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The fundamental constituents of matter and the forces between them are splendidly described
by the Standard Model of elementary particle physics. Despite its great success, it will be
superseded by more comprehensive theories that are able to include phenomena, which are not
covered by the Standard Model. Among the attempts in this direction are supersymmetry and
Technicolor models. We report about our non-perturbative investigations of the characteristic
properties of such models by numerical simulations on high-performance computers.

1 Introduction

The physics of elementary particles has a marvellous theoretical framework available,
which is called the Standard Model. It accurately describes a vast number of phenom-
ena and experiments. In the Standard Model the fundamental interactions among parti-
cles are described in terms of gauge field theories, which are characterized by an infinite-
dimensional group of symmetries.

Despite its great success it is evident that the Standard Model does not offer a complete
description of the fundamental constituents of matter and their interactions. To mention just
some of the arguments for this: (1) astrophysical observations have revealed that the uni-
verse contains a huge amount of dark matter, that is not described by the Standard Model,
(2) it has been discovered experimentally that neutrinos have a finite mass, whereas the
Standard Model requires them to be massless, (3) there is a hierarchy of mass scales be-
tween electroweak phenomena (e. g. W- and Z-masses) and light constituents (e. g. quark
and lepton masses), which the Standard Model cannot explain in a natural way. A central
question of present-day’s elementary particle theory thus concerns the physics beyond the
Standard Model. Some attempts in this direction are Grand Unified Theories, supersym-
metric models, Technicolor, Supergravity and Superstring theories. In this article we will
discuss work of our collaboration concerning supersymmetry and Technicolor Models.

2 Supersymmetric Yang-Mills Theory

The fundamental constituents of matter, quarks and leptons, are fermions, characterized
by half-integer spin, and obeying the Pauli principle. The forces among them are me-

1



diated by bosons, which carry integer spin, like the photons, W- and Z-bosons for the
electroweak interactions and the gluons for the strong interactions. Various symmetries are
known that play important roles for physics on the fundamental level, and that are related
to conservation laws via Noether’s theorem. These symmetries, which can be described
mathematically in terms of groups, relate fermions to fermions and bosons to bosons.

Supersymmetry goes beyond the concept of ordinary symmetries. It relates bosons with
fermions, and in its mathematical description requires concepts exceeding group theory.
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Particle multiplets of supersymmetry contain members with different spins, in partic-
ular both bosons and fermions. In the case of unbroken supersymmetry the particles in a
supermultiplet would all have the same mass.

Supersymmetric extensions of the Standard Model, containing in addition to the parti-
cles of the Standard Model their superpartners, are candidates for models that describe the
unification of forces at very high energies and supply dark matter particles. Since super-
multiplets with degenerate masses have not been observed in nature, supersymmetry must
be broken by some mechanism in these models.

Many of the properties of supersymmetric field theories have been investigated by
means of perturbation theory or semiclassical methods. There are, however, important non-
perturbative properties that are not accessible to these methods, in particular the masses of
bound states and the nature of phases of the theories. The method of choice for studying
these central characteristics is the numerical simulation on high performance computers.
To this end space-time is discretized on a four-dimensional lattice, where the variables of
the field theory are defined.

The object of our investigations is the N = 1 supersymmetric Yang-Mills (SYM)
theory. It represents the simplest field theory with supersymmetry and local gauge invari-
ance, and it is contained in every supersymmetric extension of the Standard Model as a
sub-sector. SYM theory is the supersymmetric extension of Yang-Mills theory with gauge
group SU(Nc). It describes the carriers of gauge interactions, the “gluons”, together with
their superpartners, the “gluinos”, forming a massless vector supermultiplet. The gluons
are represented by the non-Abelian gauge fieldAaµ(x), a = 1, . . . , N2

c −1. The gluinos are
massless Majorana fermions, described by the gluino field λa(x) obeying λ̄ = λTC with
the charge conjugation matrix C, thus being their own antiparticles. Gluinos transform
under the adjoint representation of the gauge group, so that the gauge covariant derivative
is given by Dµλa = ∂µλ

a + g fabcA
b
µλ

c.
In the continuum the (on-shell) Lagrangian of the theory is

L = −1

4
F aµνF

a
µν +

i

2
λ̄aγµ(Dµλ)a , (1)
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where F aµν is the non-Abelian field strength. Adding a gluino mass term mg̃ λ̄
aλa, which

is necessary in view of the numerical simulations, breaks supersymmetry softly.
SYM theory is similar to Quantum Chromodynamics (QCD), the theory of the strong

interactions of nuclear matter. The essential differences are that the gluinos are Majorana
fermions and that they are in the adjoint representation of the gauge group, in contrast to
the quarks of QCD.

Non-perturbative problems concerning fundamental properties of SYM theory are (1)
Is chiral symmetry broken spontaneously as predicted, associated with a gluino condensate
〈λaλa〉 6= 0 ? (2) Are static quarks confined? (3) Is supersymmetry broken spontaneously?
(4) Does a supersymmetric continuum limit exist on the lattice? (5) Do the bound states
form supermultiplets? (6) Are the predictions from effective Lagrangeans correct?

We have investigated SYM theory with gauge group SU(2) in recent years and are
presently focussing on SU(3). Central aspects of our studies include the spectrum of light-
est particles, supersymmetric Ward identities and the phases of the model. For our recent
publications see Refs. 1–6.

2.1 Supersymmetry on the Lattice

In order to study a field theory by numerical simulations, the underlying space-time con-
tinuum has to be approximated by a lattice. The lattice spacing a provides a momentum
cut-off, so that possible infinities, coming from the large-momentum region, are regulated.
Expectation values of observables are calculated in terms of functional integrals à la Feyn-
man. Their numerical evaluation with Monte Carlo methods requires that the integrands
are real. This is achieved by an analytical continuation to imaginary times, t = −iτ ,
leading to Euclidean lattice field theory.

On the lattice the gauge field is given by link variables Uxµ ∈ SU(Nc), and the gauge
field strength is represented by the product Uxµν ≡ Up of the gauge link fields along a
plaquette p = (x, µν). Fermion fields ψ(x) are defined on lattice points.

ψ(  )xx

U    =xµ

agA   xµ(  )ie
µx

x µ

ν U     =xµν

a gF   xµν(  )i 2

e

Supersymmetry is generically broken by the discretization of space-time on a lattice7.
Therefore a question of conceptual relevance is whether supersymmetry can be restored in
the continuum limit (a→ 0). In our numerical calculations we use a lattice action proposed
by Curci and Veneziano8, which is built in analogy to the Wilson action of QCD for the
gauge field and Wilson fermion action for the gluino. Both supersymmetry and chiral
symmetry are broken on the lattice, but they are expected to be restored in the continuum
limit if the gluino mass is tuned to zero.

The Curci-Veneziano action for SYM theory on the lattice is given by S = Sg + Sf ,
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where

Sg = − β

Nc

∑
p

Re Tr Up (2)

is the gauge field action with inverse gauge coupling β = 2Nc/g
2, and

Sf =
1

2

∑
x

{
λ̄axλ

a
x − κ

4∑
µ=1

[
λ̄ax+µ̂Vab,xµ(1 + γµ)λbx + λ̄axV

T
ab,xµ(1− γµ)λbx+µ̂

]}
(3)

is the fermion action, where Vab,xµ = 2 Tr (U†xµTaUxµTb) is the gauge field variable in
the adjoint representation (T a are the generators of SU(Nc)), and the hopping parameter
κ is related to the bare gluino mass via κ = 1/(2m0 + 8). When the fermion action
is written in the form Sf = 1

2 λ̄Qλ = 1
2λ

TMλ with M = CQ, the functional integral
Z =

∫
[DU ][Dλ] e−(Sg+Sf ) involves the fermionic part∫

[Dλ] e−Sf = Pf(M) = ±(detQ)1/2 , (4)

resulting in a Pfaffian. For finite lattice spacings a the Pfaffian is not always positive and
its sign has to be taken into account separately. By monitoring the sign of the Pfaffian we
check that practically no sign problem occurs because the positive contributions dominate.

The exponent 1/2 of detQ can be interpreted as corresponding to a flavour number
Nf = 1/2 of Dirac fermions. The gauge configurations for this fractional flavour number
can be created, for instance, by the two-step polynomial Hybrid Monte Carlo (TSPHMC)9

or the rational Hybrid Monte Carlo (RHMC) algorithm, both of which we use for Monte
Carlo updating.

2.2 Light Particle Spectrum in SYM Theory

Similar to QCD, SYM theory is asymptotically free at high energies and strongly coupled
at low energies. It is expected that due to confinement the particles of the model are colour-
neutral bound states of gluons and gluinos. Because of supersymmetry they should belong
to mass degenerate supermultiplets. It is a central aim of our studies to investigate whether
this expectation holds.

Based on effective Lagrangeans, predictions about the composition of the lightest
supermultiplets have been made10, 11. A first chiral supermultiplet should consist of a
scalar meson a–f0, a pseudoscalar meson a–η′, and a gluino-glue bound state g̃g, being
a spin 1/2 Majorana particle. The corresponding interpolating fields are λ̄aλa, λ̄aγ5λa

and σµνF aµνλ
a. The prefix a of the meson-names indicates that their constituents are in

the adjoint representation. An additional chiral supermultiplet is predicted to consist of a
scalar (0+) glueball, a pseudoscalar (0−) glueball, and another gluino-glue bound state g̃g.
Fig. 1 illustrates the elementary constituents at high energies and their bound states in the
low energy regime.

The masses of the bound states are obtained from an analysis of the corresponding cor-
relation functions. We also employed more elaborate variational methods. A circumstance
that makes the calculations considerably more demanding than in QCD is the fact that the
mesons are flavour diagonal, and consequently their correlation functions always contain
disconnected fermionic contributions, whose numerical evaluation is rather laborious.
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Figure 1. Constituents and bound states in SYM
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Figure 2. Light particle masses in SU(2) SYM theory a function of the lattice spacing a and extrapolated to the
continuum. Masses and lattice spacings are given in units of the scale parameter w0 obtained from the Wilson
flow.

In the case of gauge group SU(2) we have obtained results for low-lying masses on
lattices of size 163 × 32, 243 × 48 and 323 × 64 at three values of the lattice spacing,
namely a = 0.087, 0.054 and 0.036 fm in units of QCD.

Two kinds of extrapolations are performed. First, at fixed lattice spacing a, determined
by the gauge coupling β, the masses are extrapolated to the limit of vanishing renormalized
gluino massmg̃ = 0. This limit corresponds to a particular value of the hopping parameter
κc(β), which can be determined either with the help of the adjoint pion massma–π , making
use of the relation12 m2

a–π ∝ mg̃ , or by means of supersymmetric Ward identities. Both
methods appear to be consistent with each other up to lattice artefacts.

The second extrapolation is the one towards the continuum limit. Fig. 2 shows the
masses at three values of the lattice spacing a and their extrapolations to the continuum
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a = 0. The notoriously difficult glueball has the noisiest signal and largest errors, which
might be underestimated. With this reservation the results are consistent with the formation
of a degenerate supermultiplet.

Currently we are investigating the next higher masses, which should belong to the
members of a second supermultiplet, and we have obtained preliminary results. The focus
of our present calculations is on SYM theory with gauge group SU(3), which contains
the gluons of QCD and their fermionic superpartners. Compared to the case of SU(2),
the SU(3) SYM theory shows new physical aspects, e. g. new types of bound states and
CP-violating phases.

3 Technicolor Candidates

The Higgs particle, which has been found in 2012 at the LHC, plays an essential role in
the Standard Model. The associated Higgs field is responsible for the masses of quarks,
leptons, and the W- and Z-bosons, which mediate the weak interactions. The Higgs boson
has a strange singular position in the Standard Model: it doesn’t fit in the matter particles,
which are all fermionic, neither does it fit in the other bosons, which are gauge particles.
Moreover, in the Standard Model the Higgs mass is not protected against large radiative
corrections, and its relative small value cannot be explained in a natural way. This gave
rise to the idea that the Higgs particle might be a bound state of fermions, which interact
via new strong interactions on a scale of order 200 GeV. Technicolor models are attempts
to put this scenario into effect. Classes of models that found particular interest due to
phenomenological constraints are theories with an infrared fixed point or with a walking
coupling. Theories with an infrared fixed point show scale-invariant (conformal) behaviour
at large distances, while walking theories have a nearby infrared fixed point. In both cases
the coupling strength varies only slowly over a large range of scales, in contrast to the
running coupling of QCD.
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Figure 3. A sketch of the behaviour of the coupling strength g2 as a function of the energy scale Λ for QCD-like,
walking, and infrared conformal theories.

For gauge theories coupled to fermions it is of fundamental importance to know to
which scenario they belong. This strongly depends on the number Nf of fermion flavours.
In general, theories with small Nf behave QCD-like, and above a certain value of Nf
infrared conformal behaviour sets in. Whereas for fermions in the fundamental representa-
tion of the gauge group the border is uncomfortable high (Nf ≈ 10), it has been predicted
to be significantly smaller for fermions in the adjoint representation.

6



This appealing feature has motivated our collaboration to investigate SU(2) gauge the-
ories with fermions in the adjoint representation in view of their scaling behaviour. We
have studied Nf = 2, 3/2, 1 and 1/2, where half-integer flavours mean Majorana fermions.
A characteristic feature is the dependence of bound state masses on the fermion mass mr.
In infrared conformal theories, these masses commonly scale to zero with mr according to
M ∝ mα

r with some exponent α.
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Figure 4. Typical behaviour of bound states masses as a function of the fermion mass mr in infrared conformal
theories (left) and QCD-like theories (right).
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Figure 5. Masses of various bound states as a function of the fermion mass mr ≡ mPCAC in SU(2) gauge theory
with Nf = 2 flavours of fermions in the adjoint representation.

The case of Nf = 1/2 is SYM theory, which behaves QCD-like. On the other hand,
for Nf = 2 fermion flavours the scaling of bound states masses (see Fig. 5), and other
observables indicate, that this theory belongs to the infrared conformal scenario13, 14.

For the theories with Nf = 1 and 3/2 we found indications that they are infrared
conformal, too15, 16. Our preliminary results are currently explored more closely.
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