT
x C , (6)

with the charge conjugation Dirac matrixC.
Performing the path integral over the fermion fieldλ results in aPfaffian:

∫

[dλ]e−
1

2
λQλ =

∫

[dλ]e−
1

2
λMλ = Pf(M) , (7)

whereM is the antisymmetric matrix defined as

M ≡ CQ = −MT . (8)

The square of the PfaffianPf(M) is equal to the determinant of the fermion matrixQ:

det(Q) = det(M) = [Pf(M)]2 . (9)

The Monte Carlo simulations are performed by importance sampling with respect to a
positive measure. Since for finite lattice spacinga the Pfaffian is not always positive, its
sign has to be taken into account separately. Taking the non-negative square root of the
determinant, the effective gauge field action is18:

SCV = β
∑

pl

(

1−
1

Nc

ReTrUpl

)

−
1

2
log detQ[U ] . (10)

The factor12 in front of log detQ can be interpreted as corresponding to a flavour number
Nf = 1

2 of Dirac fermions. The gauge configuration for this fractional flavour number
can be created, for instance, by thetwo-step polynomial Hybrid Monte Carlo (TSPHMC)
algorithm23, which is our choice for Monte Carlo updating.

The omitted sign of the Pfaffian can be taken into account by reweighting:

〈A〉 =
〈A signPf(M)〉CV

〈signPf(M)〉CV

, (11)
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where〈. . .〉CV denotes expectation values with respect to the effective gauge actionSCV .
The reweighting with the Pfaffian sign in (11) may lead to asign problemif a strong
cancellation occurs among contributions with opposite sign. This could lead to very large
statistical errors. However, as we have shown in previous papers by monitoring the sign of
the Pfaffian24, 25, for positive gaugino masses practically no sign problem occurs because
the positive contributions dominate.

3 Light particle spectrum in SYM theory

The gauge coupling in SYM theory is asymptotically free at high energies and becomes
very strong in the infrared limit. The low energy particle spectrum is expected to consist of
hadron-like colourless states due to confinement, similar to QCD. The difference to QCD
is that in SYM the quarks are replaced by Majorana fermions inthe adjoint representation.
Because of supersymmetry, the particles should belong to mass degenerate SUSY multi-
plets. The verification of this expectation is a central taskfor nonperturbative studies in the
lattice regularisation.

3.1 Pseudoscalar and scalar mesons

The colourless states can be created from the vacuum state bygauge invariant operators
which are built from the gluon and gluino field operators. (Inthis section we shall call, in
analogy to QCD, the gauge field “gluon field” and the gaugino asthe “gluino”.) A simple
example of colourless composite states are theadjoint mesons. (The name “adjoint” refers
to the fact that the composing fermions are in the adjoint representation.) The adjoint
mesons are composite states of two gluinos with spin-parity0+ and0−. We denote the
former bya-η′ and the latter bya-f0, where the prefixa refers to the adjoint representation.
For projecting to these states we use the gluino bilinear operatorsO = λ̄Γλ whereΓ =
γ5, 1 respectively. The resulting meson propagator consists of connected and disconnected
contributions:

CΓ(t) =
1

Vs

∑

~x,~y

〈

Trsc[ΓQ−1
xx ]Trsc[ΓQ−1

yy ]
︸ ︷︷ ︸

disconnected

−2Trsc[ΓQ−1
xy ΓQ

−1
yx ]

︸ ︷︷ ︸

connected

〉

−
1

Vs

〈

1

T

∑

t

∑

~x

Trsc[ΓQ−1
xx ]

〉2

.

(12)

where Trsc denotes a trace over spin and colour indices. The connected term can be used
to extract the massma-π of the adjoint pion, which is an unphysical state in SYM (the last
term in Eq. (12) is zero forΓ = γ5). The vanishing pion mass is used to signal the chiral
limit.

The numerical evaluation of the disconnected propagators is rather demanding. In order
to reduce the large variance, the disconnected part has beencalculated using the stochastic
estimator method26. As it is the case in QCD, the disconnected diagrams are intrinsically
noisier than the connected ones and dominate the level of noise in the total correlator.

An additional difficulty for calculating the mass of the scalar meson (Γ = 1 in Eq. (12))
is that in this case, in contrast to the pseudoscalar meson (Γ = γ5), the vacuum expectation
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value appearing in the last term of Eq. (12) is non-zero. Thishas to be subtracted or has to
be fitted as an additional contribution in the correlator. This can be done, for instance, by
the method of fitting and error determination described in section 3.2 of Ref. 27, but the
effect of the additional fit parameter is an increase of the statistical error.

Scalar particles with the same quantum numbers asa-η′ anda-f0 can also be created
by purely gluonic operators built from the gauge links as in pure gauge theory or QCD. It is
possible that the gluon operators create the same states as the above gluino operators. For
this case the low energy effective theory was defined in Ref. 28. The other possibility is
that there are two low-mass SUSY multiplets created by the two sorts of operators, which
can eventually also be mixed with each other29.

3.2 Gluino-glue

For completing a (chiral) SUSY multiplet, besides a scalar and pseudoscalar particle, a
Majorana fermion particle is also required. Such particlesare provided by thegluino-
glueballs.

An operator for the gluino-glue particle is in the continuum

Õgg̃ =
∑

µν

σµνtr [F
µνλ] , (13)

whereσµν = 1
2 [γµ, γν ] andFµν is the field strength tensor. A lattice version of this, which

can be used in numerical simulations, is

Oα
gg̃ =

∑

i<j,β

σαβ
ij tr

[
Pijλ

β
]
, (14)

where the indicesi andj stand for the spatial directions. A choice forFij with the proper
parity and time reversal transformation properties is the antihermitian part of the clover
plaquetteU (c)

Pij =
1

8ig0
(U (c)

µν − (U (c)
µν )

†) . (15)

For its definition and more details see Ref. 13.
The gluino-glue correlator has been obtained using different smearing techniques. The

link fields are smeared using APE smearing, the fermionic fields using Jacobi smearing. In
order to decrease lattice artefacts and statistical fluctuations in the Wilson-Dirac fermion
matrixQ of the lattice action (4)-(5), the gauge link variablesUxµ have been replaced by
stout smearedlinks30.

4 Conclusions and outlook

The results for light particle masses are summarised in Fig.1. The masses are shown as a
function of the squared mass of the adjoint pion, which for small values is proportional to
the gluino mass. Also shown are the extrapolations to the limit of vanishing gluino mass.
All figures include the gluino-glue mass for comparison.

The detailed investigation of finite volume effects showed13 the lattice volumes are suf-
ficiently large, such that the finite volume effects are smaller than the statistical errors. The
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Figure 1. Light particle masses in SYM as a function of the squared mass of the adjoint pion.r0 is the Sommer
scale parameter.

simulations are performed at non-zero gluino masses where the supersymmetry is softly
broken. The extrapolation to vanishing gluino mass, where supersymmetry is expected,
is consistent with the emergence of a mass-degenerate chiral supermultiplet. Of course,
besides the soft breaking by non-vanishing gluino masses, there are also additional SUSY
breaking lattice artefacts. This should and could be diminished in future simulations closer
to the continuum limit, that is at larger values ofβ.
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