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Solidification in soft-core fluids: Disordered solids from fast solidification fronts
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Using dynamical density functional theory we calculate the speed of solidification fronts advancing into a
quenched two-dimensional model fluid of soft-core particles. We find that solidification fronts can advance via
two different mechanisms, depending on the depth of the quench. For shallow quenches, the front propagation
is via a nonlinear mechanism. For deep quenches, front propagation is governed by a linear mechanism and in
this regime we are able to determine the front speed via a marginal stability analysis. We find that the density
modulations generated behind the advancing front have a characteristic scale that differs from the wavelength
of the density modulation in thermodynamic equilibrium, i.e., the spacing between the crystal planes in an
equilibrium crystal. This leads to the subsequent development of disorder in the solids that are formed. In
a one-component fluid, the particles are able to rearrange to form a well-ordered crystal, with few defects.
However, solidification fronts in a binary mixture exhibiting crystalline phases with square and hexagonal
ordering generate solids that are unable to rearrange after the passage of the solidification front and a significant

amount of disorder remains in the system.
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I. INTRODUCTION

The question of why some materials form a disordered
glass rather than a crystalline solid when they are cooled or
compressed is one of the most pressing questions in both
physics and materials science. A glass, like a crystalline
solid, has a yield stress, i.e., it responds like an elastic solid
when subjected to stress below the yield stress. However, on
examining the microscopic structure of a glass (quantified via
a suitable two-point correlation function or structure function,
such as the static structure factor S(k), that can be measured in a
scattering experiment [1]), one finds no real difference between
the structure of the glass and the same material at a slightly
higher temperature when it is a liquid. In order to discern the
difference between a glass and a liquid from examining the mi-
croscopic structure, one approach is to determine the dynamic
structure function. In a liquid, the particles are able to rearrange
themselves over time, so their subsequent positions become
decorrelated from their earlier locations. On the other hand,
in a glass, the particle positions remain strongly correlated
to their locations at an earlier time. The standard picture of
this phenomenon is that the particles become trapped within a
“cage” of neighboring particles so that in a glass the probability
of a particle escaping is negligibly small [1]. Thus, in a glass
the particles can be thought of as frozen in a disordered ar-
rangement, instead of forming a periodic or crystalline lattice.
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Much insight into the formation and the statistical and
thermodynamic properties of glasses has been gained in recent
years from the study of colloidal suspensions, because of our
ability to observe and track individual colloids in suspension
with a confocal microscope [2]. In this paper we investigate
the structure and phase behavior of a simple two-dimensional
(2D) model colloidal fluid composed of ultrasoft particles that
are able to interpenetrate. We first study the solidification of
the one-component system, which generally forms a regular
crystalline solid. We then investigate binary mixtures which
form disordered solids much more readily and relate the
disorder we find to the solidification process when the system is
quenched from the liquid state. In particular, we examine how
solidification fronts propagate into the unstable liquid and how
this dynamical process can lead to disorder in the model [3].
Our study of this system is based on density functional
theory (DFT) [1,4-6] and dynamical density functional theory
(DDFT) [7-10].

DFT is an obvious theoretical tool for studying the micro-
scopic structure and phase behavior of confined fluids, because
it provides a method for calculating the one-body (number)
density p(r) of a system confined in an external potential ®(r).
The density profile p(r) gives the probability of finding a par-
ticle at position r in the system and is obtained by minimizing
the grand potential functional Q[p] with respect to variations
in p(r) [1,5]. Typically, this is done numerically, and one must
discretize the density distribution p(r) — p,, recording it on a
set of grid points (the index p enumerates the grid points). One
then numerically solves the discretized equations for the set
{pp}. An alternative approach is to assume the density profile
p(r) takes a specific functional form, parametrized by a set of
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parameters {«,}, and then seek the values of the parameters
{o,} minimizing the grand potential functional. This alterna-
tive technique is often used in studies of crystallization, where
the density profile is (for example) assumed to be a set of
Gaussian functions, centered on a set of lattice sites [1].

Over the years, DFT has been used by several groups
studying the properties of glassy systems. Wolynes and
coworkers [11-13] developed a successful model of hard-
sphere glass formation based on the idea that the glass may
be viewed as a system that is “frozen” onto a (random
close-packed) nonperiodic lattice. This approach is based on
the DFT theory for crystallization [1] and was followed up by a
number of other investigations [14-21] extending and applying
the method. All of these studies show that the free-energy
landscape may exhibit minima corresponding to the particles
becoming localized (trapped) on a nonperiodic lattice. One
limitation of these approaches is that the system is constrained
by the choice of the nonperiodic lattice (or, in the case of
the approach in Ref. [21], by the fixed boundary particles).
However, in the present work, rather than imposing a particular
(nonperiodic) lattice structure on the system, we use DDFT to
describe the solidification after the uniform liquid is deeply
quenched to obtain the structure of the crystal or disordered
solid that is formed as an output.

We consider the case where the uniform fluid is quenched
to a state point where the crystal is the equilibrium phase
and examine how the solid phase advances into the liquid
phase, with dynamics described by DDFT. Our work builds
on earlier studies [3,22,23] employing the phase field crystal
(PFC) model [24] to explore a similar situation. The PFC
free-energy functional consists of a local gradient expansion
approximation [3,24] and is arguably the simplest DFT that
is able to describe both the liquid and crystal phases and the
interface between them. In Refs. [3,23] it was shown that
the solidification front speed can be calculated by performing
a marginal stability analysis, based on a dispersion relation
obtained by linearizing the DDFT (see Sec. VA below).
The most striking result of the work in Refs. [3,23] is the
observation that the wavelength of the density modulations
created behind such an advancing solidification front is not, in
general, the same as that of the equilibrium crystal. Thus,
for the system to reach the equilibrium crystal structure
after such a solidification front passes through the system,
significant rearrangements must occur and defects and disorder
often remain. This conclusion, based on a marginal stability
calculation in one dimension (1D), was confirmed in 2D PFC
numerical simulations [3]. In the present work we consider
the same type of situation using a more sophisticated nonlocal
DFT for fluids of soft penetrable particles. For this model fluid,
we find that when the fluid is deeply quenched, the marginal
stability analysis correctly predicts the solidification front
speed, giving the same front speed as we obtain from direct
numerical simulations. However, for shallow quenches we find
that the front propagates via a nonlinear mechanism rather than
the linear mechanism that underpins the marginal stability
analysis and that the 1D marginal stability analysis fails to
predict the correct front speed. The overall picture that we
observe is similar to that predicted for 2D systems on the basis
of amplitude equations by Hari and Nepomnyashchy [25], as
discussed further in the appendix.
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We also present results for a binary mixture of soft particles
that exhibits several different competing crystal structures,
including several hexagonal phases and a square phase. We
find that when a solidification front advances through such
a mixture a highly disordered state results, consisting of
a patchwork of differently ordered regions, some that are
square and others that are hexagonally coordinated. Thus,
the solidification process generates disordered structures in
a completely natural way.

This paper is structured as follows. In Sec. II we describe
the model soft core fluids considered in this paper and briefly
describe the Helmholtz free-energy functional that we use as
the basis of our DFT and DDFT calculations for the density
profile(s) of the liquid and solid phases. In Sec. III we examine
the structure of the uniform fluid. We obtain and compare
results for the radial distribution function g(r), comparing
results from a simple DFT that generates the random-phase
approximation (RPA) closure to the Ornstein-Zernike (OZ)
equation with results from the hypernetted chain (HNC)
closure approximation, which is very accurate for soft systems,
and find very good agreement between the two, thus validating
the simple DFT that we use. In Sec. IV we present results for
the equilibrium phase behavior of the one-component fluid,
calculating the phase diagram. Then in Sec. V we briefly
describe the DDFT for the nonequilibrium fluid and calculate
the dispersion relation for fluid mixtures. In Sec. VI we briefly
discuss the marginal stability analysis for determining front
speeds and compare the results with those from 2D DDFT
computations and show that the solidifications fronts do not
generate density modulations with the same wavelength as
the equilibrium crystal. This leads to disorder, and we present
results showing how the one-component system is able to
rearrange over time to produce a well-ordered crystal, with
only a few defects. In Sec. VII we present our results for a
binary mixture of soft particles in which a solidification front
can generate a solid with persistent disorder. Section VIII
contains concluding remarks. The appendix describes an
amplitude equation approach that helps explain the relation
between the linear and nonlinear solidification fronts that we
observe.

II. MODEL FLUID

In this paper we study 2D soft penetrable particles and their
mixtures. We model the particles as interacting via the pair
potential

vij(r) = eije” TR, M

where the index i, j = 1,2 labels particles of the two different
species. The parameter ¢;; defines the energy for complete
overlap of a pair of particles of species i and j and R;;
defines the range of the interaction. We also consider a
one-component fluid, and in this case omit the indices, i.e., we
write the interaction between the particles as v(r) = ee /R
The case n =2 corresponds to the Gaussian core model
(GCM) [26-29] and larger values of n define the so-called
generalized exponential model of index n (GEM-n). In this
paper we focus on the cases n = 4 and n = 8. Penetrable
spheres correspond to the limit # — co. Such soft potentials
provide a simple model for the effective interactions among
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polymers, star-polymers, dendrimers, and other such soft
macromolecules in solution [27,29-40]. For such particles one
may approximate the intrinsic Helmholtz free energy of the
system as [29]

2
Flip) = ksT Y / drp;(r)(log [pi(r)A7] — 1)
i=1

1
+§i2j:‘/ dl‘/ dr' p;()vi;(|r — ¥')p;(r'), (2)

where T is temperature, kp is Boltzmann’s constant, and A;
is the (irrelevant) thermal de Broglie wavelength for species
i. Henceforth we set A; = R;; = 1. The free energy is a
functional of the one-body density profiles p;(r) and p(r),
where r = (x,y). The first term in Eq. (2), Fiq4, is the ideal
gas (entropic) contribution to the free energy while the second
term, Fe, is the contribution from the interactions between
particles. The equilibrium density distribution is that which
minimizes the grand potential functional

2
QU{pi)}] = Fl{p()}] + Z/drpi(r)(®i(r) — i), )
i=1

where p; are the chemical potentials and ®;(r) is the external
potential experienced by particles of species i. When evaluated
using the equilibrium density profiles, the grand potential
functional gives the thermodynamic grand potential of the
system. For a system in the bulk fluid state (i.e., where ®;(r) =
0), the minimizing densities are independent of position,
pi(r) = pf’. However, at other state points, for example, when
the system freezes to form a solid, 2 is minimized by
nonuniform density distributions, exhibiting sharp peaks.

The free-energy functional in Eq. (2) generates the RPA for
the pair direct correlation functions,

Q)= gy e, @)

v 3pi(r)p;(r') Y ’
where B = 1/kpT . For three-dimensional (3D) systems of soft
particles such as those considered here, the simple approxima-
tion for the free energy in (2) is known to provide a good
approximation for the fluid structure and thermodynamics, as
long as Be is not too large and the density is sufficiently high,
i.e., when the average density in the system pR? > 1 and the
particles experience multiple overlaps with their neighbors—
the classic mean-field scenario [29]. Below we confirm that
this approximation is also good in 2D by comparing results for
the fluid structure with results from the more accurate HNC
approximation. This simple DFT has been used extensively
with great success to study the phase behavior and structure of
soft particles and their mixtures [41-60]. However, the DFT
in (2) is unable to describe the solid phases of the GCM, i.e.,
GEM-2; in order to calculate the free energy and structure of
the solid phases of the GCM, one must introduce additional
correlation contributions to the free energy [61]. In contrast,
when n > 2, the approximation in Eq. (2) is able to provide
a good account of the free energy and structure of the solid
phase in 2D whenever Se ~ O(1) or smaller. Away from this
regime, other approaches are needed [47,51,62-65].
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III. STRUCTURE OF THE FLUID

The pair correlations in a fluid may be characterized by the
radial distribution functions g;;(r) = 1 + h;;(r), where h;;(r)
are the fluid total correlation functions [1]. These are related
to the fluid direct pair correlation functions cﬁ)(r) via the OZ
equation, which for a binary fluid is ‘

2
hij(r) = ¢ () + ) px f dr'c (v — v/ Dhj(). (5
k=1

This equation, together with the exact closure relation
¢ (r) = —Pvij(r) + hyj(r) — InChyj (r) + 1) + by (r) (6

may be solved for h;;(r) and, hence, g;;(r). However, the
bridge functions b;;(r) in Eq. (6) are not known exactly
and so approximations are required. For different interactions
between particles, various approximations for b;;(r) have
been developed [1]. For fluids of soft particles, the HNC
approximation, which consists of setting b;;(r) = 0, has been
shown to be very accurate [29]. Below we compare the results
for g(r) for the one-component fluid, obtained from the HNC
closure with those obtained from the simple approximate DFT
in Eq. (2). These are obtained via the so-called “test particle
method,” which consists of fixing one of the particles in the
fluid and then calculating the density profiles p;(r) in the
presence of this fixed particle. One then uses the Percus result
&ij(r) = pi(r)/ p”, where the fixed particle is of species j. The
equilibrium fluid density profiles are those which minimize
the grand free energy, i.e., they satisfy the Euler-Lagrange
equations

s
3pi(r)
From Egs. (2) and (3) we obtain

(7

ksTInpi+ ) / dr’ p; ()i (Ir — ') + ®;(r) — i = 0.
J

®)
In the test particle situation, we set the external potentials
equal to those corresponding to fixing one of the particles,
ie., ®;(r) = vi(r), for a fixed particle of species k. Using
the conditions that as r — oo, ®;(r) — 0, and p;(r) — pi”,
we can eliminate the chemical potentials p; from Eq. (8) and
obtain

kBTln[pi(Z)

}+Z/dr’[p,-(r’)—pf]vi,ur—r’n
J

+vi(r) = 0. ©)

1

We solve these equations using standard Picard iteration to
obtain the density profiles p;x(r), where the index k denotes
the species held fixed. It is worth noting that if we replace the
density profiles in Eq. (9) by the total correlation functions,
i.e., using pi(r) = p!gik(r), where gix(r) =14 hu(r), we
can rewrite Eq. (9) in the form

hix) = i)+ 30 [ 0oyt = 1)
j

(10)
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FIG. 1. (Color online) The radial distribution function g(r) for a
GEM-4 fluid with bulk chemical potential & = 0 obtained from the
HNC closure to the OZ equation (dashed lines) and from the RPA DFT
via the test particle method (solid lines) for several values of Se. For
clarity, the results for B¢ = 1 and 5 have been shifted vertically. The
results correspond to the state points (B¢, p” R?) = (1,0.36), (5,0.14),
and (10,0.088). As Be increases, the RPA approximation becomes
increasingly poor; nevertheless, even for (fairly low density) state
points such as fe = 10 the agreement is surprisingly good; recall
that the RPA approximation improves as the density is increased.

[cf. Eq. (5)], where csz-?HNC(r) denotes the HNC closure approx-
imation for the pair direct correlation function [i.e., setting
b;j(r) =0 in Eq. (6)] and cEJZ.?RPA(r) = —pBu;;(r) denotes the
RPA approximation. In Fig. 1 we compare results from the
HNC closure of the OZ equation and the RPA test particle
results for a one-component fluid with chemical potential
u = 0 and various values of Be. We see that the agreement
between the two is very good, even at low temperatures such
as Be = 10, where one might expect the RPA to fail.

IV. EQUILIBRIUM FLUID PHASE BEHAVIOR

Having established that the simple RPA approximation for
the free energy (2) gives a good description of the structure of
the bulk fluid, we now use it to determine the phase diagram of
the one-component GEM-4 and GEM-8 models, in particular
to determine where the fluid freezes to form a crystal. We
calculate the density profile of the uniform solid by solving the
Euler-Lagrange equation (7) using a simple iterative algorithm
on a 2D discretized grid with periodic boundary conditions.
The uniform density system is linearly unstable at higher
densities (this notion is discussed further below) and so for
these state points it is easy to calculate the density of the
crystal phase. An initial condition consisting of a line along
which the density is higher than elsewhere, plus an additional
small random number to break the symmetry of the profile, is
sufficient. The density profile of the crystal obtained at higher
densities is then continued down to lower densities where the
liquid and crystal phases coexist.

Two phases coexist when the temperature, pressure, and
chemical potential of the two phases are equal. The densities
of the coexisting liquid and crystal states in the 2D GEM-4
and GEM-8 models are displayed as a function of temperature
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FIG. 2. (Color online) Phase diagrams of the one-component 2D
GEM-4 and GEM-8 model fluids. The solid lines are the binodals,
i.e., loci of coexisting liquid and solid phases. The dashed lines are
the spinodal-like instability lines along which the metastable liquid
phase becomes linearly unstable.

in Fig. 2. Qualitatively, the phase diagram is very similar
to that found previously for the system in three dimensions
(3D) [47,48,50]. However, in the 2D case there is only one
solid phase, unlike in 3D, where the system can form both fcc
and bcc crystals, depending on the state point. The GEM-4
particles freeze at a higher density than the GEM-8 particles,
because the GEM-4 potential is softer.

In Fig. 3 we display a plot of the equilibrium density
profile for the interface between the [1,1] crystal surface and
the liquid. This density profile is for the GEM-4 model at
temperature B¢ = 1. Atthis temperature the chemical potential
at coexistence is fu = 17 and the densities of the coexisting
liquid and solid phases are ,olR2 =5.48 and ,ost =5.73,
respectively.

V. THEORY FOR THE NONEQUILIBRIUM SYSTEM

To extend the theory to nonequilibrium conditions, we
assume the particles obey Brownian dynamics, modelled via

25 45
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15
x 25
>
10 20
15
5 10
5
0 0

0 5 10 15 20 25
X/R
FIG. 3. (Color online) Equilibrium density profile at the free

interface between coexisting liquid and solid phases in the GEM-4
model when Be = 1 and fu = 17.0.
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overdamped stochastic equations of motion,
r =-I'V,U({r}0) + X (@), Y

Here the index / =1, ...,N labels the particles, with N =
Nj + N, the total number of particles in the system and N;
the number of particles of species i. The potential energy of
the system is denoted by U({r;},t), V; = d/9r;, X;(¢) is a
white noise term, and the friction constant I';” ! takes one of
two values, Ffl or I'y ! depending on the particle species.
The quantities I';” ! characterize the drag of the solvent on
particles of species i. The dynamics of a fluid of Brownian
particles can be investigated using DDFT [7-10], which builds
on equilibrium DFT and takes as input the equilibrium fluid
free-energy functional. The two-component generalization of
DDEFT takes the form [66,67]

dp;i(r,1)
ot

8Q{pi(r,0)}]
3pi(r,1)

where p;(r,t) are now the time-dependent nonequilibrium
fluid one-body density profiles. To derive the DDFT we use
the approximation that the nonequilibrium fluid two-body
correlations are the same as those in the equilibrium fluid
with the same one-body density distributions [7-10].

= FIV . |:,0,(I',Z‘)V :|7 (12)

A. Fluid structure and linear stability

We first consider the stability properties of a uniform
fluid with densities ,0{’ and pg , following the presentation
in Refs. [3,9] (see also Refs. [4,68]). We set the external
potentials ®;(r,#) = 0 and consider small density fluctuations
pi(r,t) = pi(r,t) — p? about the bulk values. From Eq. (12)
we obtain

Bopi(et) _ bg2,. ()
Fl’ _8[ =V Iol(rat) Pi v Ci (I',l)
-V [a@ove@®n],  (13)
where
Oy = —gd&F = Fia) 14
=T o

are the one-body direct correlation functions [4,5]. Taylor-
expanding cfl) about the bulk values gives

2 )
8c¢; ’(r)
(1) (1) |
¢; (r)=c¢; '(00) + /dr
; 3p;(r')

p;(r )+ O(5%),
{n?}

(15)
where cgl)(oo) = cgl)[{pf’}] = —PBiex and [; e 1S the bulk ex-
()
cess chemical potential of species i. Since % = cf_lz.)(r,r/),
Eq. (13) yields, to linear order in g,
EELI))
I'; ot

= V2pi(r,1)

DA [ / dr'c(r — r/l)ﬁj(r/,t)} .
j
(16)

A spatial Fourier transform of this equation yields an equation
for the time evolution of the Fourier transform p;(k,t) =
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fdr exp(ik - r)p;(r,t), where i = +/—1. We obtain

B 3pi(k.0) . o
T = KAk + ol ) K &0k, (1)

J

where &;;(k) = f drexp(ik - r)cflz-)(r) is the Fourier transform
of the pair direct correlation function. If we assume that
the time dependence of the Fourier modes follows p;(k,t)

explw(k)t], we obtain [69-72]

lo(k)p =M -Ep, (18)
where p = (01, 0>) and the matrices M and E are given by
_(—kpTTplk? 0
M = < 0 —kBTFQ,ngz ’ (19)
£ [p%; — én(k)] —Cr2(k) 20)
T\ et [ —én®])

It follows that

w(k) = 1Tr(M - E) £ \/%Tr(M ‘EX—M-E|, (1)

where [M - E| denotes the determinant of the matrix M - E.
When w(k) < 0 for all wave numbers k, the system is linearly
stable. If, however, w(k) > 0 for any wave number k, then
the uniform liquid is linearly unstable. Since M is a (negative
definite) diagonal matrix its inverse M~ exists for all nonzero
densities and temperatures, enabling us to write Eq. (18) as the
generalized eigenvalue problem

(E—-Mw)p =0. (22)

As E is a symmetric matrix, all eigenvalues are real as one
would expect for a relaxational system. It follows that the
threshold for linear instability is determined by |[E| = 0, i.e.,
by the condition

D(k) = [1 = pien®)][1 — piénk)] — p}pséty (k) = 0.
(23)
The partial structure factors S;;(k) for an equilibrium fluid
mixture are given by [1,41,44,45,73,74]
Snk) =1+ plhn(k),

Sy(k) = 14 pbhx(k), (24)

Sia(k) = \/ o2 pSh1a(k),

where #; j(k) are the Fourier transforms of h;;(r), i.e., of
the fluid pair correlation functions. These are related to
the pair direct correlation functions cg)(r) through the OZ
equations [1,41]. In Fourier space the OZ equations are

Ni; (k)

D(k)’

with the three numerators given by
Ni(k) = entk) + p3[E1,(k) — énk)én(k)),
Nap(k) = ea(k) + p7 [61,(k) — enk)én(k)],  (26)
Nip(k) = ¢1a(k).

Since for an equilibrium fluid Sj;(k) > 0, Sy (k) > 0, and
811822 — S122 > 0 for all values of k, it follows that D(k) > 0

hij(k) = (25)
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and hence that w(k) < 0 for all wave numbers k. Thus all
Fourier modes decay over time. Within the present RPA
theory for GEM-n particles ¢;;(k) = —B9;;(k), where ;;(k)
are the Fourier transforms of the pair potentials in Eq. (1),
and for sufficiently high densities D(k) dips below zero.
Thus w(k) > 0 for a band of wave numbers around k =~ k.,
indicating that the fluid has become linearly unstable.

For a one-component fluid, i.e., in the limit of ,oé’ — 0, we
find that the fluid is stable when [1 — p?é(k)] > 0 but becomes
linearly unstable when [1 — pPé(k)] < 0[3,9]. Theloci D(k =
k.) = 0 for both the GEM-4 and GEM-8 models are displayed
as dashed lines in Fig. 2. In both cases the line along which the
liquid phase becomes linearly unstable is located well inside
the region where the crystal is the equilibrium phase.

VI. SOLIDIFICATION FRONTS IN THE
ONE-COMPONENT GEM-4 MODEL

When the system is linearly unstable, any localized density
modulation will grow and advance into the unstable uniform
liquid phase. In Refs. [3,23], a marginal stability analysis was
used to calculate the speed of such a front for the PFC model.
Such a calculation allows one to obtain the speed of a front
that has advanced sufficiently far for all initial transients to
have decayed, so the front attains a stationary front velocity.
In 1D the speed ¢ with which the front advances into the
unstable liquid may be obtained by solving the following set
of equations [3,23,75,76]:

Relick + w(k)] =0, 28)

corresponding to a front solution moving with speed c
that is marginally stable to infinitesimal perturbations in its
frame of reference. In such a front the density profiles are
coupled [via the solution of the linear problem (18)] and both
take the form A(r,t) = pron(x — ct), where pgon(x — ct) ~
exp(—kimx) sin(k;(x — ct) + Im[w(k)]t). Here k. and ki, are
the real and imaginary parts of the complex wave number
k = k; + ikin. The speed calculated from this approach for the
one-component GEM-4 model is displayed as the solid red
line in Fig. 4(a) as a function of the density of the unstable
liquid and in Fig. 4(b) as a function of the chemical potential
u, both for fe = 1. We also display the front speed calculated
numerically using DDFT in 2D. Figure 5 shows typical 2D and
1D density profiles used for determining the front speed c. The
figure shows that the invasion of the metastable liquid state in
fact occurs via a pair of fronts, the first of which describes the
invasion of the liquid state by an unstable pattern of stripes,
while the second describes the invasion of the unstable stripe
pattern by a stable hexagonal state. By “stripes” we mean
a density profile with oscillations perpendicular to the front
but no density modulations parallel to the front. This double
front structure complicates considerably the description of the
invasion process in 2D (see the appendix). Figure 4 shows
measurements of the speed of propagation of the hexagons-
to-stripes front, obtained by comparing profiles like that in
Fig. 5(a) at two successive times and determining the speed of
advance of the hexagonal state when it first emerges from the
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FIG. 4. (Color online) The front speed (a) as a function of the
density of the metastable liquid into which the front propagates and
(b) as a function of the chemical potential for a GEM-4 fluid with
temperature kg7 /e = 1. The red solid line is the result from the
marginal stability analysis and the black dashed line is the result
from numerical computations from profiles such as that displayed in
Fig. 5. The black circles denote (a) the densities p;, p; at liquid-solid
coexistence and (b) the coexistence value Su ~ 17.0.

unstable stripe state. The speed of the stripe pattern is harder to
measure since the pattern is itself unstable and so never reaches
a substantial amplitude. For this reason we measure the speed
of the stripe-to-liquid front from plots of the logarithm of the
density fluctuations [Fig. 5(c)] which emphasizes the spatial
growth of the smallest fluctuations at the leading edge of the
front.

For Be = 1 the uniform liquid is linearly stable for S <
19.6 and unstable for Bu 2 19.6. The marginal stability
prediction, obtained by solving Eqs. (27) and (28), predicts
that the 1D speed increases with Bu (or with increasing
density p) in a square-root manner, as indicated by the solid
red line in Fig. 4. Since the theory is 1D this prediction
applies to the invasion of the liquid state by the stripe pattern.
Despite this we find that the prediction correctly describes
the speed of the hexagons-to-stripes front for S = 21.5 (i.e.,
for pR? > 7), as measured in numerical simulations of the
DDFT for the GEM-4 fluid, suggesting that the two fronts are
locked together and that the front speed is selected by linear
processes at the stripe-to-liquid transition, i.e., the resulting
double front is a pulled front [77]. For smaller values of
B the speed of the hexagonal state departs substantially
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FIG. 5. (Color online) Density profile across a solidification front advancing from left to right into an unstable GEM-4 liquid with bulk
density pR?> = 8 and temperature k3T /e = 1, calculated from DDFT. The top panel shows the full 2D density profile p(x,y) while the
panel below shows the 1D density profile p(x) obtained by averaging over the y direction, parallel to the front. The bottom panel shows
In(|p(x) — po| R?) in order to reveal the small-amplitude oscillations at the leading edge of the advancing front.

from the marginal stability prediction and the stripe section
is swallowed by the faster-moving hexagons-to-liquid front.
Indeed, for B < 19.6 (i.e., for pR? < 6.38) the stripe state is
absent altogether, as can be verified by performing a parallel
study in one spatial dimension. The bifurcation to stripes is
therefore supercritical. The hexagons-to-liquid front present in
the metastable regime below the onset of linear instability of
the liquid state is stationary at the Maxwell pointat Su = 17.0,
corresponding to the location of thermodynamic coexistence
between the liquid and hexagonal states. For B > 17.0 the
hexagonal state advances into the liquid phase (the opposite
occurs for B < 17.0) and the hexagons-to-liquid front is
pushed [77]: In this regime the front propagates via a nonlinear
process since the liquid phase is linearly stable. The situation
is more subtle when plotted as a function of the liquid density
pR?: When the liquid density takes a value in the interval
5.48 < pR? < 5.73, i.e., between the densities of the liquid
and crystalline states at coexistence, one cannot define a unique
front speed. In this regime any front between these two states
will slow down and, in any finite domain, eventually come
to a halt. This occurs because the density py of the liquid
state into which the front moves is less than the density pg
of the crystal at coexistence but larger than the density p; of
the liquid at coexistence. In this situation, the moving “front”
has a substructure consisting of two transitions: one from p;
to a depletion zone of a density close to p; and another one
from the depletion zone to the initial pg. As the depletion zone
widens in time and limits the diffusion from the region of
density pq to the crystalline zone of density p, the front slows
down. In a finite system, the depletion zone moves and extends

until it reaches the boundary and the system equilibrates in a
state partitioned between a liquid with density p; and crystal
with density p, with a stationary front between them. For a
PFC model the role of the depletion zone in crystal growth is
discussed in Ref. [78].

The speed of the hexagons-to-liquid front in the regime
17.0 < Bu < 19.6is determined uniquely (see the Appendix).
References [25] and [79] predict that this is no longer the case
for Bu 2 19.6, but in practice we find that the front has a well-
defined speed, possibly as a result of pinning of the stripes-
to-liquid front to the stripes behind it and of the hexagons-to-
stripes front to the heterogeneity on either side. Both effects are
absent from the amplitude equation formulation employed in
Refs. [25] and [79] that we analyze in the appendix. Moreover,
when the hexagon speed reaches the speed predicted by the
marginal stability theory for the stripe state, the two fronts
appear to lock and thereafter move together. In the theory
based on amplitude equations summarized in the appendix,
the interval of stripes between the two fronts appears to have a
unique width, depending on Bu, a prediction that is consistent
with our DDFT results. We have not observed the “unlocking”
of the hexagons-to-stripes front from the stripes-to-liquid front
noted in Ref. [25] at yet larger values of Su. Possible reasons
for this are discussed in the Appendix.

It is clear, therefore, that the 1D analysis based on Egs. (27)
and (28) allows us to calculate the front speed when the
unstable liquid is quenched deeply enough so fronts propagate
via linear processes. In addition to the front speed c this
analysis gives k;, the wave number of the growing perturbation
at the leading edge of the front, and k;n,,, which defines the
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FIG. 6. (Color online) The wave number k* of the stripe state
produced behind the front as a function of density for the GEM-4
fluid with e = 1, obtained from Eq. (29) together with the wave
numbers k, of the 1D oscillations at the leading edge of the front
and k.q = 27 /A, where A is the distance between lattice planes in the
equilibrium hexagonal state. This wavelength is very different from
the wavelength of the oscillations produced by the advancing front,
2w/ k*.

spatial decay length of the density oscillations in the forward
direction. Within the 1D description the pattern left behind by
the front is a large-amplitude periodic state with wave number
k*, say. When no phase slips take place, this wave number is
given by the expression [3,76]

K=k + %Im[a)(k)]. 29)

The wave number k* differs in general from k.. Moreover, as
demonstrated in Ref. [3] and confirmed in Fig. 6 for a GEM-4
crystal with temperature Se = 1, the wavelength 27/ k* of the
density modulation that is created by the passage of the front
may differ substantially from the scale 27/ kq of the mini-
mum free-energy crystal structure which corresponds here to
hexagonal coordination. The propagation of the solidification
front therefore produces a frustrated structure that leads to
the formation of defects and disorder in the crystal. Thus, we
identify two sources of frustration: the wave number mismatch
and the competition between the stripe state deposited by the
advancing front and its subsequent transformation into a 2D
hexagonal structure with a different equilibrium wavelength.
Both effects generate disorder behind the advancing front and
significant rearrangements in the structure of the modulation
pattern occur as the system attempts to lower its free energy via
a succession of local changes in the wavelength of the density
modulation [3].

This ageing process can be rather slow [3]. We illustrate
its properties in Figs. 7 and 8. Figure 7 displays the density
profile in a part of the domain as computed from DDFT and
confirms the presence of substantial disorder in the crystalline
structure close behind the advancing solidification front. There
are actually two fronts in the profiles displayed in Fig. 7,
moving to the left and to the right away from the vertical line
x = 0, where the fronts are initiated at time ¢ = 0. Although
there is substantial disorder close behind the front, further back
the crystal has had time to rearrange itself into its equilibrium
structure, thereby reducing the free energy. Overall, the process
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FIG. 7. (Color online) Density profiles obtained from DDFT for
an unstable GEM-4 fluid with bulk density pyR> = 8. To facilitate
clear portrayal of the front structure we plot the quantity In(|o(r) —
00l R?). Solidification is initiated along the vertical line x = 0 at time
t* = 0. This produces two solidification fronts, one moving to the
left and the other to the right, moving away from the line x = 0. The
upper profile is for the time * = 1 and the lower for r* = 1.4. We
see significant disorder as the front creates density modulations that
are not commensurate with the equilibrium crystal structure.

is similar to that observed in the PFC model [3]. We quantify
the rearrangement process using Delauney triangulation [80],
as shown in Fig. 8. Figure 8(a) displays the bond angle
distribution p(6) obtained from Delauney triangulation on
the peaks of the density profile at various times after the
solidification front was initiated. The distribution p(0) has
a single peak centered near 60°, which is not surprising
since the triangulation on a hexagonal crystal structure yields
equilateral triangles. The initial structure has a significant
number of (penta-hepta) defects. Over time, the number of
these defects gradually decreases, as shown by the fact that
the width of the peak in p(6) decreases over time, but
the defects never completely disappear. These results show
that the one-component GEM-4 system is able to rearrange
itself after solidification to form a reasonably well-ordered
polycrystalline structure, albeit with defects, but with the
equilibrium scale 27 / keq present throughout the domain.

042404-8



SOLIDIFICATION IN SOFT-CORE FLUIDS: ...

pORZ:S

p(0)

40

35

30

25

20

V/R

15

10

20 15 -10 -5 0 5 10 15 20

x/R
40

35

30

25

20

V/R

15

10

O 0K
20 -15 10 -5 0 5 10

x/R

15 20

FIG. 8. (Color online) Top panel: The angle distribution p(6) at
times t* = 2.2, 3.2, and 4.4 after the initiation of a solidification front
for a GEM-4 fluid with bulk density pyR?> = 8 (cf. Fig. 7) computed
from the triangles of a Delauney triangulation on the density peaks
of the profile from DDFT (middle panel: t* = 2.2; bottom panel:
t* =4.4).

VII. RESULTS FOR A BINARY SYSTEM

Our results from the previous section and also those in
Ref. [3] indicate that solidification fronts for systems that
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FIG. 9. The linear stability limit for a binary mixture of GEM-8
particles with Be =1 and Ry /R;; = 1.5 and Rj»/Ry; = 1, plotted
in the total density p = p; + p» vs concentration ¢ = p;/p plane.
The black circles denote the state points corresponding to the density
profiles displayed in Fig. 10.

have been deeply quenched in general do not produce density
modulations with the wavelength of the equilibrium crystal
structure. In the quenched one-component fluid discussed
in the previous section, the system is subsequently able
to rearrange to form the crystal, with only a few defects
remaining. However, this begs the interesting question whether
in some systems the density peaks are not able to rearrange
so the disorder generated by the solidification front remains.
What is well known from the glass transition literature is
that quenched binary mixtures are far more likely than one-
component systems to form a glass instead of an ordered
crystal; see, for example, Ref. [81]. In order to pursue
this idea, we have performed similar computations for a
binary mixture of GEM-8 particles with fe;; = e =1 for
all i,j = 1,2 and R22/R11 = 1.5 and RIZ/RII =1.In Flg 9
we display the linear instability threshold for different values
of the concentration ¢ = p;/p, where p = p; + p; is the total
density and p;, p, are the densities of the two components
of the mixture. For state points above the linear instability
threshold line in Fig. 9 the uniform fluid is unstable and the
system freezes to form a periodic solid. This line is obtained
by tracing the locus defined by D(k.) = 0, where D(k) is given
by Eq. (23) and k. # 0 is the wave number at the minimum of
D(k) [i.e., & D(k = k) = 0]. The cusp in the linear instability
threshold in Fig. 9 is a consequence of a crossover from linear
instability at one length scale to linear instability at a different
length scale. At the cusp point, which is at pR?, = 3.77 and
¢ = 0.708, the system is marginally unstable at two length
scales [82].

This binary mixture exhibits at least four different crys-
talline phases; examples of these are displayed in Fig. 10.
Owing to the fact that the number of potential crystal structures
for binary systems of soft-core particles is rather large, we
have not attempted to calculate the full phase diagram for this
system or the location of the phase transitions between the
different structures observed. For clarity the figure shows the
quantity [p1(r) — pa2(r)]R?, with regions where the density of
species 1 is higher than that of species 2, indicated in black. For
large values of the concentration ¢, the system forms a simple
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FIG. 10. Equilibrium crystal structures for a GEM-8 binary mixture with B¢;; = Be =1 foralli,j = 1,2, Rn /Ry, = 1.5, Rip/Ry; =1,
with total average density ,oRfl = 4 and concentrations (a) to (e) ¢ =0, 0.1, 0.25, 0.5, and 0.9. The structures are shown in terms of the

2

quantity [p;(r) — p2(r)]R7,, with regions where p;(r) > p,(r) colored black. All profiles correspond to local minima of the free energy, but
we have not checked whether they correspond to global minima at the given state points. We observe a binary square lattice structure in (c), a
binary hexagonal lattice structure in (b) and (d), and a simple hexagonal lattice in (a) and (e), where the minority species particles occupy the
same lattice sites as the majority species particles, in contrast to the lattice structures in (b)—(d). The density profiles of species 1 or 2 in case
(e) are very similar to the profile shown, the only difference being the height of the density peaks.

hexagonal crystal that is essentially the same as that formed
by the pure species 1 system. The minority species 2 particles
simply join in low concentration the density peaks formed
by the majority species 1 particles; see Fig. 10(e). Similarly,
for very low concentrations ¢, the system forms a simple
hexagonal crystal, essentially that formed by the pure species
2 system; see Fig. 10(a). However, for intermediate densities
the system forms a binary hexagonal crystal structure, where
the two different particle species sit on different lattice sites.
Examples of this crystal structure are displayed in Figs. 10(b)
and 10(d). We also observe a square crystal structure [see
Fig. 10(c)] in which the two different species also reside on
different lattice sites.

When the system contains roughly the same number of
each species of particles, i.e., ¢ &~ 0.5, we find that either
the square or the binary hexagonal crystal structures can
be formed, depending on initial conditions, indicating that
there is close competition between these two different crystal
structures. This can also be seen in Fig. 11, where we display
profiles calculated from DDFT after the uniform fluid is
quenched to this state point and a solidification front is initiated
along the line x = 0. These profiles reveal that the front
generates regions of both square and hexagonal crystalline
structures. Furthermore, the system is highly disordered, as
one might expect based on the demonstration in Sec. VI that
the density modulations created behind a solidification front in
a deeply quenched system do not have the same wavelength as
the equilibrium crystal. Thus, significant rearrangements are
needed to get to the equilibrium structure. In the present case,
there are two competing structures (squares and hexagons) and

the resulting profile contains a mixture of the two. However,
because the system is a binary mixture, it is unable to rearrange
over time and so significant disorder remains indefinitely.
In Figs. 12 and 13 we display a more detailed analysis
of the structure created by the solidification front and how
this structure evolves over time. This analysis is based on
performing a Delauney triangulation on the structures that are
formed and determining its dual, the Voronoi diagram [80].
To do this we first calculate the locations of all the peaks in
the total density profile p(r) = pi(r) + p2(r). We include all
maxima where the density at the maximum point is >50R; >
and construct the Delauney triangulation and the Voronoi
diagram on this set of points. The Voronoi diagrams are
displayed on the left in Fig. 12 while the center panels display
the Delauney triangulation. The upper diagrams correspond
to a short time ¢* = 2 after the front was initiated along a
line down the center of the system while the lower profiles
correspond to a much later time, t* = 400, which is roughly
when the structure ceases to evolve in time. In the Voronoi
diagram we observe regions of both squares and hexagons
and between these different regions we see various different
polyhedra corresponding to the defects along the (grain)
boundaries between the regions of different crystal structure
and/or orientation. These different crystal regions can also
be observed in the Delauney triangulation as regions made
up of equilateral triangles (red online), corresponding to the
hexagonal structure, and regions of right-angled triangles,
corresponding to the square crystal structure. The boundaries
between these regions contain scalene triangles. In the right-
hand panels in Fig. 12 we display the density maxima in p(r).
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FIG. 11. Snapshots of a solidification front in a GEM-8 mixture
with ,36,*]' = ,36 = 1 forall l,] = 1,2, RZZ/RII = 15, and RIZ/RII =
1, advancing from left to right into an unstable fluid with pR?, = 8
and ¢ = 0.5, in terms of the quantity [p;(r) — pz(r)]Rfl. Density
peaks of species 1 are colored black while the peaks of species 2
are white. The front was initiated at time r = 0 along the line x = 0.
The top profile corresponds to time ¢* = 0.6 while the lower profile
corresponds to t* = 3.

These are color coded according to the nature of the local
crystal structure around that point. The square crystal regions
are displayed as black circles, the hexagonal regions as gray
circles (red online), and the density peaks with neither square
nor hexagonal local coordination are plotted as open circles.
The criterion for deciding to which subset a given density peak
belongs is based on Delauney triangulation: any given triangle
with corner angles 6, 6,, and 65 is defined as equilateral if
|6; — 0] < 5° for all pairs i, j = 1,2,3. The vertices of these
triangles are colored black. Similarly, triangles are defined as
right-angled if for the largest angle 6; we have |0, — 90°| < 5°
and for the other two angles |6, — 03] < 5°. The vertices of
these triangles are colored gray (red online). The remaining
vertices which fall into neither of these categories are displayed
as open circles. We see that there are roughly equal-sized
regions of both square and hexagonal ordering. The typical
size of these different regions increases with the elapsed time
after the solidification front has passed through the system.
Likewise, the number of maxima that do not belong to either

PHYSICAL REVIEW E 90, 042404 (2014)

crystal structure (open circles) decreases with elapsed time, as
the system seeks to minimize its free energy.

In Fig. 13 we plot the distribution function p(8) for the
different bond angles obtained from Delauney triangulation
for three different times after the initiation of the solidification
front. It has three maxima: one near 45°, another at 60°, and
the other near 90°. The peak at 60° is the contribution from
the regions of hexagonal ordering (equilateral triangles) and
the two peaks at 45° and 90° come from the regions of square
ordering (right-angled triangles in the Delauney triangulation).
The peak at 45° is, of course, twice as high as the peak at 90°.
We also observe that the peaks are much broader at short times,
t* = 1, 2, after the solidification front was initiated, than in the
final structure from time #* = 400. These results provide an
indication of the degree of disorder and number of defects in
the system; the fact that the peaks become sharper over time
is a consequence of the fact that the amount of disorder in the
system decreases over time. Nonetheless, the peaks in p(6) are
still rather broad in the final state, indicating that significant
strain and disorder remain in the structure.

VIII. CONCLUDING REMARKS

In this paper we have seen that a deep quench generates
a solidification front whose speed is correctly predicted from
the dispersion relation using the marginal stability ansatz. The
front leaves behind a nonequilibrium crystalline state with
many defects and a characteristic scale that differs substantially
from the wavelength of the crystal in thermodynamic equi-
librium. Subsequent ageing generates domains with different
orientations but in one-component systems the number of
defects continues to decrease over time. In two-component
systems different crystalline phases may compete, providing
an additional source of disorder in the system, and the minority
species may block rearrangement of the particles, thereby
freezing the disorder in place and leaving an amorphous solid
with glasslike structure.

When the quench is shallow, the speed of the solidification
front is slow and the amount of disorder generated by its
passage is reduced. However, in this regime the front speed in a
2D system is no longer correctly predicted by the 1D marginal
stability condition because the front becomes a pushed front,
i.e., its speed is determined by nonlinear processes. As a result,
the speed becomes an eigenvalue of a nonlinear eigenvalue
problem as summarized in the appendix. The solution of this
problem reproduces the qualitative features of Fig. 4 computed
from numerical simulations of the DDFT for a one-component
GEM-4 system (see the Appendix), thereby providing support
for this interpretation of Fig. 4.

In particular, in the region of the phase diagram where
the liquid is linearly stable and solidification fronts propagate
via nonlinear processes, solidification must be nucleated—a
process that requires the system to surmount a free-energy
barrier. Once initiated, the resulting solidification front gener-
ates disorder in the system by the processes discussed above.
However, in addition to these the nucleation process itself may
play an important role, as discussed in Refs. [§3—86]. These
studies show that the critical nucleus is likewise a structure that
may be incommensurate with the equilibrium crystal lattice
structure so the nucleation process can itself generate disorder
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FIG. 12. (Color online) Analysis of the density peaks in the density profile in a GEM-8 mixture with B¢;; = fe =1 for all i,j = 1,2,
Ry /Ry = 1.5,and Ry»/Ry; = 1 and average total density p R?, = 8 and concentration ¢ = 0.5, formed by a solidification front initiated along
the line x = 25 at time ¢ = 0. The diagrams along the top row correspond to time #* = 2, shortly after the solidification front has exited the
domain and before the structure has had time to relax, while the diagrams along the bottom row correspond to time #* = 400, when the profiles
no longer change in time—the system has reached a local minimum of the free energy. Left: Voronoi diagrams; the construction reveals the

disorder created by the front. The hexagons and squares correspond to

the two competing crystal structures. Middle: Delauney triangulation;

domains of the hexagonal phase (equilateral triangles) are highlighted in red, while the remainder, including the right-angled triangles of

the square phase, are shown in black. Right: The density maxima are

color coded according to the triangle type they belong to as follows:

right-angled triangles are black, equilateral triangles are gray (red online), and scalene triangles are open circles. Comparing the upper to the
lower diagrams, we see that over time there is an increase in the size of the domains of the two different crystal structures.

in the system. This is especially so as one approaches the linear
stability threshold, where the critical nucleus is predicted to

T
poR’=8, $p=05
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FIG. 13. (Color online) Time evolution of the bond angle distri-
bution function from Delauney triangulation, corresponding to the
results in Fig. 12.

have an “onion”-like structure [84]. The second shell of the
“onion” is incompatible with the equilibrium crystal structure,
potentially leading to the growth of an amorphous phase, a
suggestion supported by recent experimental results [85,86].
While one-component systems may subsequently be able to
rearrange to form a well-ordered crystal, binary systems appear
unable to escape the resulting disordered structure.

In the present work, we have studied solidification using
DDFT with solidification initiated along a straight line (cf.
Figs. 5 and 7). The resulting fronts are straight, enabling us to
study the front speed and wave number selection. For example,
the fronts in the linearly unstable liquid in Fig. 7 are initiated
by adding a small zero-mean random perturbation along the
line x = O to the initially uniform density profile. In reality,
however, solidification fronts are initiated throughout the sys-
tem at random locations, determined by the fluctuations in the
system. This is equivalent to initiating fronts simultaneously
at many points in the system. These fronts then propagate
through the system, colliding and interacting, leading to the
formation of the solid phase. To model this process, we add
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a small zero-mean random perturbation to the initial density
profile at all points in the system. The final + — oo density
profiles produced in this way (not displayed) are very similar
to those produced by initiating the solidification front along a
single line. If instead of DDFT we employed kinetic Monte
Carlo or Brownian dynamics or even molecular dynamics
computer simulations to study solidification in systems of
particles interacting via the potentials in Eq. (1), we would
first equilibrate the system in the liquid phase at a higher
temperature and then quench to a temperature where a solid
forms. The dynamics following such a quench is very similar
to that predicted by DDFT from an initial density profile with
random noise at all points in the system, as is the case for the
related soft-core fluid model discussed in Ref. [82]. We are
thus confident that DDFT gives an excellent description of the
system.

We mention, finally, that the behavior of the 2D PFC
model studied in Ref. [3] differs qualitatively from the 2D
DDFT model studied here. In the PFC model there is a
temperature-like parameter » < 0, such that (r + 1)/2 is the
coefficient of the ¢? term in the PFC free energy. For the
larger values of |r| considered in Ref. [3], the linear instability
threshold lies within the thermodynamic coexistence region
between the liquid phase and the hexagonal crystalline phase.
Thus, for these values of |r|, the hexagonal phase advances
into the liquid at a well-defined speed determined by a linear
mechanism as described by the marginal stability analysis.
This is in contrast to the present DDFT model where the
linear instability boundary lies outside the coexistence region
(Fig. 2) and fronts between the hexagonal and liquid phases
can propagate with speed determined either by a linear or
a nonlinear mechanism, depending on parameters. However,
for smaller values of |r| the linear instability line in the PFC
model does lie outside the coexistence region [87,88] and in
this case the behavior of the PFC system should be similar to
that observed in the present study.
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APPENDIX: 2D FRONT PROPAGATION INTO
AN UNSTABLE STATE

Figure 4(b) shows the front velocity c¢ as function of the
chemical potential p as computed from direct numerical
simulations of a GEM-4 fluid with temperature kg7 /e = 1
and compares the result with the prediction of the marginal
stability calculation reported above (red solid line). The latter
agrees well with the measured speed for larger values of u but
there is a substantial disagreement near threshold.

The reason for this discrepancy was elucidated by Hari and
Nepomnyashchy [25], following earlier work by Csah6k and
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Misbah [89]. The results of Ref. [25] were largely confirmed
in subsequent work by Doelman et al. [79]. The work of Hari
and Nepomnyashchy is based on a detailed study of a set of
model equations describing the spatial modulation of a pattern
of (small-amplitude) hexagons,

AL 92A

k
el YA+ 3—36% + Af—1 A1)

—(|A >+ M A >+ M A DA (A

for k = 0,1,2, where the Ay are the complex amplitudes of
the three wave vectors ng = (1,0)k.,n; = (—1,\/§)k6/2, n, =
(-1, — «/§)kc/2 [90], and x; = x - ny. Here k. is the critical
wave number at onset of the hexagon-forming instability (y =
0), and [k &+ 1] = (k & 1)(mod3). These equations constitute
a gradient flow with free energy,

]—'z/ L(x,t)dx, (A2)
—00
where
2 2
1]0A
L= —|— =V A3
Z 2 E)xk ( )
k=0
and
2 /1 1
_ 2 4 * Ak AX
V= ; (§y|Ak| = 414l ) + AATAS

A
- §(|A0|2|A1 >+ 1ALPA21® + [ A2 Pl Ao ).

We focus on planar fronts perpendicular tony = (1,0)k, and
thus suppose that the dynamics is independent of the variable
y along the front. Symmetry with respect to y — —y implies
that A} = A, = B, say. Absorbing the wave number k. in the
variable x, and writing Ag = A we obtain the equations

0A  3%A

— =—> +yA+ B*— A® - 2)AB?,

A4
ot 0x2 (A4)

9B _19°B

at 4 9x?

In writing these equations we have assumed that A and B are

real to focus on the behavior of the amplitudes, thereby setting

the phase ® = arg(A) + 2arg(B) that distinguishes so-called
up-hexagons from down-hexagons to zero [90].

These equations have solutions in the form of regular

hexagons (A,B) = (Ai,Alf), stripes (A, B) = (As,0), and the
homogeneous liquid state (A, B) = (0,0), where

1+ JT+4yT+2%)
= A =
2(1 4+ 21) C A=Y

corresponding to the critical points of the potential V(A,B) =
3V(A? +2B%) + AB* — [;A* + L A’B? + 1(1 4+ 1)B*]. The
bifurcation to hexagons at y = 0 is transcritical and for y < 0
there are two hexagon branches: an unstable branch of small-
amplitude hexagons A, and a stable branch of large-amplitude
hexagons Ah+. These annihilate at a saddle-node bifurcation at
Y = Yo = —g1a55- Note that without loss of generality we

+yB+AB —(1+1)B> —AA’B.  (A5)

Af (A6)

have taken A?f and A; to be positive since negative values can
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be compensated for by choosing ® = x, i.e., by an appropriate
spatial translation.

The large-amplitude hexagons A" and the homogeneous
state coexist stably in the subcritical regime, —m <y <
0; the liquid state becomes unstable when y > 0. A front
traveling with speed ¢ to the right, connecting A" on the left
with the liquid state A = 0 to the right, takes the form

A(x,t) = AE), Blx,t)=B), &=x—ct, (A7)
where
92A 9A L _ .
— 4 c— A+ B>— A>—2)AB>=0, (A8
282 —i—caé +yA+ (A8)
Lo°5 + 0 +yB+AB—(1+MB—1A’B =0
—— tc— - 7= =0,
40e2 T 7Y
(A9)
with the boundary conditions
A:E:A; as & — —oo,
(A10)

A=B=0 as & — oo.

The speed ¢ = ¢;, vanishes in the subcritical regime when y =
yu < 0, defined by the requirement V(A;,A;) = V(0,0) =0,
and is positive for y > yy (V(Ay,Ar) < 0) and negative for
y <ym (V(Ap,Ap) > 0). An elementary calculation gives

YM = —5aims YM thus corresponds to the Maxwell point

between the trivial state (0,0) and the hexagonal state (A}, A}").
Note that Yy, /ysn = 8/9, independently of the value of A. This
prediction of the amplitude equations compares well with
our numerical results for a GEM-4 mixture for which the
chemical potential Sug, ~ 16.5 and Buy ~ 16.8 while the
linear instability threshold corresponds to By, & 19.6. Thus
(M — Miin)/(sn — tain) = 0.90, very close to the predicted
value 8/9.

The situation is more complicated in the supercritical
regime where y > ( because this regime contains supercritical
(but unstable) stripes oriented parallel to the front. As a result,
one now finds fronts that connect the hexagonal structure to
the stripe pattern and the stripe pattern to the liquid state,
in addition to the front connecting the hexagonal structure
and the (now unstable) liquid state. The marginal stability
condition implies that stripes invade the homogeneous state
with speed ¢; = 2,/y, while an analogous calculation shows
that the hexagons invade the unstable stripes with speed ¢;; =
VY —(— 1)y1"/2. This speed exceeds ¢, in the interval
O<y<y=(+3)72 ie., at y, one has ¢, = c;. The
dependence of the speeds c;,; and ¢; on y is shown in Fig. 14(a)
forh=1land A =2.

It is evident that the speed ¢, cannot be selected when y is
too close to threshold y = 0 since ¢ must be positive for all
y > yu.Inthe spatial dynamics picture of the front one seeks a
heteroclinic connection between (A, A) = (Aj,A) and (0,0).
Near (0,0) we have the asymptotic behavior
B ~ 75 as

A ~ 48 £ — o0, (Al1)

where

1
Kjf:—%:l:z 2 —dy, Ki=-2c+2J2—y. (Al2)
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FIG. 14. (Color online) (a) The speeds cy, ¢, and ¢, defined
in the text as a function of y computed from the model system
(A8)—(A9) for A =1 and A = 2. The results for A = 1 agree with
those in Ref. [25]. The full range of values of y is shown including
the Maxwell points y,,, where ¢ = 0, and the location of the critical
values y; and y,, where ¢, = ¢, and ¢;; = c;, respectively. (b) The
location of the Maxwell point and the critical values y; and y, as
a function of the nonlinear coupling coefficient A. The dotted line
shows —2.5y; and indicates that, in the range considered, the ratio
yum/y: is nearly constant.

Evidently, for y < 0 the stable manifold of (0,0) is two
dimensional, and since one expects the heteroclinic to connect
to (0,0) along the slow direction one anticipates that the
solution will approach (0,0) in the “A” direction, with A~
€s% as & — oco. However, assoonas y > 0 the stable manifold
of (0,0) becomes four dimensional, and the slowest direction is
suddenly A ~ ¢ Hari and Nepomnyashchy [25] solve the
problem (A4) and (AS5) numerically and find that forc < 2,/y1
the front speed departs from the prediction ¢ = ¢5 and instead
follows a speed ¢ = ¢;, for which the asymptotic behavior
of the front continues to be A ~ ¢1¢ as & — oo, thereby
providing a smooth connection to the speed computed for
y < 0. We refer to the value of y at which ¢, = ¢; as y = y;.

Hari and Nepomnyashchy [25] also show that in the region
y1 < y < ¥, both the front connecting the hexagonal state to
the stripes and the front connecting the stripes to the liquid
state travel with the same speed c,. As a result, the width of
the stripe region between the hexagons and the liquid state
remains constant; in numerical simulations this width was
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observed to be independent of the initial conditions adopted,
despite the nonuniqueness of the overall front solution, and to
increase with y. Finally, for y > y, the front speed ¢; > ¢y
and the front connecting the stripes to the liquid state outruns
the hexagons invading the stripes and the width of the stripe
interval in front of the hexagons grows without bound. In our
models this behavior was not observed.

Figure 14(a) shows the computed front speeds as a function
of the bifurcation parameter y for two values of the single
nonlinear coupling coefficient A which is unknown for our
GEM-4 model. In both cases the results behave qualitatively
like those obtained from DDFT of this model system. In
particular, we see that the speed c;, of the (pushed) hexagons
increases monotonically from zero at the Maxwell point
yu < 0and terminates on the 1D stripe speed ¢, obtained from
the marginal stability at y = y; > 0; both y, and y; decrease
in magnitude as A increases [Fig. 14(b)] and this is so for the
point y = y, corresponding to the condition ¢, = ¢y, as well.
We mention that behavior similar to Fig. 14(a) occurs even in
1D, provided only that the stripe state bifurcates subcritically
before turning around towards larger values of the forcing
parameter [91].

PHYSICAL REVIEW E 90, 042404 (2014)

However, despite its qualitative success the model sys-
tem (A8)—(A9) fails in one key respect: it is not possible to
match quantitatively the DDFT results for a shallow quench
[Fig. 4(b)] with the predictions of the model [Fig. 14(b)].
Specifically, the model predicts that |y |/y1 = 2.5 over the
entire range of nonlinear coefficients A in Fig. 14(b) while
Fig. 4(b) indicates that |yy|/y1 =~ 1.4. For smaller A the
ratio becomes yet larger. There are several issues that might
contribute to this quantitative mismatch. First, the amplitude
equations omit the phenomena of locking of the stripes-to-
liquid front to the stripes behind the front and of locking of
the hexagons-to-stripes front to the heterogeneity ahead and
behind the front. This is a consequence of modeling periodic
structures using constant amplitude states, i.e., by spatially
homogeneous states, resulting in the absence of the so-called
nonadiabatic effects. Second, the amplitude equations are
derived for nonconserved systems, while the DDFT system
exhibits conserved dynamics. In the latter case we expect the
equations for the amplitudes A and B to be coupled to a large
scale mode, much as discussed in the work of Refs. [92,93].
These aspects of the problem will be discussed in a future
publication.
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