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Binding potential and wetting behavior of binary liquid mixtures on surfaces
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We present a theory for the interfacial wetting phase behavior of binary liquid mixtures on rigid solid
substrates, applicable to both miscible and immiscible mixtures. In particular, we calculate the binding potential
as a function of the adsorptions, i.e., the excess amounts of each of the two liquids at the substrate. The
binding potential fully describes the corresponding interfacial thermodynamics. Our approach is based on
classical density functional theory. Binary liquid mixtures can exhibit complex bulk phase behavior, including
both liquid-liquid and vapor-liquid phase separation, depending on the nature of the interactions among all
the particles of the two different liquids, the temperature, and the chemical potentials. Here we show that the
interplay between the bulk phase behavior of the mixture and the properties of the interactions with the substrate
gives rise to a wide variety of interfacial phase behaviors, including mixing and demixing situations. We find
situations where the final state is a coexistence of up to three different phases. We determine how the liquid
density profiles close to the substrate change as the interaction parameters are varied and how these determine
the form of the binding potential, which in certain cases can be a multivalued function of the adsorptions. We
also present profiles for sessile droplets of both miscible and immiscible binary liquids.
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I. INTRODUCTION

The behavior of liquids and liquid mixtures on rigid solid
substrates with planar surfaces is of great relevance to many
areas of life, such as in food processing and preparation,
oil recovery, cosmetics, pharmaceuticals, and a host of other
industries. The interfacial phase behavior of even simple
one-component liquids at such walls can be varied and com-
plex. Typically, at low temperatures liquids only partially wet
solids. However, for most substrates, as the temperature T is
increased, the contact angle θ of sessile droplets decreases
until at some temperature Tw < Tc there is a wetting tran-
sition, where Tw is the wetting temperature and Tc is the
bulk fluid critical temperature [1–3]. Additionally, there is
the possibility of a drying transition occurring at substrates
which very weakly interact with the liquid [3]. The nature of
the wetting behavior all depends, amongst other properties of
the system, on the form and strength of the interparticle and
particle-wall interactions. When the liquid at the interface is
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a mixture of two different species, then the interfacial phase
behavior becomes even more complicated. In the same way
that the interfacial phase behavior of a one-component system
is connected to the bulk phase behavior (i.e., interfaces can
promote incipient phases when the system is near to bulk
phase coexistence), likewise, the interfacial phase behavior
of binary mixtures is related to and can influence the bulk
phase behavior [4–11]. This can involve vapor-liquid and/or
liquid-liquid phase separation, or even an interplay of both.
In particular, thin films of mixtures on solid substrates, e.g.,
polymer blends or molten alloys, may undergo combined
dewetting and decomposition processes [12–16]. Here the
behavior depends on the nature of the interaction potentials
between the different species of particles, the temperature,
and the chemical potentials and also on the properties of
the interactions between the liquid particles and the wall.
For example, if the wall favors one species over the other,
then this can induce various types of ordering in a film at a
wall [9,10,17].

A key quantity that characterizes interfacial wetting be-
havior is the binding potential g. This incorporates the
contribution to the free energy of the system due to the
solid-liquid interface influencing the vapor-liquid interface.
This occurs either when these two interfaces are close to
one another or if they merge so that there is just a solid-
vapor interface [2,18–20]. For a one component liquid, g can
be written as a function of the thickness of the liquid film
on the surface h, i.e., g = g(h). However, since the density
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distribution profiles vary smoothly between the liquid and gas
phases, h is ill defined (particularly when it is small), and it is
arguably better to consider the binding potential as a function
of the adsorption � [see Eq. (1) below], i.e., g = g(�) [21].
Such binding potentials (or wetting energies), once extracted
from microscopic models [22–25] or appropriate approxima-
tions [26–28], are employed as crucial elements of mesoscale
hydrodynamic models where they enter as the Derjaguin (or
disjoining) pressure [20,29,30].

In a similar manner, for binary liquid mixtures composed
of two different species of particles, which we refer to here
as species-A and species-B, one can define the binding po-
tential g(�A, �B), as a function of the adsorptions of the two
different species at the interface, �A and �B. Of course, if
the liquids are immiscible and there is a film of one liquid
on top of the other liquid at the surface, then one could
equally consider the binding potential to be a function of the
thicknesses of the two films, hA and hB. However, if they are
miscible liquids, then considering the binding potential to be
a function of the adsorptions �A and �B is more meaning-
ful. Such binding potentials have been postulated previously,
employing simple dependencies for concentration-dependent
wetting energies [15,31]. What is clear, e.g., from the results
in Refs. [32–37] is that the behavior of mixtures at interfaces
can be very rich.

The adsorptions are defined as the excess amount of each
species at the wall:

�α =
∫ ∞

0

[
ρα (z) − ρb

α

]
dz, (1)

where ρα (z) and ρb
α are the density profile and the bulk vapor

density of species-α, respectively, (α = A or B) and z is the
direction perpendicular to the wall. In our calculations below,
to simplify the description of the binary mixture, we map
the particle densities onto a lattice model, with dimensionless
density for each species ρα

i at each lattice site i, i.e., one can
consider the lattice densities to be defined as:

ρα
i =

∫
vol i

ρα (r)dr, (2)

where the integral is over the volume of lattice site i.
Our approach here for calculating the binding potential is

based on the lattice density functional theory (DFT) approach
of Hughes et al. [21]. This, in turn, is based on classical
DFT [38,39] and uses a constrained Picard iteration mini-
mization approach [21,40] to solve the DFT equations for
mixtures subject to the constraints that the adsorptions of the
different species are the specified values. This approach was
first developed in the context of studying nucleation [41],
where it was shown that these constraints are equivalent to
applying an additional external field to stabilize the specified
amount of liquid at the interface—see also Refs. [21,24,25].
Here we extend and apply the approach in order to study liquid
mixtures at solid substrates.

The method is valid over the full temperature range where
liquid-vapor coexistence occurs and the whole range of con-
centrations of the two liquids. We are able to determine the
excess free energy as a function of the excess amount of
each phase adsorbed at the wall. Moreover, we determine the
form of the density profiles of each of the species, showing

how the phase-separation of the mixture (if it occurs) and
the properties of the interactions with the wall and between
species influences the form of the density profiles [38,39,42].

We should also mention some previous DFT studies on
the interfacial and wetting behavior of binary mixtures. This
work is the background of and has multiple connections to
what we do here. For one-component fluids, much insight can
be gained by considering the Sullivan DFT model [43]. This
can be extended to consider binary mixtures and significant
progress was made based on this approach [44–47]. Another
worthwhile DFT-based approach is to make the sharp-kink
approximation (i.e., assuming steplike interfacial density pro-
files), which facilitates deriving many useful results for the
interfacial thermodynamics that then lead to the easy mapping
out of wetting phase diagrams [48–51].

This paper is structured as follows: First, in Sec. II, we
give an overview of the thermodynamics of liquids adsorbed
on solid substrates and, in particular, the additional consider-
ations required for the case that the liquid is a binary mixture.
Then, in Sec. III, we introduce the lattice DFT we use to
model binary liquid mixtures. In Sec. IV we briefly explain
how the bulk fluid phase behavior depends on the state of the
system (temperature, pressure and chemical potentials) and
also on the strength of the pair interaction potentials between
the different particles in the mixture. We display examples of
phase diagrams, showing binodal curves for various systems
under consideration. In Sec. V we start our discussion of
properties of the inhomogeneous liquids, considering first the
density profiles of the two different species at the vapor-liquid
interface, which must be obtained in order to calculate the
liquid-vapor surface tension. After this, in Sec. VI, we move
on to consider the behavior of miscible binary liquids at solid
substrates, displaying density profiles and the corresponding
binding potentials g(�A, �B), showing how these depend on
the strength of the attraction between the substrate and the two
different liquids. In Sec. VII we present density profiles and
binding potentials for the case of immiscible liquids at a wall.
In these cases, the binding potential can be a multivalued func-
tion, with different branches corresponding to the different
possible configurations of the system. In Sec. VIII we present
results corresponding to the case where the two adsorptions
are equal �A = �B to illustrate further the multivalued nature
of g(�A, �B). In Sec. IX we show results from calculations
where we allow the liquid density profiles to vary both in
a direction parallel to the wall, as well as perpendicular to
it. We present examples of various different possible droplet
configurations, although the range of possible behaviors is
rather large and so our results in this section are not intended
to be comprehensive. Finally, in Sec. X we close with a few
concluding remarks.

II. SURFACE THERMODYNAMICS
AND BINDING POTENTIALS

Although our interest lies in two-component mixtures, we
first discuss the case of a one-component liquid, allowing
us to establish the fundamental ideas surrounding binding
potentials. We begin by considering the excess grand potential
for a system with a film of liquid of thickness h on a planar
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FIG. 1. Illustration of possible configurations of the system when
two different liquids are deposited on a solid substrate, assuming
that the density distributions vary only in the vertical z direction,
perpendicular to the wall. Panel (a) shows the case of two immiscible
liquids, with liquid-A in contact with the wall, while (b) shows the
case where liquid-B is in contact with the wall. Panel (c) shows the
case where the wall is solvophobic and so a film of the vapor intrudes
between the liquid-A and the wall. A configuration where A and B
are interchanged is also possible. Panel (d) shows the case where the
two liquids are miscible and so cover the wall together as a mixture.

solid surface [2,18],

ωex(h) ≡ ��

A = γsl + γlv + g(h) + h�plv, (3)

where �� = � − �0, with � the grand potential of the sys-
tem, �0 = −pvV the grand potential of the vapor phase in a
container of the same volume V but with no surface (pv is
the pressure of the vapor), and A the area of the substrate’s
surface. The terms on the right-hand side are the solid-liquid
interfacial tension γsl , the liquid-vapor interfacial tension γlv ,
g is the binding potential, and the pressure difference �plv =
pl − pv , where pl is the pressure in the liquid film on the
surface. Note here we treat h and � as being essentially
interchangeable.

When the chemical potential of the system μ is the value
at vapor-liquid phase coexistence μcoex, then �plv = 0. Us-
ing the Gibbs-Duhem relation, when the system is close to
coexistence, we find that h�plv = ��μ, where �μ = (μ −
μcoex) [2,52], which gives an alternative form for the last term
in Eq. (3) that is more useful in the context of the present DFT
calculations.

Note that Eq. (3) can be considered as defining the binding
potential: g(h) is whatever is left when all the other terms
on the right-hand side are subtracted from the excess grand
potential per unit area. Defining it this way makes clear that it
has the property g(h) → 0 in the limit h → ∞.

We now consider the same situation, but generalized to the
case where the system contains a two-component mixture of
particles of species-A and B. Examples of typical interfacial
wetting behaviors are shown in Fig. 1. The top panels cor-
respond to the cases when the two species demix (including
in the bulk), exhibiting a coexistence between a phase rich
in species-A particles, which we refer to as “liquid-A” and

a phase rich in species-B particles, which we refer to as
“liquid-B”. Figure 1(a) corresponds to the case where the film
of liquid-A is at the wall with the liquid-B layer above it,
whereas Fig. 1(b) corresponds to the case where the B-rich
layer is at the wall with the A-rich layer above it. Figure 1(c)
also corresponds to the demixing situation, but now there is a
layer of vapor at the wall with layers of liquids A and B above
it. This configuration is generally metastable, but is sometimes
relevant, e.g., when considering bubbles under the liquid film.
We say more about this situation below. Figure 1(d) corre-
sponds to the mixing situation.

For the demixing case in Fig. 1(a), when liquid-A is at the
wall, we can generalize Eq. (3) and write the excess grand
potential of the system as [53]

ωA ≡ �A − �0

A
= �A�μA + �B�μB + γsA + γAB + γBv

+ gA(�A, �B), (4)

where the subscript on the variables ωA, gA, and �A is
there to remind us which phase is closest to the wall.
The three interfacial tensions are the wall-liquid-A tension
γsA, the liquid-A-liquid-B interfacial tension γAB, and the
liquid-B-vapor tension γBv . We also define the chemical
potential differences �μA = μA − μcoex

A and �μB = μB −
μcoex

B , where the values of the two chemical potentials at bulk
phase coexistence are μcoex

A and μcoex
B for the species-A and

species-B particles, respectively. As for the one-component
case, we can view this equation as defining the binding po-
tential gA(�A, �B). Analogously to the one-component case,
when �A → ∞ and �B → ∞, then we have gA → 0.

For the case illustrated in Fig. 1(b), when liquid-B is the
phase in contact with the wall, we can write an entirely analo-
gous equation to the one above:

ωB ≡ �B − �0

A
= �A�μA + �B�μB + γsB + γAB + γAv

+ gB(�A, �B), (5)

where gB is the binding potential in this case with liquid-B at
the wall and it also has the property that when �A → ∞ and
�B → ∞, then gB → 0.

An obvious question is how to determine which of the
two states in Figs. 1(a) or 1(b) is preferred by the system.
We consider the special case of when the chemical potentials
both equal to their values at the triple point, where all three
phases (liquid-A, liquid-B, and the vapor) are in bulk phase
coexistence, then �μA = �μB = 0. Also, assuming that all of
the films are thick enough that both gA ≈ 0 and gB ≈ 0 results
in simplified forms for Eqs. (4) and (5):

ωcoex
A (�A → ∞, �B → ∞) = γsA + γAB + γBv (6)

and

ωcoex
B (�A → ∞, �B → ∞) = γsB + γAB + γAv. (7)

Whichever of these two quantities is the lowest corresponds to
the state preferred by the system, i.e., this determines whether
the substrate prefers to have liquid-A or liquid-B in contact
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with it. This ordering is, of course, determined by how the
wall interacts with the two different species. We define the
constant δ as the difference between these two values, i.e.,

δ = (γsA − γsB) + (γBv − γAv ). (8)

Below in Sec. VII we calculate the grand potential for a range
of different substrates. In order to compare results for given
substrate properties corresponding to the various different
configurations in Fig. 1, we plot the interface potential

ω̃α ≡ ωα − (γsA + γAB + γBv ), (9)

for all the possible configurations of the liquid, and where α =
A, B denotes the phase at the wall. Thus, when it is liquid-A
at the wall, then

ω̃A = gA (10)

and when it is liquid-B at the wall, then

ω̃B = gB − δ. (11)

We can plot these two quantities in the same figure and the
offset between the two cases, ω̃A(�A, �B) and ω̃B(�A, �B), is δ

when �A and �B are large. The magnitude of δ is an indicator
for how much the wall prefers to have liquid-A or liquid-B
next to it.

We now discuss the remaining two cases in Fig. 1. For sys-
tems where a (metastable) film of the vapor can exist between
the wall and the liquid, as illustrated in Fig. 1(c), we can write
the excess grand potential as

ωv ≡ �v − �0

A
= �A�μA + �B�μB + γsv + γvA + γAB + γBv

+ gv (�A, �B). (12)

Similarly to the above case, we define

ω̃v = gv − δv, (13)

where δv is given by

δv = (γsA − γsv ) − γvA. (14)

The value of this quantity tells us how favorable it is for
such a film of the vapor to intrude at the wall. We note that
the analogous case to that in Fig. 1(c) where the A and B
liquid phases are interchanged is also possible, and similar
statements to those above hold.

Finally, we consider the case when the mixing of the two
species of particles is favorable, which is the case illustrated
in Fig. 1(d), and where Eq. (3) applies, since there is just
one liquid phase together with the vapor phase present in the
system. Here, there is no longer the need to consider two
separate adsorptions (or two separate film thicknesses) and the
system reverts to an effective one component system and the
standard formulation for such systems applies, though differ-
ences should emerge on approaching a tricritical point [54].
Nonetheless, one can still vary the two adsorptions �A and
�B independently, which is entirely equivalent to varying the
bulk concentrations of the two species in the single liquid
phase in contact with the wall. In this situation, we plot below
in Sec. VI the binding potential surface g(�A, �B). Follow-
ing this, in Sec. VII we then move on to consider the more

complex case of liquids that demix at substrates. However,
before we present these results, having in this section briefly
reviewed the relevant thermodynamics of binary liquid mix-
tures at interfaces, we next describe the specific microscopic
lattice-DFT that we use to calculate the quantities introduced
above.

III. LATTICE DFT FOR BINARY MIXTURES

We model binary liquid mixtures by discretizing these
systems of interacting particles onto a three-dimensional (3D)
cubic lattice with lattice spacing σ . We set σ = 1, defining
our unit of length. Each site on the lattice is labeled by index
i, where i = (i, j, k) is the 3D discrete position vector. We
define lA

i and lB
i as the occupation numbers for particles of

species-A and species-B at site i, respectively. Thus, if site i is
occupied by a particle of species-A, then lA

i = 1 and if the site
is unoccupied, then lA

i = 0. Similarly, lB
i = 1 or 0 depending

on whether the site i is occupied by a particle of species-B.
We also assume that a lattice site cannot be occupied by both
types at the same time, i.e., lA

i + lB
i = 0 or 1 but not 2. We

model the total energy (Hamiltonian) of the system E in any
given configuration {lA

i , lB
i } by the following sum [55–58]:

E = −
∑

i,j

(
1

2
εAA

ij lA
i lA

j + εAB
ij lA

i lB
j + 1

2
εBB

ij lB
i lB

j

)

− μA

∑
i

lA
i − μB

∑
i

lB
i +

∑
i

A
i lA

i +
∑

i

B
i lB

i . (15)

The first term, a sum over pairs of lattice sites, is the contribu-
tion from particle-particle interactions. The overall interaction
between pairs of species-A particles at sites i and j is deter-
mined by the discretized pair potential εAA

ij = εAAcij, which
depends on the distance between lattice sites, |i − j|. The
parameter εAA governs the overall strength. Similarly, εAB

ij =
εABcij is the interaction tensor between species-A and species-
B particles, with strength determined by the parameter εAB,
and εBB

ij = εBBcij is the interaction between pairs of species-B
particles, with εBB determining the overall strength. Here cij
is a dimensionless coefficient which decreases in value as the
distance between the pairs of particles increases. There are
various possible choices one could make. For a 3D model, the
following values are a good choice:

cij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if j ∈ NN i,
3

10 if j ∈ NNN i,
1

20 if j ∈ NNNN i,

0 otherwise,

(16)

where NN i, NNN i, and NNNN i denote the nearest neigh-
bors of i, next-nearest neighbors of i, and next-next-nearest
neighbors of i, respectively. The choice of values in Eq. (16)
is important: With these particular values any equilibrium
droplets that form on the surface tend to have a hemispherical
shape [56,59,60]. If, for example, one were to assume only
nearest neighbor interactions, i.e., with cij = 0, for j ∈ NNN i
and NNNN i, then rectangular shaped droplets are liable to be
formed, particularly at low temperatures. The choice of cij in
Eq. (16) minimizes the dependence of the vapor-liquid surface
tension on the orientation of the interface with respect to the
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lattice orientation. In 2D, the equivalent of Eq. (16) is [59]

cij =

⎧⎪⎨
⎪⎩

1 if j ∈ NN i,
1
2 if j ∈ NNN i,

0 otherwise,

(17)

used, e.g., in the model discussed in Refs. [57,58].
The second and third terms in Eq. (15) are the contributions

from treating the system as being coupled to a reservoir, which
is the vapor above the surface. The chemical potentials, μA

and μB, of species-A and species-B determine the rate at which
liquid-A and liquid-B evaporate from (or condense onto) the
surface, respectively.

The last two terms in Eq. (15) are sums over all the lattice
sites and give the contributions to the potential energy from
the interactions with the surface, which exerts the external po-
tentials A

i and B
i on species-A and species-B, respectively.

We model these as follows:

α
i =

⎧⎨
⎩

∞ k < 1
−εwα k = 1
0 otherwise

, (18)

where α = A, B, and k is the perpendicular distance from
the surface. Here εwα is the parameter which determines the
interaction strength between the particles of species-α and the
surface (or wall). The boundary condition for the particles at
the wall is straight-forward: We set lα

i = 0 for all lattice sites
with k < 1 in Eq. (18), where k = 0 is the position of the
planar surface of the substrate, i.e., of the wall. For our DFT
calculations, we use periodic boundary conditions in the i and
j directions that are parallel to the wall. For the top boundary,
we either assume that the system is closed, i.e., so that this is
also a hard purely repulsive wall or that the system is open so
that it is an absorbing boundary, which is modelled by fixing
the density on that boundary to that of the vapor with the
corresponding chemical potentials. We set the top boundary
sufficiently far from the wall, so that it does not affect the
resulting densities in the region of the wall.

To develop a statistical mechanical theory for the system
we employ DFT, resulting in a theory for the average densi-
ties,

ρA
i = 〈

lA
i

〉
and ρB

i = 〈
lB
i

〉
, (19)

which are the ensemble average densities at site i, i.e., 〈· · · 〉
denotes a statistical average. Making a mean-field approxi-
mation, the Helmholtz free energy for the binary lattice gas
is [40,60]

F
({

ρA
i

}
,
{
ρB

i

}) = kBT
∑

i

[
ρA

i ln ρA
i + ρB

i ln ρB
i

+ (
1 − ρA

i − ρB
i

)
ln

(
1 − ρA

i − ρB
i

)]

− 1

2

∑
i,j

εAA
ij ρA

i ρA
j −

∑
i,j

εAB
ij ρA

i ρB
j

− 1

2

∑
i,j

εBB
ij ρB

i ρB
j

+
∑

i

(
A

i ρA
i + B

i ρB
i

)
, (20)

where kB is Boltzmann’s constant and T is the temperature.
The above is a discretized DFT free energy for a binary
mixture. A more accurate expression for F can be obtained
by following Refs. [61,62], but for our present purposes the
above mean-field approximation is sufficient. When the den-
sities are slowly varying, it is straightforward to map the above
lattice-DFT onto a continuum-DFT with a gradient expansion
approximation form [57]. The entropic terms in the second
line of Eq. (20) solely contribute a local term in the contin-
uum limit and can loosely be thought of as a “hard-sphere
repulsion” term. In the following sections, we minimize F
subject to constraints on the adsorptions of the two species,
in the presence of a wall (i.e., with an external potential).
However, in the next section we first consider what happens
in bulk mixtures, where no wall is present.

IV. BULK MIXTURE PHASE BEHAVIOR

Without a wall, i.e., with external potentials A
i = B

i = 0,
equilibrium states of the system are a uniform fluid with con-
stant number densities ρA

i = ρA and ρB
i = ρB. In this case, the

sum over neighbors in the interaction terms in the Helmholtz
free energy (20) can be evaluated explicitly. The integrated
interaction tensor is

∑
j cij = S for all i, where in 3D, S =

10, and in 2D, S = 6, so we have aAA = SεAA, aAB = SεAB,
aBB = SεBB, as the integrated strengths of the pair interaction
potentials. From Eq. (20) the Helmholtz free energy per unit
volume, f = F/V , where V is the volume of the system, is
given by

f = kBT [ρA ln ρA + ρB ln ρB

+ (1 − ρA − ρB) ln (1 − ρA − ρB)]

− 1
2 aAAρ2

A − aABρAρB − 1
2 aBBρ2

B. (21)

From this we may calculate the spinodal, the locus where
(∂2 f /∂ρ2

A)(∂2 f /∂ρ2
B) − (∂2 f /∂ρA∂ρB)2 = 0. This spinodal

defines the boundary of the region of the phase diagram where
the system is linearly unstable, and density fluctuations in a
uniform system spontaneously grow, leading to phase separa-
tion. For temperatures where two-phase coexistence equilibria
can occur, the binodal curve gives the coexisting density val-
ues. States in the phase diagram outside the binodal are stable,
and no phase separation occurs. The binodal is calculated by
equating the chemical potentials, temperatures, and pressures
in each of the coexisting phases. For this we can use Eq. (21)
since thermodynamic quantities such as the chemical poten-
tials, μA and μB, and pressure, P, may be obtained using the
following relations:

μA = ∂ f

∂ρA
, μB = ∂ f

∂ρB
, P = − ∂ ( f V )

∂V

∣∣∣∣
NA,NB,T

. (22)

These give

μA = kBT [ln ρA − ln (1 − ρA − ρB)] − aAAρA − aABρB,

(23)

μB = kBT [ln ρB − ln (1 − ρA − ρB)] − aABρA − aBBρB,

(24)

P = −kBT ln (1 − ρA − ρB) − 1
2 aAAρ2

A − aABρAρB− 1
2 aBBρ2

B,

(25)
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FIG. 2. Binodal curve for the coexisting densities of the liquid
and vapor phases for the pure one-component lattice fluid, calculated
using DFT. We also display the spinodal.

where we have used the fact that in a uniform system the
densities are ρA = NA/V and ρB = NB/V where NA and NB

are the total number of particles of each species in the system.
For the one component pure A type with no particles of

species-B (i.e., ρB = 0), we can use the symmetry of the
Hamiltonian (15) to simplify the calculation of the binodal
curve for the coexisting vapor and liquid densities of species-A
particles. This allows us to observe that if ρA is the density of
the liquid at coexistence, then (1 − ρA) is the density of the
coexisting vapor. On equating the pressure in the two phases,
for S = 6 (2D case) we obtain the following equation for the
binodal:

kBT

εAA
= 3(2ρA − 1)

ln [ρA/(1 − ρA)]
. (26)

This has a maximum at ρA = 0.5 which corresponds to a
critical temperature of kBT = 1.5εAA. Figure 2 shows a plot
of this binodal curve together with the spinodal.

For the binary mixture to exhibit two fluid phases that
coexist in thermodynamic equilibrium, four conditions must
be satisfied. We denote these two phases as (i) the low-density
phase (LDP) and (ii) the high-density phase (HDP), although
when we consider some liquid-liquid demixing cases, the total
density difference between the two coexisting phases can be
very small or even zero. We must then solve the following set
of simultaneous equations:

T LDP = T HDP, (27)

μLDP
A = μHDP

A , (28)

μLDP
B = μHDP

B , (29)

PLDP = PHDP, (30)

for the densities of the two different species in the two differ-
ent phases, ρLDP

A , ρLDP
B , ρHDP

A , and ρHDP
B (four unknowns).

The first equation above is trivial to enforce—we simply
pick the temperature of interest and require that it is the same
in both phases. We are then left with three equations for four
unknowns. To make progress, we then fix the chemical po-
tential of species-B to some specified value, which we denote

FIG. 3. Binodal curves for the binary mixture with μB/εAA =
−4.25, εAB/εAA = 0.825, and εBB/εAA = 0.65. Since μB is low, there
is only a relatively small amount of species-B in each of the coexist-
ing liquid and vapor phases.

as η, so that Eq. (29) above decouples to give us two new
equations: μLDP

B = η and μHDP
B = η. We can then solve these

two equations together with Eqs. (28) and (30) for the four
density values: ρLDP

A , ρLDP
B , ρHDP

A , and ρHDP
B . Thus, we get four

equations for the four unknowns [57]. Solving these over a
range of different temperatures and values of η allows us to
determine the phase diagram.

Figures 3 and 4 show the binodals for the mixture of
species-A and species-B particles for the case when εAB/εAA =
0.825, εBB/εAA = 0.65 and for different values of the species-
B chemical potential μB. We see that as μB is increased, the
density of species-B increases in both phases. In fact, it be-
comes the majority species for large-enough μB (not shown).
Note that Fig. 2 can be considered to be the μB = −∞ case
in this sequence with varying μB, where, of course, ρB = 0 in
both coexisting phases.

In Fig. 5 we show results for a case where εAB is less than
both εBB and εAA, in contrast to the cases in Figs. 3 and 4,
where εAB = (εBB + εAA)/2. In this case, we find that species-

FIG. 4. Binodal curves for the binary mixture with μB/εAA =
−3.25, εAB/εAA = 0.825, and εBB/εAA = 0.65. In this case, the two
liquids are somewhat miscible, and so the densities of both in each
of the two coexisting phases are sizable.
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FIG. 5. Binodal curves for the binary mixture with μB/εAA =
−3.25, εAB/εAA = 0.575, and εBB/εAA = 0.65. The value of εAB here
is smaller than the case in Fig. 4, so this case corresponds to a pair
of liquids that are less miscible, which is why the density of the
species-B particles is lower in this case.

B does not mix well with species-A and when μB/εAA =
−3.25 (a low value), the density of the species-B particles in
both coexisting phases is low.

V. DENSITY PROFILES AT THE FREE INTERFACE

Having determined the bulk fluid phase behavior, we now
briefly consider the interface between the coexisting phases
without a wall. At the planar interface between the vapor
and the liquid phases, the density profiles vary only in the
direction perpendicular to the interface. We assume that the
index varying in the direction perpendicular to the interface
is k, recall that i = (i, j, k), so that the lattice sites are along
the z axis at z = jσ . The density profiles are calculated by
minimizing the grand potential [38,39],

� = F − μA

∑
i

ρA
i − μB

∑
i

ρB
i , (31)

where the Helmholtz free energy F is given by Eq. (20)
and the chemical potentials μA and μB are set to the values
at which vapor-liquid phase coexistence occurs. In order to
produce an interface, we set the density to the liquid (HDP)
value for small z and to the vapor (LDP) value for large z.

As mentioned, here the density profiles only vary in one
direction, which means that the full 3D DFT formalism can be
averaged into 1D, significantly decreasing the computational
complexity of the problem. However, for consistency with
later results, which in some cases also vary in two directions,
we compute the densities here in 2D (and set S = 6) with the
constraint that there is no variation in the direction parallel to
the interface.

In Fig. 6 we display the density profiles of the two species
with μB/εAA = −3.25, εAB/εAA = 0.575, and εBB/εAA = 0.65
for various temperatures, which corresponds to the bulk phase
diagram in Fig. 5. We observe that when the temperature
increases (i.e., the value βεAA decreases) the total density
difference between the two coexisting phases decreases. Note
that for larger values of βεAA (lower temperatures) there is

FIG. 6. Liquid-A density profiles (top) and liquid-B density pro-
files (bottom) at the free liquid-vapor interface for εAB/εAA = 0.575,
εBB/εAA = 0.65 at different values of βεAA, as indicated in the key.
The corresponding bulk fluid phase diagram is shown in Fig. 5.

a peak in the species-B density profile at the interface, in-
dicating that this species is enriched at the interface, i.e.,
it has a slight surfactant-like behavior. This occurs at lower
temperatures when mixed at low concentrations into the
species-A-rich liquid. To calculate the various interfacial ten-
sions, e.g., in Eq. (5), we can substitute the corresponding
interfacial density profiles (such as the profiles in Fig. 6) into
Eq. (31) to calculate the grand potential of the system with
the interface �, and then subtracting the corresponding bulk
value �0 = −pV (with no interface) allows us to calculate
the interfacial tension as γAv = (� − �0)/A, where A is the
area of the interface. A similar calculation including the wall
allows to determine all the other interfacial tensions [40]. The
wall-liquid tensions of course depend on where we define the
Gibbs dividing surface [63], but as long as it does not change
between calculations, everything remains consistent.

VI. DFT RESULTS FOR MISCIBLE LIQUIDS AT A WALL

In this section we present results for the density profiles
and binding potential g(�A, �B) for miscible liquids at solid
substrates. This is done by minimizing the free energy (20)
subject to the constraint that the two adsorptions �A and �B

are the specified values and then repeating over the desired

024801-7



MOUNIRAH ARESHI et al. PHYSICAL REVIEW E 109, 024801 (2024)

range of values of (�A, �B). As mentioned in the introduction,
we use the constrained minimization algorithm developed in
Ref. [21], generalized to binary mixtures.

For the binary mixtures considered here, the two main
factors which determine the final configuration of the sys-
tem are (i) the strengths of the external potentials attracting
the particles towards the planar wall and (ii) the strength
of the interactions between the particles of the two dif-
ferent species, in particular, whether the cross interaction
attraction strength εAB is large enough to prevent demixing
or not.

We consider first the case of a symmetric miscible bi-
nary mixture with εBB = εAA and εAB/εAA = 1.2. We set the
temperature kBT/εAA = 0.67. Since εAB > εAA = εBB (i.e., the
particles are more strongly attracted to the opposite species
than they are to their own kind), the mixture does not exhibit
liquid-liquid demixing and only exhibits vapor-liquid phase
separation. We now consider various different combinations
of the wall attraction strength parameters. Note that for a
planar wall, the equilibrium density profiles vary only with
the distance from the wall.

For the results shown in Fig. 7, we set εwA = εwB = εAA

and display some typical density profiles. These range from
the top panel with �Aσ 2 = �Bσ 2 = 0.05 corresponding to a
small excess of each species adsorbed at the wall (essentially
no liquid at the wall), to the bottom panel where �Aσ 2 =
�Bσ 2 = 8, corresponding to a large excess adsorbed at the
wall (a thick film of liquid).

In Figs. 8 and 9 we show corresponding density profiles
for different values of εwA and εwB; comparing these two
figures with Fig. 7 allows one to see the influence of the
relative wall attraction strengths on the density profiles. In
Fig. 8 we increase the attraction between only species-A and
the wall, whereas in Fig. 9 we increase both species-wall
attractions.

In Fig. 8, we display the fluid density profiles for the case
where we increase εwA to the value εwA/εAA = 3.9. The bulk
phase behavior is the same as the previous case (Fig. 7),
so the two species of particles prefer to remain mixed in
the liquid phase. However, particles of species-A now have
a much greater tendency than species-B particles to be at
the wall, because εwA > εwB. This is reflected in the density
profiles of the species-A particles, which have a sharp peak
near to contact with the wall. The species-A particles at the
wall therefore exclude the species-B particles from the wall
surface and so there is a corresponding drop in the species-B
density profiles near to the wall.

The density profiles for the final case we consider in this
section are displayed in Fig. 9. The fluid is exactly the same
miscible mixture as considered in Fig. 7, but now we increase
the value of both εwA/εAA, and εwB/εAA to 3.9. The system
is now symmetric again with respect to the wall interactions.
The stronger attraction results in the liquid strongly wetting
the wall.

We now move on to discuss the binding potential g(�A, �B)
corresponding to the density profiles in Figs. 7–9. These are
shown in Figs. 10–12 where panel (a) shows the binding
potential as a surface in (�A, �B, g) space, and panel (b) shows
the corresponding contour plot in the (�A, �B) plane. Both
plots use the color bar from panel (b).

FIG. 7. Density profiles for a symmetric binary miscible liquid
mixture at a planar wall for varying values of the adsorptions �A

and �B for species-A and species-B, respectively, as indicated in the
key of each panel. The solid (blue) line is for species-A and the
dashed (red) line is for species-B. The particle interaction parameters
are εAA = εBB and εAB/εAA = 1.2. The temperature of the system is
kBT/εAA = 0.67 and the chemical potentials are μA/εAA = μB/εAA =
−5.6, so that the densities of each species in the bulk gas phase
are ρAσ 3 = ρBσ 3 ≈ 0.004. The wall attraction strength parameters
are εwA/εAA = εwB/εAA = 1. The binding potential corresponding to
these profiles is displayed in Fig. 10.
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FIG. 8. Density profiles for a system exactly the same as that in
Fig. 7, except here we increase the attraction between the species-A
particles and the wall to εwA/εAA = 3.9 (from the previous value of
1). The binding potential corresponding to these profiles is displayed
in Fig. 11.

The particular shape of the binding potential surface in
Fig. 10 comes as a consequence of species-A and species-B
having the same affinity for the wall (leading to symmetry
across the �A = �B line) and since, in this case, the liquid does
not wet the wall; it is partially wetting, with a finite contact
angle θ > 0. This latter fact can be seen from the observation

FIG. 9. Density profiles for a system exactly the same as that in
Fig. 7, except here we increase the attraction between the wall and
both species of particles to εwA/εAA = εwB/εAA = 3.9 (from the pre-
vious value of 1). Note that the main differences between the results
here and those in Fig. 7 are in the vicinity of the wall. The binding
potential corresponding to these profiles is displayed in Fig. 12.

that the binding potential has its global minimum value near
(but not exactly at) the origin, where (�A, �B) ≈ (0, 0). Note
that even for small negative values of �A or �B the value of
g rapidly becomes very large, somewhat similar to the case
for the one-component liquid discussed in Ref. [21]. Also, for
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(a)

(b)

FIG. 10. The binding potential g(�A, �B) corresponding to the
system in Fig. 7 displayed as a surface plot in panel (a) and as a
contour plot in panel (b). This is for a symmetric binary mixture that
does not wet the wall, as can be seen from the fact that the global
minimum is near the origin.

fixed total adsorption �A + �B the binding potential is mini-
mized where �A = �B, indicating that a mixing configuration
is preferred.

The corresponding binding potential for the system shown
in Fig. 8 is plotted in Fig. 11, where we see the influence
of the different attraction of the two species to the wall.
Note that now the liquid phase wets the wall, facilitated
by the species-A particles strongly adsorbing at the wall
thereby forming an enrichment layer. This can be seen from
the fact that the global minimum of the binding potential
is at (�A, �B) → (∞,∞), rather than near the origin. Note
also that due to the asymmetry of the wall potentials, the
binding potential surface is no longer symmetric around the
line �A = �B.

Finally, the binding potential corresponding to Fig. 9 is
plotted in Fig. 12, which demonstrates that both species have
the same affinity for the wall. Note that the global mini-
mum of the binding potential is once again at (�A, �B) →
(∞,∞), indicating that also in this case the liquid wets the
wall.

(a)

(b)

FIG. 11. The binding potential g(�A, �B) corresponding to the
system in Fig. 8 displayed as a surface plot in panel (a) and as a
contour plot in panel (b). The stronger attraction between the wall
and species-A (compared to Figs. 7 and 10) leads to the fluid wetting
the wall, as indicated by the fact that the global minimum of the
binding potential is at (�A, �B) → (∞, ∞).

VII. RESULTS FOR IMMISCIBLE LIQUID
MIXTURES AT A WALL

Having discussed results for miscible liquids, we now
move on to demonstrate what happens when the two species
are immiscible. Demixing typically occurs when the attraction
between like-species particles is stronger than that between
unlike species. In such a situation, we can find two layers
(films) of the different liquids at the surface, one on top of
the other, in contact with the vapor. For the system to contain
three different phases (vapor, liquid-A and liquid-B), it must
be at a state point in the vicinity of the triple point.

Figure 13 shows some typical examples of density profiles
at a wall for a case where the two liquids are immiscible. The
results here are for a mixture with εBB = εAA and εAB/εAA =
0.75. Since εAB < εAA = εBB, the particles of the two different
species prefer to be next to their own kind and so demixing
occurs. The results in Fig. 13 are for temperature kBT/εAA =
0.67 and chemical potentials μA/εAA = μB/εAA = −4.5. The
wall parameters are chosen so that the wall attracts both
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(a)

(b)

FIG. 12. The binding potential g(�A, �B) corresponding to the
system in Fig. 9 displayed as a surface plot in panel (a) and as a
contour plot in panel (b). The stronger attraction between the wall
and both species (compared to Figs. 7 and 10) leads to the fluid
wetting this wall, as indicated by the fact that the global minimum
of the binding potential is at (�A, �B) → (∞, ∞).

particle species relatively weakly and therefore neither liquid-
A nor liquid-B wets the wall. However, since the wall attracts
the particles of species-A more strongly than the particles of
species-B, when we constrain a sizable amount of each species
to be at the wall, we find a film of the liquid-A phase closest
to the wall.

In Fig. 14 we plot the interface potential ω̃A(�A, �B) cor-
responding to the density profiles in Fig. 13. Since the lowest
points on the surface ω̃A(�A, �B) are when �B ≈ 0, this shows
that the system would rather have liquid-A at the wall than
liquid-B. The global minimum of the binding potential is
not exactly at the origin, but the fact that it is at a finite
value of both adsorptions, indicates that neither phase wets the
wall. Note also that the binding potential is minimized when
�A 	= �B, which is a further signature that the wall prefers
one species over the other. Note that in Sec. VIII we plot this
interface potential for fixed � = �A = �B, together with the
solution branches to be discussed next and also examples of
corresponding density profiles.

FIG. 13. Density profiles for a binary liquid mixture at a wall.
The mixture exhibits bulk liquid-liquid demixing as well as gas-
liquid phase separation. The density profiles at the wall reflect this,
forming two distinct liquid layers, one above the other, in contact
with the vapor. The profiles are for varying values of the adsorptions
�A and �B, as indicated in the keys. The solid (blue) line is for
species-A and the dashed (red) line is for species-B. These results
are for a symmetric mixture with εBB = εAA and εAB/εAA = 0.75.
The temperature is kBT/εAA = 0.67 and the chemical potentials
are μA/εAA = μB/εAA = −4.5, so that the bulk vapor densities are
ρAσ 3 = ρBσ 2 = 0.0128 and the densities of the two species in the
liquid phases are 0.974 and 0.0128. The wall interaction strength
parameters are εwA/εAA = 2.5 and εwB/εAA = 1.5, so in this case the
wall favors the liquid-A phase.
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(a)

(b)

FIG. 14. The interface potential ω̃A(�A, �B) corresponding to the
density profiles in Fig. 13, displayed as a surface in (a), and a contour
plot (b). The stronger attraction between the wall and the species-A
particles leads to the wall favoring the liquid-A phase being at the
wall (with a small value of �B), although since neither of the wall
attraction strength parameters are large, the global minimum is for a
small finite value of both adsorptions, i.e., neither fluid wets the wall.

Although the wall prefers to be in contact with liquid-A
rather than liquid-B, it is possible to initiate the system with
a film of liquid-B closest to the wall, with a film of liquid-A
above it. In Fig. 15 we display equilibrated density profiles
corresponding to this situation. The profiles in this figure are
for exactly the same parameters as used in the previous case in
Fig. 13, but they correspond to a separate branch of metastable
solutions to the equations (local minima of the free energy,
but not the global minimum) and therefore we find a second
interface potential ω̃B, applicable when the liquid-B phase
is closest to the wall and liquid-A is above it. The density
profiles in Fig. 15 reflect the fact that the attraction between
species-A particles and the wall is stronger than between
species-B particles and the wall, i.e., we see that the density
profiles of species-A have a maximum close to the wall. This
branch of solutions does not exist for all values of (�A, �B).
If either of the adsorptions values become small, �ασ 2 � 2.5,
then the system rearranges itself, decreasing the free energy,
to be on the ω̃A branch of solutions. In Fig. 16 we display

FIG. 15. Metastable density profiles for the same model param-
eters as the results in Fig. 13. Here the system has the liquid-B film
closest to the wall for the larger values of �A (in Fig. 13 the liquid-A
film is closest to the wall). The solid (blue) lines are the density
profiles of the species-A and the dashed (red) lines are the profiles
of the species-B.

both ω̃B and ω̃A. The upper (yellow) surface corresponds
to ω̃B and the lower surface corresponds to ω̃A. A similar
multistability is discussed in Ref. [8], where a Cahn-Hilliard
model for a binary mixture between walls with energetic bias
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(a)

(b)

FIG. 16. The second branch of the interface potential ω̃B(�A, �B)
(the yellow part), corresponding to the density profiles in Fig. 15,
displayed as a surface in panel (a), and a contour plot in panel
(b). The parameters are as in Fig. 14. When one of the adsorptions
�ασ

2 � 2, the system falls off the upper (yellow) branch ω̃B(�A, �B),
onto the lower branch ω̃A(�A, �B) that is in Fig. 14 also displayed for
the full range of the adsorptions.

is analyzed. Reference [8] also presents bifurcation diagrams,
showing the relations and connections of various branches of
stable, metastable and unstable layered configurations. With
the methods used here, we are solely able to track stable
solution branches, but comparison with Ref. [8] gives hints
as to how the solution branches found here may possibly
be connected. Note also that the somewhat ragged edge to
the upper (yellow) branch in Fig. 16 is due to the finite-size
steps taken in scanning the (�A, �B) parameter space. With
a smaller step size, this raggedness would be reduced. This
remark also applies to Fig. 19 below.

The two different branches of solutions to the equations de-
scribed above are not the only possible solutions that we find.
Additionally, we display in Fig. 17 density profiles for exactly
the same parameters used in the previous cases in this section.
These density profiles correspond to a case where a layer of
vapor has intruded between the two layers of the immiscible
liquids. For example, when �Aσ 2 = 2 and �Bσ 2 = 6.5, we
observe a thin layer of the liquid-A phase adsorbed at the wall

FIG. 17. Metastable density profiles for the same model param-
eters as the results in Fig. 13, except here find the system with a film
of vapor between the two liquid layers. The solid (blue) line is for
the species-A particles and the dashed (red) line is for the species-B
particles.

and a thicker film of the liquid-B phase far away from the
wall with a layer of the vapor between the two. We should
emphasize that such a configuration is not the global minimum
of the free energy. Moreover, a factor that may help stabilize
such a configuration is the fact that the system is discretized
on a lattice. Oscillations (i.e., multiple minima) in the binding
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(a)

(b)

FIG. 18. The interface potential ω̃v (�A, �B) corresponding to the
density profiles in Fig. 17, displayed as a surface in (a), and a contour
plot in (b). These are for exactly the same parameters as the results in
Fig. 14. When the species-B adsorption �Bσ 2 � 1, the system falls
off the upper (yellow) interface potential ω̃v (�A, �B), onto the lower
(green-blue) ω̃A(�A, �B ) branch that is also displayed in Fig. 14.

potential for lattice-gas models were discussed previously for
one-component systems; see Ref. [21]. In Fig. 18 we display
the interface potential of ω̃v corresponding to these config-
urations. When �B becomes small enough this metastable
configuration branch of solutions ceases to exist and the sys-
tem falls down onto the ω̃A branch of solutions.

Another metastable branch of solutions that we were able
to find for this set of parameters includes configurations (not
displayed) corresponding to the liquid-B phase being at the
wall, above which is a film of the vapor, and then above that a
film of liquid-A. The corresponding interface potential ω̃B is
displayed in Fig. 19. As for some of the previous metastable
configurations, we believe the fact that we are dealing with a
lattice model where liquid-vapor interfaces can get pinned to
the underlying grid plays a role in stabilizing these. However,
there are continuum systems where the liquid-liquid interfa-
cial profiles exhibit oscillations (see, e.g., Refs. [24,64]) and
the weak pinning of the interfaces that we observe here due to
the lattice could also in principle occur in such systems. Bind-
ing potentials with oscillatory decay have been observed, also

(a)

(b)

FIG. 19. Portions of three different interface potentials
ω̃B(�A, �B ) corresponding to a case where the system was initiated
with a film of liquid-B at the wall, above this a film of vapor, then
a film of liquid-A phase, before finally arriving at the bulk vapor.
Such configurations are rather fragile metastable states that have a
much larger energy than the globally stable state, with a relatively
low energy barrier to be overcome to leave the metastable state,
which is why only portions of the surface were obtained. These are
for exactly the same parameters as the results in Fig. 14.

leading to the pinning of interfaces [24,65]. In the following
section we present further details on this system by displaying
slices through the various interface potentials together with
some typical density profiles.

VIII. BINDING POTENTIALS AND PROFILES FOR �A = �B

In this section we present further details and additional re-
sults for the demixing liquid system discussed in the previous
section. In particular, we plot the interface potentials along
the line �A = �B = �, where the two adsorptions are equal,
together with some of the corresponding density profiles.

In Fig. 20(a) we display three different interface potential
curves calculated for decreasing �. These results are for the
immiscible liquid mixture considered in the previous sec-
tion and for the same state point. The blue curve is ω̃A, which
has a film of liquid-A closest to the wall, with a film of liquid-
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FIG. 20. In (a) we display the interface potentials ω̃A (blue line), ω̃B (red points), and ω̃v (green points) as functions of � = �A = �B (i.e.,
both adsorptions are equal), calculated for decreasing �. The system parameters are the same as the results in Figs. 13–19. The blue line is a
slice through the ω̃A surface displayed in Fig. 14, which corresponds to the lowest free energy case, with a film of liquid-A closest to the wall.
Some examples of density profiles along this branch are displayed in panels (b), (c), and (d) (down the right), with the values of �A = �B given
in the keys. The red points correspond to a different branch of solutions (displayed in Fig. 16), corresponding to liquid-B being closest to the
wall. Examples of density profiles along this branch are displayed in panels (e), (f), and (d) (along the bottom). Notice that at �σ 2 ≈ 2.5 this
branch ends and the system falls onto the ω̃A branch (blue line). The green points correspond to the ω̃v branch of solutions where there is a film
of the vapor phase intruding between the two films of liquid and the wall. Examples of density profiles along this branch are displayed along
the top in panels (g), (h), and (i). Notice that as � is decreased the system first falls onto a branch of solutions where liquid-A is at the wall,
while liquid-B remains above the trapped vapor film. Then, subsequently, it falls onto the ω̃A branch of solutions.

B between liquid-A and the bulk vapor. This is the lowest free
energy configuration for any given value of �. Examples of
density profiles along this branch of solutions are displayed in
Figs. 20(b), 20(c), and 20(d).

Also in Fig. 20(a) the red points for larger � lie on the
branch ω̃B, which corresponds to the two liquid films at the
wall being the other way round, i.e., with the film of liquid-B
at the wall. However, at �σ 2 ≈ 2.5 this branch ends and the
system falls down onto the lower free energy ω̃A branch.
Examples of density profiles from along this sequence are
displayed in Figs. 20(e), 20(f) and 20(d).

Finally, in Fig. 20(a) the green points start for larger �

on the branch ω̃v , which corresponds to having a film of the
vapor intruding between the two liquid films and the wall.
At �σ 2 ≈ 2.5 this branch ends and the system falls down
onto a lower (but still metastable) free energy branch where
liquid-A is at the wall, but liquid-B remains above the vapor

layer. Then subsequently at �σ 2 ≈ 1 this second branch ends
and the system falls down onto the lowest free energy ω̃A

branch. Examples of density profiles from along this sequence
are displayed in Figs. 20(g), 20(h) and 20(i). Note that this
branch of solutions corresponding to a vapor layer between
the liquids and the wall is not the same as the branch of
solutions investigated in Figs. 17 and 18, which correspond to
a layer of vapor intruding between the liquid-A and liquid-B
films, with the liquid-B layer at the wall.

IX. DENSITY PROFILES OF DROPLETS AT WALLS

Recall the results in Figs. 7 and 9 displaying density pro-
files for a symmetric miscible binary mixture in contact with
a planar wall that attracts the two different species equally. In
the case in Fig. 7, the fluid does not wet the wall, since the
wall-attraction strength εwA = εwB is not large enough. This
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FIG. 21. A series of 2D droplet profiles for a symmetric miscible
binary mixture with βεAA = 1.5, εBB = εAA and εAB/εAA = 1.2, at
walls of varying attraction strength that is identical for the two
species. The computational domain is of size Lx = 100 in the hor-
izontal direction and Lz = 33 in the vertical direction. We assume
that the density is invariant in the y direction. We assume the upper
wall (at z = 33) is purely repulsive. The total volumes of liquid-A
and liquid-B are equal, with a total of nA = nB = 245 particles per
unit area in the system. Due to the symmetry, the density difference
ρA

i − ρB
i = 0 for all i. Therefore, here we solely display the total den-

sity ρA
i + ρB

i . The droplets are deposited on various solid substrates
with attraction strength parameters βεwA = βεwB = βεw = 0, 1, 2,
and 3.

can also be seen from inspecting the corresponding binding
potential, displayed in Fig. 10. In contrast, when the wall
attraction is much stronger (e.g., the case in Fig. 9), the
fluid wets the wall. This is also indicated by the binding
potential in Fig. 12. These density profiles were calculated
assuming that the liquid density only varies in the z direction,
the direction perpendicular to the wall. However, for partially
wetting systems, one should expect a uniform thickness film
of liquid deposited on the surface to dewet, to form droplets
with a finite contact angle. This is indeed what we observe: In
Fig. 21 we display droplets of the symmetric miscible binary
mixture considered already in Figs. 7–12 with εAA = εBB and
εAB = 1.2εAA. We observe that as the wall attraction strength
that is identical for the two species (εwA = εwB = εw) is in-
creased from zero, the contact angle of the droplets decreases.
Due to the complete symmetry between components, the

density profiles of the two different species are identical and
so we display in Fig. 21 just the total density ρA

i + ρB
i . These

profiles are calculated using the same procedure as used to
calculate the 1D profiles in, e.g., Fig. 7, except here we make
the system wide enough in one direction parallel to the sur-
face that density variations in this direction become possible;
see Refs. [21,24,40] for discussion and examples of this for
one-component fluids. We still constrain the adsorption at
the surface, though now for these systems varying in 2D, a
better measure for the amount of material in the system is
the number of particles per unit area, nα = ∑

2D area ρα
i . The

summation here denotes a summation performed over the
(x, z) plane, while we assume that the density is invariant
in the y direction (into the plane of the figure). Thus, the
droplet profiles displayed here actually correspond to cross
sections through ridge-shaped droplets. For the droplets in
Fig. 21, we fix nA = nB = 245 to be the same in all cases. We
observe that as εw is increased, the contact angle decreases
until at βεw ≈ 3.3 there is a wetting transition, where the
contact angle θ → 0.

For the density profiles in Fig. 21, we vary the wall at-
traction strength while also keeping it identical for the two
different species of particles. In contrast, in Fig. 22 we keep
the wall-species-A attraction strength fixed at βεwA = 1.5,
while we vary the wall-species-B attraction strength, εwB.
We find that increasing εwB leads to the droplet spreading
further over the surface and thus to a decrease in the contact
angle, with the wetting transition occurring at βεwB ≈ 4.2 (for
this fixed equal total average densities of the two species).
Since the interaction with the wall is no longer symmetric,
the density profiles of the two different species are no longer
identical. In Fig. 22 we plot on the left-hand side the total
density ρA

i + ρB
i for varying εwB, while on the right-hand

side we plot the difference ρA
i − ρB

i . This allows us to see
that when the wall attracts species-A more strongly than
species-B (cases at the top of Fig. 22), then the local density of
species-A in the layer directly in contact with the wall is higher
than that of species-B (a similar case is displayed in Fig. 8).
Interestingly, in the layer directly above this, it is the other
way round. Moreover, the increased density of species-A at the
wall leads to the overall density of species-A in the bulk of the
droplet being slightly lower than the density of the B particles.
As we then increase the attraction between the wall and the
species-B particles, the roles are reversed, i.e., when the wall
attracts species-B more strongly than species-A (i.e., cases at
the bottom of Fig. 22), then the local density of species-B in
the layer right at the surface of the wall is higher than that of
species-A. Correspondingly, in the layer directly above this,
the density of species-A is higher than that of species-B and
also in the bulk of the droplet.

Having considered examples of droplets of miscible liq-
uids on surfaces, we display in Fig. 23 a few examples of
immiscible liquids on surfaces. Here we plot the density
difference ρA

i − ρB
i , with the color bar chosen so that the

bulk vapor is in red, droplets of liquid-A appear in yellow,
while droplets of liquid-B appear black. In the top panel,
the attraction strengths between the wall and the two species
are identical, so due to the symmetry in the system, the two
droplets are mirror-identical to one another. In contrast, for
the droplets in the lower two plots the wall prefers species-
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FIG. 22. A series of 2D droplet profiles for the same symmetric miscible binary mixture considered in Fig. 22, with the same equal total
volumes of liquid-A and liquid-B but for wall interactions that are different for the two species. In particular, we fix the wall-species-A attraction
strength to be βεwA = 1.5, while we vary the wall-species-B attraction strength, choosing the values βεwB = 0, 1, 2, and 3. On the left, we
display the total fluid density ρA

i + ρB
i , while on the right we display the corresponding density difference ρA

i − ρB
i .

A, so the yellow droplets have a smaller contact angle with
the wall than the black liquid-B droplets. Here, the middle
panel shows an asymmetric compound drop while the lower
configuration is fully left-right symmetric. These droplet con-
figurations are just a few examples of possible arrangements
of the liquids. Depending on the volumes of each of the liq-
uids and the size of the system, various different (meta)stable
configurations are possible. Such compound droplets and their
transitions are also studied for macroscopic and mesoscopic
sharp-interface models [66–68], as well as with a diffuse
interface approach [69]. In Ref. [68,69] both, symmetric and
asymmetric states, are found in contrast to Ref. [70] where it
is argued that asymmetric compound drops cannot exist and
to Ref. [67] where they seem to be attributed to the action
of gravity. We note also that not only is the statics of binary
liquid droplets on solid substrates varied and interesting; the
nonequilibrium dynamics is also complex and striking; see,
e.g., Refs. [16,66,71–80]. We defer comprehensive study of
possible arrangements of droplets on surfaces to future work.

X. CONCLUDING REMARKS

We have developed a theory for calculating binding poten-
tials as functions of the adsorptions, for liquid mixtures at
interfaces. We have shown that the method can be applied
to both miscible and immiscible liquids. Our approach is
based on DFT and so also yields the density profiles of the
two liquids at the surfaces, alongside other thermodynamic

quantities. Here, we have applied the method to a simple
binary lattice-gas model to demonstrate its effectiveness for
determining crucial quantities for understanding the interfa-
cial wetting phase behavior of binary mixtures of liquids.
However, the method can in future be applied with any other
more sophisticated and/or accurate DFT and for other types
of binary-mixture systems.

The method allows one to go from the microscopic pair
interaction potential parameters for the binary mixture at a
surface to an overall understanding of the interfacial phase
behavior. For the present system, the inputs to the model are
the parameters in the pair potentials, εAA, εAB, εBB, εwA, and
εwB, together with the state point parameters, i.e., the temper-
ature T and chemical potentials μA and μB (or, equivalently,
the pressure). From these inputs, the present theory yields
the interfacial tensions and binding potential. From these (via
Young’s equation) one can determine other related thermo-
dynamic quantities, such as contact angles, if required. It
is through comparing quantities such as contact angles that
results from lattice-gas models of the type used here can be
related to experiments; see, e.g., Ref. [81]. The interaction
parameters can also be estimated from the bulk liquid phase
behavior for both miscible and immiscible liquids; see also the
discussion in Ref. [17] about determining these coefficients.

The work of Perez et al. [81] provides a good example
of how to select the various interaction parameters in the
lattice DFT in order to match results from a specific set
of experiments. Our aim here has been different: Instead of
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FIG. 23. Droplet profiles for two immiscible liquids deposited on
a surface, plotting the density difference ρA

i − ρB
i . In all three cases

the interaction parameters are εAA/kBT = 1.5, εAB/εAA = 0.5, and
εBB = εAA. For the top profile the wall interaction strengths are equal,
with εwA/kBT = εwB/kBT = 1.5, while for the lower two cases, the
wall prefers species-A, with εwA/kBT = 2.5 and εwB/kBT = 1.5. For
the top case, the volume of the two fluids are equal, with a total
of nA = nB = 420 particles per unit area in the system. For the
middle case, nA = nB = 525, while for the bottom plot, nA = 420
and nB = 595.

trying to match any particular experiment, we have sought
to explore and illustrate the range of possible behaviors that
can be observed as the various interaction strength parame-
ters in the model are changed. This will guide future works
towards the right choices to make when applying the model
to a specific system. The experimental literature on binary
liquids in contact with surfaces is vast. One system that
has been well studied is mixtures of lutidine and water on
contact with glass [82] and silica surfaces [83]. In the lat-
ter experiments, the solid walls under consideration actually
correspond to the surfaces of colloidal particles suspended
within the liquid mixture. There the interest was focused on
the demixing critical point region of the solvent phase dia-
gram. Similar experiments with different liquid mixtures and
particle combinations have also been reported [84–87] and of
particular relevance here, a lattice model closely related to that
used here was applied to understand the colloid aggregation
behavior [88–90]. Examples of other binary mixtures where
the wetting behavior has been studied include: nitromethane
and carbon disulfide [91–93], methanol and cyclohexane [94],
various hydrocarbon and fluorocarbon mixtures [95], water

and propionic acid (and various other mixtures) [96], polymer
and solvent mixtures [97], and mixtures of liquid metals [16].

The results presented here show how the density profiles
change in form as the attraction between the surface and the
two different species of particles in the system varies. As
the wall attraction strength increases, so of course does the
tendency for the liquid to wet the surface. We also observe that
for miscible liquid mixtures, the wall only needs to attract one
of the two species strongly for the mixture to wet the surface;
it is not necessary to be strongly attractive to both. In contrast,
when the wall is weakly attractive, then the liquid(s) do not
wet the wall and metastable states where there are bubbles of
vapor adsorbed on the surface are possible.

The results presented here for a mixture of immiscible
liquids at a surface show that there are multiple possible
configurations of the liquids at the surface, and that the inter-
face potential correspondingly has multiple solution branches,
which is a nontrivial and rather striking observation. Addi-
tionally, we considered cases where the density distributions
of the liquids vary in the directions parallel to the surface,
which further demonstrates the varied number of possible
states, such as droplets on films, droplets on droplets, droplets
inside droplets, etc. Our results here point to the free energy
landscape for such cases to be immensely complicated with
a large number of possible metastable states that deserves
further future investigation. As also concluded in Ref. [53],
the multivalued nature of the binding potentials is likely key
to understanding the ubiquity of irreversible wetting phenom-
ena in complex mixtures, where multicomponent solutions
frequently exhibit multiphase coexistence.

Beyond using the binding potentials calculated here to
facilitate easy scrutiny of the wetting behavior of binary liquid
mixtures on surfaces, they can also be taken as an input into
mesoscopic models like that in Ref. [15], where the focus is
on the lowest energy branch of the interface potential. See also
the discussion in Ref. [21]. However, as future work it would
be interesting to examine the full implications of the multival-
ued nature of the interface potential when introduced into such
mesoscopic models. Such models are also in principle able to
describe the nonequilbrium dynamics of liquids droplets on
solid substrates; it would be interesting future work to test the
reliability of the dynamical predictions of these, for example
to shed further light on intriguing recent experiments on mix-
tures of isopropanol and 2-butanol [98], where evaporating
droplets are seen to be very far from hemispherical.
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