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Solidification fronts in supercooled liquids: How rapid fronts can lead to disordered glassy solids

A. J. Archer, M. J. Robbins, and U. Thiele
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom

E. Knobloch
Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA

(Received 5 June 2012; revised manuscript received 30 August 2012; published 21 September 2012)

We determine the speed of a crystallization (or, more generally, a solidification) front as it advances into the
uniform liquid phase after the system has been quenched into the crystalline region of the phase diagram. We
calculate the front speed by assuming a dynamical density functional theory (DDFT) model for the system and
applying a marginal stability criterion. Our results also apply to phase field crystal (PFC) models of solidification.
As the solidification front advances into the unstable liquid phase, the density profile behind the advancing front
develops density modulations and the wavelength of these modulations is a dynamically chosen quantity. For
shallow quenches, the selected wavelength is precisely that of the crystalline phase and so well-ordered crystalline
states are formed. However, when the system is deeply quenched, we find that this wavelength can be quite
different from that of the crystal, so the solidification front naturally generates disorder in the system. Significant
rearrangement and aging must subsequently occur for the system to form the regular well-ordered crystal that
corresponds to the free energy minimum. Additional disorder is introduced whenever a front develops from
random initial conditions. We illustrate these findings with simulation results obtained using the PFC model.
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I. INTRODUCTION

It is important to understand the formation kinetics of a
solid from the liquid phase when it is cooled below its freezing
temperature Tf because the microscopic structure of the solid
can depend strongly on the formation pathway. If the liquid
is only slightly cooled below Tf , then the solid forms via
nucleation and growth [1], generally leading to well-ordered
crystalline solids. Depending on the material and the degree
of cooling below Tf , the formation of dendrites and other
complex microstructures is possible [2–4]. When the liquid is
rapidly quenched (supercooled) to a temperature sufficiently
far below Tf there is no nucleation barrier against the liquid
forming a solid. In this situation, the solid that is formed can
be amorphous, with little or no long-range order, rather than a
regular ordered crystal.

Classical density functional theory (DFT) [5,6] is a widely
used microscopic theory capable of describing equilibrium
aspects of melting, freezing, and also the interfaces between
the liquid and solid phases [7,8]. In conjunction with the
recent development of a dynamical density functional theory
(DDFT) [9–12], which is a theory that requires as input the
free energy functionals from equilibrium DFT, these theories
have been shown to be able to describe the dynamics of
crystal formation [13]. A related approach, which has been
developed and studied extensively over the past decade or
so, is the phase field crystal (PFC) [3,4,13–22] approach
for modeling the atomic structure of crystalline materials.
The PFC may be derived from the DDFT by assuming a
(local) gradient expansion approximation for the Helmholtz
free energy functional for the system and linearizing the
density-dependent mobility prefactor in the DDFT equation
[13,16]. DFT and DDFT are theories for the one-body density
distribution ρ(x) of the particles in the system. These theories
essentially treat the solid phase as an inhomogeneous liquid,
in which the density profile consists of an array of density

peaks, each corresponding to a localized particle, in contrast
to the liquid phase, which has a uniform density distribution.
The PFC is a theory for an order parameter profile φ(x), which
in a similar manner takes a constant value in the liquid phase
and forms an array of peaks in the solid phase.

In this paper we consider a simple liquid that has been
rapidly quenched to a temperature well below Tf and develop
a theory for how the solidification front propagates into the
unstable liquid. We base our analysis on the DDFT and PFC
models. The DDFT predicts that the time evolution of the
one-body density ρ(x,t) of a system of particles is governed
by the following equation [9–12]:

∂ρ(x,t)
∂t

= $∇ ·
[
ρ(x,t)∇ δF [ρ]

δρ(x,t)

]
, (1)

where $ is a (constant) mobility coefficient and F [ρ(x,t)] is
the equilibrium fluid Helmholtz free energy functional

F [ρ(x,t)] = β−1
∫

dx ρ(x,t){ln[ρ(x,t)'3] − 1}

+Fex[ρ(x,t)] +
∫

dx Vext(x,t)ρ(x,t). (2)

The first term is the ideal gas free energy; ' is the thermal
de Broglie wavelength and β = 1/kBT is the inverse tem-
perature. The second term Fex is the excess contribution and
the final term is the contribution from the external potential
Vext(x,t). The DDFT may be derived from the Smoluchowski
(Fokker-Planck) equation for a system of interacting Brownian
particles with overdamped stochastic equations of motion by
assuming that the two-body correlations in the nonequilibrium
fluid are the same as those in an equilibrium fluid with the same
one-body density profile [9–12]. Moreover, for dense atomic
or molecular fluids, in which the equations of motion for the
particles are of course Newton’s equations of motion, one can
argue [23,24] that Eqs. (1) and (2) still provide a reasonable
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approximation for the dynamics of the system, particularly
when it is not too far from equilibrium.

This paper is laid out as follows. In Sec. II we consider the
stability of a uniform liquid with number density ρ(x) = ρ0
and obtain the dispersion relation for the growth or decay
of small-amplitude harmonic density perturbations. We then
approximate this relation and obtain a simple expression
that coincides with the dispersion relation that one obtains
from considering the PFC theory. In Sec. III we employ the
marginal stability hypothesis to compute from this dispersion
relation the speed of a solidification front advancing into
a linearly unstable uniform liquid [21]. We also make an
expansion in a certain small parameter related to undercooling
in order to obtain an analytical expression for the speed c
of the solidification front. We find that the wavelength λ of
the density modulations that develop in the system as the
solidification front advances is not necessarily equal to the
lattice spacing λc of the equilibrium crystal that the system
seeks to form. This is because the length λ is a dynamically
selected (nonequilibrium) quantity. When the liquid is only
weakly supercooled into the linearly unstable region, then
λ ≈ λc and one should expect a regular crystal to form easily.
However, when the system is deeply supercooled, then λ ̸= λc

and one should expect the formation of a regular crystal to
be frustrated and the structure that is initially formed behind
the advancing solidification front to be somewhat disordered
(amorphous). In Sec. IV we confirm this conclusion, i.e., that
a deep quench leads initially to the formation of solids with
greater disorder, using numerical simulations of the PFC model
in two spatial dimensions. We also show that the transverse
filamentation of the stripe pattern created by the advancing
front is a consequence of the random initial conditions we
employ. In Sec. V we draw our conclusions and discuss
the applicability of our PFC results to understanding real
materials.

II. DISPERSION RELATION

We consider a bulk fluid, where the external potential
Vext(x,t) = 0 in Eq. (2), and examine small density fluctuations
ρ̃(x,t) = ρ(x,t) − ρ0 about the bulk fluid density ρ0. We have
in mind that we are considering a homogeneous fluid that
has been rapidly quenched to the region of the phase diagram
where the crystal is the equilibrium phase. In the following
derivation of the dispersion relation for the growth or decay
of harmonic density fluctuations ρ̃(x,t), we initially follow
Ref. [11]. From Eqs. (1) and (2) we obtain

1
D

∂ρ̃(x,t)
∂t

= ∇2ρ̃(x,t) − ρ0∇2c(1)(x,t)

−∇ · [ρ̃(x,t)∇c(1)(x,t)], (3)

where the diffusion coefficient D = $/β and c(1)(x,t) =
−βδFex/δρ is the one-body direct correlation function [5,6].
We linearize Eq. (3) in ρ̃ by Taylor expanding c(1) about the
bulk fluid value, giving

c(1)(x,t) = c(1)(∞) +
∫

dx′ δc
(1)(x)

δρ(x′)

∣∣∣∣
ρ0

ρ̃(x′,t) + O(ρ̃2), (4)

where c(1)(∞) ≡ c(1)[ρ0] = −βµex and µex is the excess
chemical potential. Note also that

δc(1)(x)
δρ(x′)

= −β
δ2Fex[ρ]

δρ(x′)δρ(x)
= c(2)(x,x′) = c(2)(|x − x′|; ρ0)

(5)

for a homogeneous fluid of spherically symmetric particles.
For an equilibrium system c(2)(|x − x′|; ρ0) is the Ornstein-
Zernike direct pair correlation function of the fluid with density
ρ0. Substituting Eq. (4) into Eq. (3), we obtain [11]

1
D

∂ρ̃(x,t)
∂t

= ∇2ρ̃(x,t) − ρ0∇2
[∫

dx′c(2)(|x−x′|; ρ0)ρ̃(x′,t)
]
+O(ρ̃2).

(6)

We now assume that the density fluctuation is of the form
ρ̃(x,t) = ϵ exp(ωt + ik.x), where ϵ is a small amplitude and
the dispersion relation ω(k), where k = |k|, is yet to be
determined. From Eq. (6) we obtain

ω

D
ρ̃(x,t) = −k2ρ̃(x,t) + ρ0k

2ĉ(k)ρ̃(x,t) + O(ρ̃2), (7)

where ĉ(k) =
∫

dx exp(−ik · x)c(2)(x; ρ0) is the Fourier trans-
form of the pair direct correlation function. Note that for
an equilibrium fluid, at a state point outside the spinodal,
S(k) ≡ [1 − ρ0ĉ(k)]−1 is the static structure factor. Linearizing
Eq. (7), we obtain the dispersion relation

ω(k) = −Dk2[1 − ρ0ĉ(k)]. (8)

It is clear that small density fluctuations only grow in amplitude
if for some wave numbers k we have ω(k) > 0. Crystallization
occurs when the system is unstable against periodic density
modulations, which occurs when ω(k) > 0 for a band of wave
numbers about k ≈ q, where q ̸= 0. The dispersion relation
ω(k) for an unstable system is of the form sketched using
the solid line in Fig. 1. Note that crystals may form before the
system becomes linearly unstable; however, in this case the
crystal must be nucleated. Furthermore, if the fluid state falls
within the solid-liquid coexistence region, then the crystal front
will not advance indefinitely: It will grow until it has removed
sufficient material from the surrounding fluid to produce phase
coexistence between the liquid and the crystal. In this case, the
crystal forms a “localized state.” Phase field crystal results for
this situation may be seen in Refs. [3,4,22].

In the following we assume that the speed with which the
crystallization front advances into the unstable liquid corre-
sponds to the marginal stability criterion [25–27]. Specifically,
we suppose that the unstable liquid state is characterized by a
dispersion relation ω = ω(k). In the frame in which the front is
stationary, the dispersion relation becomes ω = ick + ω(k) ≡
+(k), where c is the speed of the front. In this frame the
following relations hold:

d+

dk
= 0, (9)

Re(+) = 0, (10)

corresponding to the presence of a double root of ω = +(k)
in the complex k plane together with the requirement that the
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FIG. 1. Sketch of the approximate dispersion relation ω(k) in
Eq. (13). When the dispersion relation takes the form labeled “stable”
the uniform liquid is linearly stable (, > 0, dashed line). In the case
labeled “unstable” the uniform fluid is linearly unstable and density
modulations with wave number k ≈ q grow in amplitude, leading to
the formation of the solid phase (, < 0, solid line).

perturbation neither grows nor decays. Since Im(+) ̸= 0 in
general, the wave train left behind by the moving front has a
well-defined frequency in the frame of the front.

The above conditions are equivalent to three conditions
that are to be solved for the speed c of the crystallization
front together with the associated complex wave number
k ≡ kr + iki . The resulting density profile at or before the front
has the form ρ̃(x,t) = ρ̃front(ξ,t), where ξ ≡ x − ct represents
the position relative to the moving front and ρ̃front(ξ,t) ∼
exp(−kiξ ) sin(krξ + Im(+)t). Thus kr is the wave number of
the growing perturbation, i.e., the wave number before the
front, while ki represents the spatial decay (growth) of the
perturbation in the forward (backward) direction. In contrast,
the pattern left behind by the front is a fully nonlinear periodic
state with a different wave number k∗. In the absence of
phase slips such a state takes the form ρ(k∗ξ + Im(+)t), i.e., a
wave that travels backward relative to the front with frequency
Im(+); with no phase slips this frequency is identical to the
frequency ahead of the front and so can be computed from the
marginal stability calculation. In view of the gradient structure
of Eq. (1), this solution must be stationary in the laboratory
frame. Thus ρ(k∗x − k∗ct + Im(+)t) must be independent of
the time t , implying that [26]

k∗ = 1
c

Im(+) = kr + 1
c

Im[ω(k)]. (11)

This equation expresses the conservation of nodes. Note
that k∗ differs in general from the marginal stability wave
number kr .

To obtain the crystallization front speed c, one assumes
an approximation for Fex in Eq. (2) to obtain an expression
for the relation1 ĉ(k) and hence the approximate dispersion

1Reference [11], for example, gives an approximation for this
quantity for fluid particles interacting via a pair potential that has
a hard-sphere plus attractive Yukawa tail.

relation ω(k). With this input Eqs. (9) and (10) may be solved
(numerically) for c, kr , and ki and the wave number of the
deposited pattern evaluated using Eq. (11). Under certain
conditions an approximate solution to this problem may be
obtained analytically, as shown next.

III. SOLIDIFICATION FRONT SPEED

A. Approximate dispersion relation

To compute the front speed we first derive an approximation
to the dispersion relation by expanding ĉ(k) in powers of k. In
order to capture the peak at k ≈ q in the dispersion relation,
one must retain at least terms up to O(k4) in ĉ(k). Thus we
write

ĉ(k) ≈ c0 + c2k
2 + c4k

4 (12)

and suppose that c4 < 0. This approximation2 corresponds
to making a gradient expansion of the free energy Fex[ρ]
and retaining only terms up to and including the terms
∼−[∇2ρ(x,t)]2. Substituting Eq. (12) into Eq. (8), we obtain

ω(k) = −αk2[, + (q2 − k2)2], (13)

where α = −ρ0c4D, q2 = −c2/2c4, and , = (ρ0c0 − 1)/
ρ0c4 − (c2/2c4)2. The uniform fluid thus becomes linearly
unstable for , < 0; i.e., the stable dispersion curve in Fig. 1
corresponds to a case when , > 0 and the unstable curve is for
, < 0. Thus the magnitude of the parameter , indicates how
deep one has quenched into the region of the phase diagram
where the uniform liquid is linearly unstable.

Note that the dispersion relation in Eq. (13) is exactly
that which one obtains when considering the PFC model for
the order parameter φ(x,t) = [ρ(x,t) − ρ0]/ρ1, where ρ1 is
a constant. The PFC model may be derived from the DDFT
by assuming a gradient expansion in Fex and expanding the
free energy in powers of φ and then linearizing certain terms
[13,16,28], obtaining

∂φ(x,t)
∂t

= α∇2 δF [φ]
δφ(x,t)

. (14)

Here α is a mobility coefficient and the free energy functional

F [φ] ≡
∫

dx
[
φ

2
[r + (q2 + ∇2)2]φ + φ4

4

]
. (15)

Details of this derivation are contained in Appendix A. For
the PFC model, we find that the uniform state φ(x,t) = φ0
(corresponding to the liquid) is linearly unstable when the
undercooling parameter r < −3φ2

0 . Thus, in this model we
have , = r + 3φ2

0 and , < 0 represents the undercooled
liquid state.

For the one-dimensional PFC model the marginal stability
analysis described above was performed in Ref. [21]. In
the remainder of this paper we extend the predictions of

2The coefficients ci in Eq. (12) are in general functions of the fluid
density and are related to the coefficients in a gradient expansion
of the free energy. For example, c2(ρ0) = − 1

6

∫
dx x2c(2)(x; ρ0) =

−2βf2(ρ0), where f2 is the coefficient of the gradient squared term.
For further details see Ref. [5] and Appendix A.
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FIG. 2. (Color online) (a) Crystallization front speed c as a function of |,| for q = 1 and α = 1. The solid line is the result from solving the
full theory [Eqs. (9), (10), and (13)] and the dashed line is the analytical approximation in Eq. (22). Note that in the PFC model , = r + 3φ2

0 .
The symbols correspond to numerical results obtained for the front speed when the PFC equations (14) and (15) are discretized with various
values for the spatial grid spacing dx, as indicated in the figure. In (b) we display the corresponding results for kr and in (c) for ki . In the inset
of (c) we display the order parameter profile plotted as ln|φ(x) − φ0| versus x for the case when φ0 = −0.4 and r = −0.9, i.e., , = −0.42. We
did not extract the value of ki from the numerical results. However, as can be seen from the inset to (c), the agreement between the slope of the
dashed line, which has gradient −ki as obtained from the full theory, and the envelope of the order parameter profile is good. Panel (d) shows
the corresponding results for the wave number k∗ of the nonlinear state deposited by the front (symbols) for comparison with the predicted
wave number k∗ (solid line). The inset shows a plot of both k∗ and kr that confirms that the wave number behind the front differs from kr , the
wave number amplified by the front (dashed line). Both k∗ and kr differ substantially from q = 1.

this approach both analytically and numerically and compare
them with results from numerical simulations in one and two
dimensions.

B. Front speed

We now assume , < 0 and calculate the speed with which
the solidification front propagates into the unstable liquid.
Taking the approximate dispersion relation in Eq. (13) together
with Eqs. (9) and (10), hereafter the full theory, we obtain three
equations for the three unknowns c, kr , and ki [21]. Two of
the resulting equations are quintics in kr and ki and the third
has a term in k6

r . These simultaneous equations may be solved
numerically. Results for the front speed c obtained from doing
this are displayed in Fig. 2(a) as a solid line. However, one can
proceed further analytically by noting that when , is small ki

is also small. We also make the ansatz that kr ≈ q + aki , where
the constant a is a variable to be solved for. We now proceed
by expanding the three equations we obtain from Eqs. (9) and
(10) in powers of ki . One can linearize all three equations in
ki and then solve for c, ki , and a to obtain the following:

c = αq
√

−8,q4 + 2,2, (16)

ki = q
√

−8,q4 + 2,2

2(4q4 + ,)
, (17)

a = − 2,
√

−8,q4 + 2,2
. (18)

In addition, expanding Eq. (11) yields the prediction

k∗ = kr − 2α

c
qki

(
, + 4q3aki − 6q2k2

i

)
(19)

for the wave number behind the front.
These results show that when , is small, the front

propagation speed c ∝
√

−,. One also sees that ki ∝
√

−,
and a ∝

√
−, while k∗ − kr ∝ |,| and so increases as −,

increases. The above results are accurate when |,| is small,
but are not reliable when the system is deeply quenched, i.e.,
when |,| is not small. In particular, when this is the case, it is
important to distinguish between the wave number kr predicted
by the marginal stability condition and the wave number k∗

left behind by the moving front. In fact, one can obtain an
expression for the crystallization front speed c that is more
accurate for a larger range of values of , as follows. We start
by linearizing the real part of Eq. (9) in ki to obtain

ki = − q,

a(, + 4q4)
. (20)
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We next expand the imaginary part of Eq. (9) to second order
in ki and use Eq. (20) to obtain

a = −2α,q(16q8 − 28q4, + ,2)
c(16q8 + 8q4, + ,2)

. (21)

Together these results determine an approximation for kr ≡
q + aki . Finally, we expand Eq. (10) to second order in ki .
Using Eqs. (20) and (21) leads to the following expression for
the crystallization front speed:

c = 4αq3(16q8 − 28q4, + ,2)
√

−,(,2−64q4,+16q8)
(,2 − 64q4, + 16q8)(4q4 + ,)

.

(22)

C. Comparison with numerical simulations

In Fig. 2(a) we display the result from Eq. (22) as the dashed
line, together with the result from the full numerical solution
(solid line) obtained from Eqs. (9), (10), and (13). We see that
for small values of |,| < 0.1 the expression in Eq. (22) for c
is accurate. However, for larger values of |,| it becomes less
reliable. This approach also captures fairly well the behavior
of ki , as can be seen in Fig. 2(c). However, as can be seen in
Fig. 2(b), it does not describe very well the behavior of kr as
a function of ,.

In Figs. 2(a) and 2(b) we also display results for the front
speed c and the wave number kr obtained numerically by
solving the PFC equations (14) and (15) on a one-dimensional
grid. We set the system size to be !1000, which is sufficient for
a stationary advancing front to develop.3 We compare results
obtained for various values of the spatial grid spacing dx. We
present results for dx = 0.2, 0.5, 1, and π/3 (in the literature
there are some groups that use this particular value). We find
that for the larger values of the lattice spacing dx the front
speed c is markedly slower than for smaller values of the lattice
spacing, which are in good agreement with the exact speed

3To determine the front speed from 1D numerical simulations we
used the following procedure. We typically calculate the profile on
a system of length 2000 with periodic boundary conditions. The
initial order parameter profile is uniform with value φ0, except for a
single peak on the central grid point with φ = 2φ0 and the two grid
points on either side of the peak where φ = φ0/2, to ensure that the
average value in this region remains φ0. We then focus on one half
of the domain since the resulting structures are symmetric about the
midpoint. We define the position of the interface as the point closest
to the boundary where |φ − φ0| > 10−5. We then run the simulations
until at the end point of the domain |φ − φ0| > 10−20. To calculate
the front speed we first determine the time at which the interface
reaches the point a distance 75 from where the front was initiated (to
eliminate the effect of initial transients) and then locate the position
of the interface at the end of the simulation and the time taken. From
these measurements we obtain the front speed c. We calculate kr by
calculating the distance between the peaks in φ in the traveling front
region. To do this one must define a cutoff point, where the distance
between peaks starts to crossover from the value 2π/kr to the value
2π/k∗. The distance between peaks in the front region is then defined
as the distance between the first peak at the front of the interface and
the last peak before this cutoff point, divided by the number of peaks
between these two points.

obtained by solving Eqs. (13), (9), and (10) numerically and
displayed as the solid line in Fig. 2(a). Finally, in Fig. 2(d) we
display the corresponding results for k∗ and compare these with
the theoretical predictions for k∗ (solid line) and kr (dashed
line). The theoretical predictions for c, kr , and k∗ [solid lines
in Figs. 2(a), 2(b), and 2(d)] are in excellent agreement with
the numerical results obtained with grid spacing dx = 0.2.
Figure 2 also shows that results obtained with dx > 0.5 are
substantially in error. This is because the discretization of
the system effectively adds a friction term proportional to the
magnitude of dx to the dynamical equations, which slows
down the advancing front, i.e., the numerical grid can “pin” the
advancing front. Evidently, this pinning effect is also reflected
in the corresponding values of kr and k∗.

We did not extract the value of ki from the numerical
results. However, in the inset of Fig. 2(c) we display the order
parameter profile plotted as ln|φ(x) − φ0| versus x for the case
when φ0 = −0.4 and r = −0.9, calculated numerically using
the grid spacing dx = 0.2. From the analysis of the advancing
front profile one expects that φ(x,t) − φ0 ∼ exp[−ki(x −
ct)] sin(krx), so that when the order parameter profile is
plotted in this manner, the envelope function exp(−kix) of the
advancing front profile becomes a straight line with gradient
−ki . The dashed line in the inset of Fig. 2(c) is a straight
line with gradient −ki computed from Eqs. (13), (9), and
(10). It is clear that the gradient of the envelope of the
numerically obtained order parameter profile is very close to
that of the dashed line. Thus we conclude that the analysis
based on Eqs. (13), (9), and (10) leads to a prediction for the
solidification front speed c that is precisely that which one
obtains from solving the PFC equations (14) and (15).

In Fig. 3 we show an example of a front propagating towards
the right when , = −0.42. The front region is clearly visible
on the semilogarithmic plot shown in Fig. 3(b); Figs. 3(c) and
3(d) show enlargements corresponding to the region behind
the front and the front region itself. From these figures one
determines that the wave number in the front region is kr ≈
1.189, while the wave number behind the front is k∗ ≈ 1.123.
These measurements agree very well with the exact marginal
stability result kr ≈ 1.187 and the prediction in Eq. (11),
k∗ ≈ 1.129.

It is of interest to note that the dynamically selected wave
number k∗, which determines the wavelength λ = 2π/k∗

of the density modulations left behind the advancing front,
can differ significantly from the equilibrium wavelength
λc ≈ 2π/q of the fully formed crystal. This means that for
large negative values of ,, which corresponds to a deep
quench (i.e., the unstable liquid is strongly supercooled),
the system must perform significant rearrangements after the
initial solidification front has passed in order to obtain density
modulations with wavelength ≈ 2π/q, corresponding to an
ordered crystal of minimal energy. However, one should expect
that these later rearrangements (aging) are frustrated by the fact
that the system has already chosen a different and dynamically
selected length scale. As the system ages some of these defects
anneal, reducing the disorder in the solid and bringing it closer
to equilibrium. We thus believe that the difference between
the dynamic and equilibrium crystalline wavelengths may
be an important factor in understanding why some rapidly
quenched liquids and soft matter systems exhibit disorder
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FIG. 3. (Color online) (a) A front advancing to the right at one instant of time when r = −0.9, φ0 = −0.4, q = 1, and α = 1, computed with
dx = 0.2. (b) The solution in panel (a) on a semilogarithmic plot. (c) Enlargement of the region behind the front in panel (a). (d) Enlargement
of the front region in panel (b).

rather than forming a regular crystalline material. We illustrate
and demonstrate this result further in the following section.

IV. PHASE FIELD CRYSTAL RESULTS

In this section we confirm and illustrate the results and
conclusions of the analysis given in the preceding section,
using results obtained from direct numerical simulations in two
spatial dimensions for the simple PFC model given in Eqs. (14)
and (15). This model system is now well understood and much
is known about its thermodynamics and phase behavior and
the structures that are formed [3,4,13–21]. We display in Fig. 4
the order parameter profiles for a solidification front advancing
from left to right into the unstable uniform liquid phase for a
system with q = 1, φ0 = −0.43, and r = −0.9, corresponding
to , = −0.35. The profiles in Fig. 4 are calculated by taking an
initially uniform system with φ(x) = φ0 of size 2000 × 50 with
periodic boundary conditions and grid spacing dx = dy =
0.5. The solidification is initiated by adding small-amplitude
random noise to the profile along the line x = 0 at time t = 0.
The order parameter profiles displayed in Fig. 4 correspond to
the times t∗ ≡ αt/q2 = 140, 200, 260, and 340. We see that the
front advances by first forming stripelike density modulations
in the direction of travel, as predicted by the analysis in Sec. III
above. However, the stripes are typically broken into transverse
domains or “filaments” (see Sec. IV A), leading to a two-
dimensional structure that subsequently breaks up into density
peaks resembling a solid. The order parameter parameter
profile corresponding to the time t∗ = 260 reveals that there
is a significant amount of disorder in the arrangements of the
density peaks shortly after the solidification front has passed.

Then, over time, the system rearranges (aging), leading to the
more regular ordering seen in the order parameter profile for
the time t∗ = 340 (see Sec. IV B).

The results of the PFC model depend on both the chosen
value of , < 0, the undercooling, and of φ0, the background
homogeneous state into which the solidification front prop-
agates. To explore the parameter space, we solved the PFC
model on domains of size 400 × 400 with periodic boundary
conditions in the y direction and dx = dy = 0.5, initializing
the solidification front by adding small-amplitude random
noise to the order parameter profile along the line x = 0 at
the time t = 0.4 We use the same realization of the initial
condition throughout. According to the theory presented in
the preceding section, the front speed c and wave numbers
kr and ki are determined by the value of , only. Figure 5
shows the results for , = −0.1 and several different values
of r [or, equivalently, of φ0, since φ0 =

√
(, − r)/3], all at

the same time t∗ = 152 after the front was initiated at x = 0
at t = 0. Detailed analysis shows that the front speed and
length scale right in the front region are indeed independent
of the background value of φ0. In contrast, the extent of
the region of the stripelike state is dramatically reduced as
|φ0| increases. Since mature stripes of wavelength 2π/k∗ are
created at the rate Im(+) and destroyed at the rate ωhex at which
the instability to hexagons manifests itself, it follows that the

4The small width 50 × 2000 system (Fig. 4) is only used for
illustrative purposes since it exhibits finite size effects; all other results
are obtained using larger 400 × 400 systems that have no discernible
finite size effects.
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FIG. 4. (Color online) Order parameter profiles for a crystallization (solidification) front advancing into the unstable uniform phase,
obtained from the PFC model [Eqs. (14) and (15)] in two spatial dimensions when φ0 = −0.43 and r = −0.9, corresponding to , = −0.35.
The plots correspond to the times t∗ ≡ αt/q2 = 140, 200, 260, and 340, going from top to bottom. The solidification front was initiated at
t = 0 at x = 0 and propagates towards the right. Note the rearrangements that occur at points well behind the moving front.

width ℓ of the stripe region scales as ℓ ∼ 2π Im(+)/k∗ωhex =
2πc/ωhex using Eq. (11) (cf. Refs. [29,30]). As shown in
Appendix B, this quantity scales like |φ0|−1 with a coefficient
of proportionality that is independent of , when |,| ≪ 1.
Our numerical results are consistent with this prediction,
although it is somewhat difficult to determine precisely the
width ℓ from the data. In fact, simulations starting from random
initial conditions show that for low |φ0| the instability of
the stripe state generates structures that are more rhomboid
than hexagonal. With increasing |φ0| the structures become
more hexagonal but the fraction of vacancies within the
structure goes up. This is a consequence of the fact that
the curve ,(φ0) = −0.1 in the (φ0,r) plane moves as φ0
increases and eventually crosses into the coexistence region
between the hexagonal crystal and the homogeneous or liquid
state [22].

A. Transverse length scale

Figures 4 and 5 reveal the presence of unambiguous
filamentation of the stripe pattern created by the passage of the
front. To understand the origin of this filamentation we show
in Fig. 6(a) the quantity φ(x) at time t∗ ≡ αt/q2 = 64 when
, = −0.2 (φ0 = −0.483 and r = −0.9) while Fig. 6(b) shows
the same solution but in terms of the quantity ln|φ(x) − φ0|.
The latter representation not only rectifies the solution, but also
amplifies it strongly in regions where φ(x) ≈ φ0. The figure
reveals that the filamentation is present already at the front

where the amplitude of the stripes is still minute, of order
e−16. Careful study of the origin of this filamentation shows
that it is a consequence of the perturbation used to initialize
the simulation. The ridges that break up the stripe pattern
correspond to zero crossings in φ(x = 0,y,t = 0) − φ0, here
a particular realization of a uniformly distributed random
variable on the interval [φ0 − 0.1,φ0 + 0.1]. The regions
where φ(x = 0,y,t = 0) − φ0 ≈ 0 travel more slowly than
regions where φ(x = 0,y,t = 0) − φ0 ̸= 0 and the latter are
broad enough to trigger the formation of stripe segments.
Thus the filaments are an imprint of the initial condition
and the advancing front acts as a noise amplifier. Simula-
tions initialized from a small-amplitude perturbation with a
single wave number k⊥ preserve this wave number into the
nonlinear regime and the resulting filamentation is periodic
with wavelength λ⊥ ≡ 2π/k⊥.

The stripes created by the advancing front are unstable to
oblique disturbances that favor the formation of hexagonal
structures and this instability becomes visible once φ − φ0 =
O(φ0) [Figs. 6(a) and 6(b)]. The growth rate of this instability
is proportional to |φ0| (see Appendix B) and consequently we
expect the width ℓ of the stripe interval ahead of the hexagonal
pattern to decrease with increasing |φ0|, all other parameters
remaining fixed (cf. Fig. 5). Our simulations reveal, however,
that the filamentation imprinted by the initial conditions also
has a strong effect on the ability of the system to form
hexagons. If the characteristic transverse scale λ⊥ is far from
2λ∥/

√
3, where λ∥ ≡ 2π/k∗, we find that the formation of
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FIG. 5. (Color online) Order parameter profiles of a crystallization (solidification) front advancing into the unstable uniform phase, obtained
from the PFC model [Eqs. (14) and (15)] in two spatial dimensions for , = −0.1 and several different values of r , all at time t∗ ≡ αt/q2 = 152.
The solidification front was initiated at x = 0 at t = 0 and propagates towards the right. The top left panel is for r = −0.2 and φ0 = −0.183,
the top right is for r = −0.5 and φ0 = −0.365, the bottom left is for r = −0.9 and φ0 = −0.516, and the bottom right is for r = −1.3 and
φ0 = −0.632. The displayed region is part of a larger system of size 400 × 400 and calculated with a grid spacing dx = dy = 0.5. Note the
different color table scales in each panel.

hexagons is delayed until such time as the required wave
number is generated by nonlinear interactions. Thus the initial
condition strongly influences, through the above process, the
time required to form the crystalline state. Moreover, since the
selected wavelength λ∥ is likewise nonoptimal, both factors
contribute to frustration and disorder in the solidification
process for deep quenches.

B. Structure and correlations over time: Aging

In order to quantify the degree of order in the system and
compare results from shortly after the solidification front has
passed with those at a later time, we computed the bond angle
distribution p(θ ) and radial distribution function g(r) as a
function of time after the solidification front was initiated.
These quantities are calculated from larger scale (grid size
400 × 400) simulations by first locating all the maxima in the
order parameter profile, i.e., the coordinates of all the density
peaks (particles) after the crystallization front has moved
through the system. From these sets of particle coordinates,
we calculate the radial distribution function g(r) in the usual
way [31]. Since g(r) is a spatial two-point correlation function,
it gives the probability of finding another particle at a distance
r away from any other given particle [32]. The bond angle

distribution function is calculated by performing a Delauney
triangulation on the system. The histogram of the values of the
corner angles of this set of triangles (i.e., the nearest neighbor
bond angles) is p(θ ).

In Figs. 7(a)–7(c) we display the bond angle distribution
p(θ ) for r = −0.9 as it varies over time for (a) φ0 = −0.4,
(b) φ0 = −0.45, and (c) φ0 = −0.5. These three values of φ0
correspond, respectively, to , = −0.42, −0.29, and −0.15.
These bond angle distributions are centered on the value 60◦,
due to the dominant hexagonal ordering in the system, and
we see no peaks at 45◦ and 90◦, which would indicate square
ordering [22]. We see in Figs. 7(a) and 7(b), corresponding
to larger values of |,| (i.e., the deeper quenches), that at the
time t∗ = 200 the distribution p(θ ) is much broader than for
later times, indicating that at this early time, shortly after the
solidification front has passed through the system, there is
much more disorder in the system than at the later times. Over
time, the system rearranges to form a much more ordered solid,
with p(θ ) being much more sharply distributed around 60◦. In
contrast, for the shallow quench case with small |,| displayed
in Fig. 7(c), we see that p(θ ) is sharply distributed around 60◦

even for short times after the solidification front has moved
through the system and that it does not change much as time
goes by, indicating there is very little aging in the system. These
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FIG. 6. (Color online) Order parameter profile at time t∗ ≡
αt/q2 = 64 for a crystallization (solidification) front advancing into
the unstable uniform phase, obtained from the PFC model [Eqs. (14)
and (15)] in two spatial dimensions when φ0 = −0.483 and r = −0.9,
corresponding to , = −0.2. The solidification front was initiated at
x = 0 at t = 0 and propagates towards the right. The top figure shows
the order parameter profile φ(x), while the bottom figure shows the
quantity ln|φ(x) − φ0|. Plotting this quantity reveals the fine structure
in the profile ahead of the front. (Note the scale: The smallest
amplitude structures that are displayed have an amplitude ≈e−16.)
The displayed region is part of a larger system of size 400 × 400 and
calculated with a grid spacing dx = dy = 0.5.

findings can also be seen by inspecting the radial distribution
functions g(r) displayed in Figs. 7(d)–7(f). For the shallow
quench case in Fig. 7(f) we see that g(r) does not change much
over time. In contrast, for the deeper quench cases in Figs. 7(d)
and 7(e) we see that at t∗ = 200 the decay g(r) → 1 is much
faster than at later times. The fact that the amplitude of the
oscillations in g(r) is much smaller at earlier times indicates
that there is much less long-range (crystalline) ordering in the
system. As time proceeds, the amplitude of the oscillations in
the tail of g(r) grows, indicating that the system is rearranging
to form a much more ordered system with the particle locations
being well correlated over larger distances. The larger amount

of disorder shortly after a deep quench is a consequence of the
mismatch between the wavelength selected dynamically by
the advancing solidification front and the equilibrium lattice
spacing of the crystalline solid. This mismatch increases with
increasing |,|. The initial appearance of density modulation
with the “wrong” wavelength creates disorder and frustration
in the system, a picture corroborated by the results in
Sec. III.

V. CONCLUSION

In this paper we have studied the propagation of a solidifica-
tion front into a supercooled liquid, i.e., into a linearly unstable
state. We employed dynamical density functional theory to
derive an approximate dispersion relation for small perturba-
tions of the spatially uniform liquid state and noted that this
dispersion relation is identical in form to that derived from the
phase field crystal model of crystal growth. In both approaches
the solid phase is represented as a spatially structured state with
local maxima in the density profile ρ(x) or equivalently the
order parameter φ(x) representing the time-averaged location
of individual atoms or particles. The present approach is thus
able to bridge purely continuum or macroscopic solidification
theory [33] with atomistic approaches such as molecular
dynamics. Despite their fundamental difference, the DDFT
and PFC models that result can still be formulated in terms
of partial differential equations. These may be nonlocal as in
DDFT or local as in the PFC model.

Knowledge of the dispersion relation suffices for the com-
putation of the speed of the solidification front when this speed
is selected by linear processes, i.e., in situations where the
growth of the perturbations behind the front compensates for
the propagation of the front, resulting in a steadily advancing
front of constant shape. However, in some problems the speed
of the front may instead be determined by nonlinear processes
[34]. For this reason it is essential to compare the prediction
obtained from the linear marginal stability criterion employed
here in the form of Eqs. (9) and (10) with numerical simula-
tions. Such simulations yield in addition important information
about processes occurring on longer time scales than the
propagation time. Our results can be summarized as follows.
For small undercooling, as measured by the parameter |,|, the
advancing front selects wavelengths close to the equilibrium
wavelength λc of the crystalline solid, resulting in steady
transformation of the liquid state into solid. The front speed
is c ∼

√
−,. For large undercooling (i.e., supercooling) the

front speed is faster and follows the approximate relation c ∼
−,. In this regime the wavelength selected by the advancing
front differs substantially from λc resulting in a nonequilibrium
structure that subsequently evolves on a longer time scale, first
via an instability to a hexagonal structure and subsequently
via slow defect migration and annihilation. This aging process
consists of rearrangements as the system seeks to anneal
out defects and differently orientated domain structures that
frustrate the formation of a regular crystal with wavelength λc.

We have also found that the initial perturbation imprinted
on the advancing front may have a significant effect on
the manifestation of the instability of the stripe state with
respect to hexagonal perturbations. Since this transverse scale
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FIG. 7. (Color online) Bond angle distribution p(θ ) (top row) and radial distribution function g(r) (bottom row) at various times t∗, after
the solidification front was initiated. The undercooling parameter is r = −0.9 and the value of φ0 decreases from left to right (as indicated in the
figures), resulting in (from left to right) , = −0.42, −0.29, and −0.15. After the initial crystallization front passes by, the system undergoes
aging as the particles are able to perform some rearrangements.

will also differ from the optimal scale 2π/q its presence
provides an additional source of frustration following the
passage of the front. Although these results were obtained
using the PFC model, analogous two-dimensional calcula-
tions based on a DDFT model yield very similar results
(not shown).

An important issue that we must mention concerns the
extent to which insights from the PFC model can be applied
to solidification in real materials. The transition in the PFC
model from uniform to modulated phase is weakly first order,
stemming from a truncated gradient expansion approximation
to obtain the PFC free energy functional in Eq. (15) [see also
Eq. (A6) in Appendix A]. The fact that for some values of
φ0 the PFC model exhibits a stripe phase that is not seen in
real atomic fluids is an indication that the truncated gradient
expansion approximation has failed for these φ0 values [22].
Thus great caution should be taken in relating our results to
solidification and glass formation in quenched liquids. For
understanding how fronts propagate into a linearly unstable
fluid, the approach described above appears to be valid.
However, owing to the very simple nature of the PFC model,
we expect that its description of the structures formed behind
the front may be less reliable. The presence of a weakly
first-order transition in the PFC model makes it somewhat
unrealistic as a model for materials such as liquid metals,
but for soft matter (polymeric) systems we believe it is a
good approximation. Much more work comparing the PFC to
more sophisticated DDFT approaches, such as that presented
in Ref. [13], is required in order to elucidate the extent to which
the PFC can be used to model real materials.

We mention finally that the DDFT presented above was
derived for Brownian particles. Improvements in the the-
ory required for application to atomistic fluids include the

DDFT [23,24]:

∂2ρ(x,t)
∂t2

+ ν
∂ρ(x,t)

∂t
= 1

m
∇ ·

[
ρ(x,t)∇ δF [ρ]

δρ(x,t)

]
, (23)

where m is the mass of the atoms and ν is the collision
frequency given by ν ≈ kBT /mD. Here D is the self-diffusion
coefficient. The free energy F is given by Eq. (2). Front propa-
gation in one-dimensional models of this type is considered in
Ref. [21]. Extensions of the present work to this class of models
in two or more dimensions, together with a comparison with di-
rect numerical simulations, are beyond the scope of this paper.
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APPENDIX A: DERIVATION OF THE PFC
MODEL FROM DDFT

The DDFT in Eqs. (1) and (2) is a microscopic theory that
describes the time evolution of the fluid one-body (number)
density profile ρ(x,t) for a fluid of Brownian particles. In this
section we start from the DDFT to derive the PFC model in
its commonly used form. In our derivation we closely follow
the arguments laid out in Ref. [13]. The excess contribution to
the free energy Fex in Eq. (2) is usually an unknown quantity.
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Here we make an approximation for Fex by making a Taylor
series expansion in powers of ρ̃(x) = ρ(x) − ρ0, where ρ0 is a
reference density, giving [6]

Fex[ρ(x)] = Fex[ρ0] +
∫

dx ρ̃(x)
δFex[ρ(x)]

δρ(x)

∣∣∣∣
ρ0

+ 1
2

∫∫
dx dx′ρ̃(x)ρ̃(x′)

δ2Fex[ρ(x)]
δρ(x)δρ(x′)

∣∣∣∣
ρ0

+O(ρ̃3). (A1)

The functional derivatives of the excess free energy that enter
into Eq. (A1) are related to the n-body direct correlation
functions in the following way [6]:

δnFex[ρ(x)]
δρ(x1)δρ(x2) · · · δρ(xn)

∣∣∣∣
ρ0

= −kBT c(n)(x1,x2, . . . ,xn).

(A2)

In particular, the first member of this series is the one-
body direct correlation function, shown earlier in Eqs. (3)
and (4). Note that the one-body direct correlation function
evaluated in the bulk is equal to the excess chemical potential
−kBT c(1)(x)|ρ0 = µex. The second member of the series in
Eq. (A2) is the direct pair correlation function

δ2Fex

δρ(x)δρ(x′)
= −kBT c(2)(x,x′). (A3)

Substituting these expressions for the functional derivatives
into Eq. (A1) and neglecting third- and higher-order terms we
obtain

Fex[ρ(x)] ≈ Fex[ρ0] + µex

∫
dx ρ̃(x)

− kBT

2

∫∫
dx dx′ρ̃(x)c(2)(x,x′)ρ̃(x′). (A4)

The second term in this equation corresponds simply to a
shift in the chemical potential and so this approximation is
commonly used without the second term explicitly written
down [13,35,36] as originally done by Ramakrishnan and
Yussouff [37]. To derive the PFC free energy, we make a
gradient expansion of the two-body direct correlation function
and truncate at the fourth-order term, giving [13,38]

c(2)(x,x′) ≈ −β(Ĉ0 + Ĉ2∇2 + Ĉ4∇4)δ(x − x′), (A5)

where in principle all the coefficients Ĉi are functions of ρ(x),
although we assume here that the coefficients Ĉ2 and Ĉ4 are
in fact constants. Inserting approximation (A5) into Eq. (A4)
gives

Fex[ρ(x)] ≈ Fex[ρ0] + µex

∫
dx ρ̃(x)

+ 1
2

∫
dx ρ̃(x)(Ĉ0 + Ĉ2∇2 + Ĉ4∇4)ρ̃(x),

(A6)

which makes Fex[ρ(x)] a local functional. Using this expres-
sion for the excess free energy term, we can now write the
Helmholtz free energy for the system as

F [ρ(x)] =
∫

dx
[
f0(ρ(x)) + 1

2
ρ̃(Ĉ2∇2 + Ĉ4∇4)ρ̃

]
, (A7)

where

f0(ρ) = kBTρ[ln(ρ) − 1] + fex(ρ0) + µexρ̃ + 1
2 Ĉ0(ρ)ρ̃2.

(A8)

Here the first term in f0(ρ(x)) comes from the ideal gas
contribution [see Eq. (2)],fex is the excess free energy per
unit volume and we have assumed that the external potential
Vext = 0. We also make a further approximation by making a
Taylor expansion of the function f0(ρ) around the reference
density ρ0, giving

f0(ρ) ≈ f0(ρ0) + f ′
0(ρ0)ρ̃ + f ′′

0 (ρ0)
2

ρ̃2

+ f
(3)
0 (ρ0)

3!
ρ̃3 + f

(4)
0 (ρ0)

4!
ρ̃4. (A9)

We choose the reference density ρ0 so that the third derivative
of the function f0(ρ) vanishes at ρ = ρ0, i.e., f

(3)
0 (ρ0) = 0.

This gives the following:

f0(ρ) ≈ f0(ρ0) + f ′
0(ρ0)ρ̃ + f ′′

0 (ρ0)
2

ρ̃2 + f
(4)
0 (ρ0)

4!
ρ̃4.

(A10)

We now introduce a change of variables. We use the nondi-
mensional variable φ = ρ̃/ρ1, where ρ1 is a constant density,
so Eqs. (A7) and (A10) become

F [φ(x)] =
∫

dx
[
f0(φ(x)) + 1

2
φ(C2∇2 + C4∇4)φ

]
,

(A11)

where C2 = Ĉ2/ρ
2
1 , C4 = Ĉ4/ρ

2
1 , and

f0(φ) ≈ a + bφ + cφ2

2
+ dφ4

4
, (A12)

where a, b, c, and d are constants.
We now consider the dynamics of the model. We start

with the DDFT equation (1). In the limit where ρ1φ is
small, the density preceding the gradient of the functional
derivative becomes constant, i.e., ρ = ρ0 + ρ1φ ≈ ρ0, and
Eq. (1) reduces to the following equation:

∂ρ(x,t)
∂t

= $ρ0∇2 δF [ρ(x,t)]
δρ(x,t)

. (A13)

This is often referred to as model B dynamics in the
classification of Hohenberg and Halperin [39]. Equivalently,
we have the following equation for the time evolution of the
order parameter φ(x,t):

∂φ(x,t)
∂t

= α∇2 δF [φ(x,t)]
δφ(x,t)

, (A14)

where α = $ρ0/ρ
2
1 is the mobility coefficient. Since the

constant and linear terms in Eq. (A12) are irrelevant for the
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dynamics, we may drop the terms a + bφ from the function
f0(φ) in Eq. (A12). The functional derivative of the free energy
is then given by the expression

δF

δφ
= d

(
c

d
φ + φ3 + C2

d
∇2φ + C4

d
∇4φ

)
. (A15)

We may absorb the parameter d into the mobility coefficient
α. Also, we may choose ρ1 so that C4/d = 1. Writing C2/d =
2q2 and c/d = r + q4, we arrive finally at the commonly used
PFC free energy

F [φ(x)] =
∫

dx f (φ(x)), (A16)

where

f (φ) = r + q4

2
φ2 + φ4

4
+ 1

2
φ(2q2∇2 + ∇4)φ

= φ

2
[r + (q2 + ∇2)2]φ + φ4

4
. (A17)

Inserting these parameter values into the functional derivative
of the free energy [Eq. (A15)], we obtain δF

δφ
= (r + q4)φ +

φ3 + 2q2∇2φ + ∇4φ. The PFC model is then given by the
conserved dynamics in Eq. (A14), where the free energy is
given by Eqs. (A16) and (A17).

APPENDIX B: INSTABILITY OF THE STRIPE STATE

In this Appendix we determine the time scale of the
instability of the stripe state. This instability leads to the
formation of the hexagonal structures shown in Figs. 5 and 6.

We write the PFC model in the form

φ̃t = α∇2[,φ̃ + (q2 + ∇2)2φ̃ + 3φ0φ̃
2 + φ̃3], (B1)

where , ≡ r + 3φ2
0 and

φ̃ ≡ φ − φ0

= Aeikx + Beik(−x+
√

3y)/2 + Ceik(−x−
√

3y)/2

+ c.c. + h.o.t., (B2)

where c.c. denotes the complex conjugate of the preceding
terms and h.o.t. denotes higher-order terms. Here A is the
small but complex amplitude of the longitudinal mode while
B and C are the corresponding amplitudes of two symmetry-
related oblique modes. The state (A,B,C) = (A,0,0) thus
corresponds to the stripe state while (A,B,C) = (A,A,A)
corresponds to the hexagon state, with A > 0 representing a
hexagonal array of spots and A < 0 representing a hexagonal
array of holes or vacancies.

Weakly nonlinear theory now leads to the following
equations for the amplitudes A,B,C:

At = −αk2[,̃A + 6φ0B̄C̄ + · · · ], (B3)

Bt = −αk2[,̃B + 6φ0C̄Ā + · · · ], (B4)

Ct = −αk2[,̃C + 6φ0ĀB̄ + · · · ], (B5)

where the overbar denotes complex conjugation and ,̃ ≡
, + (q2 − k2)2 represents the bifurcation parameter shifted in
proportion to the departure of the wave number k away from its
optimal value k = q. By applying appropriate translations we
may take A,B,C to be real. We also take B = C in order
to focus on the instability of the stripe state with respect
to hexagon-forming perturbations. The linear instability of
an (A0,0,0) state with respect to such perturbations is then
described by the equation

Bt = −αk2[,̃ + 6φ0A0]B, (B6)

implying that the growth rate ωhex of the hexagon instability
is given by

ωhex = −αk2[,̃ + 6φ0A0]. (B7)

Here A0 is the amplitude of the stripe state. Within Eq. (B3)
this amplitude is not determined: The growing stripe state
(,̃ < 0) does not saturate. However, the saturation amplitude
of the stripe phase can be computed by setting B = C = 0 and
extending the above approach to cubic order while imposing
the requirement that ⟨φ̃⟩ = 0, where ⟨· · · ⟩ denotes an average
over the domain. We obtain A2

0 = −4,̃(3 − 2φ2
0/q

4)−1. For
, ≪ 1 these results (with ,̃ replaced by ,) apply to stripes
with k = k∗ since k∗ ≈ q.

Since , < 0 for instability of the liquid phase, and likewise
φ0 < 0, the growth rate ωhex is positive for all A0 > 0 with
k∗ ≈ q, implying that the stripe state is always unstable
with respect to the formation of the hexagon state with
A = B = C > 0, i.e., a hexagonal array of spots. In the
case φ2

0 > 3q4/2 the bifurcation to stripes is subcritical and
the hexagon instability then competes with an amplitude
instability. However, near threshold k∗ ≈ q and the growth
rate of the latter is therefore O(|,|) while the growth rate
of the hexagon instability is O(|φ0|

√
|,|) and so is larger.

In either case, the longitudinal width ℓ of the band of stripes
ahead of the hexagonal state is predicted to scale, for small
|,|, as ℓ ∼ (2πc/ωhex) + γ1 ∼ γ0|φ0|−1 + γ1, where γ0 is
independent of |,| but γ1 ∝ k−1

i does depend on |,|. For
larger |,| the approximation in Eq. (22) is useful.

The saturated hexagon state can be included self-
consistently in the above theory only when |φ0| ≪ 1, i.e.,
when A2 ∼ |φ0|A ∼ ,̃ [40,41]. This is not the case in our
simulations and we do not pursue this approach.
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