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Electric-field-induced instabilities in thin bilayers composed of either purely viscous or purely elastic films
resting on a solid substrate are studied. In contrast to the electric-field-induced instability in a single elastic film, the
length scale of the instability for elastic bilayers can be tuned by changing the ratios of the shear moduli,
thicknesses, and dielectric permittivities of the films. Linear stability analysis is employed to uncover the variations
in the wavelength. The instabilities of the viscous bilayers follow different modes of interfacial evolution: either in-
phase bending or antiphase squeezing. Linear and nonlinear analyses show that the mode type can be switched by
changing the dielectric permittivities of the films. Nonlinear simulations find a number of intriguing interfacial
morphologies: (a) an embedded upper layer in an array of lower layer columns, (b) upper layer columns
encapsulated by lower layer beakers, (c) lower layer columns covered by the upper layer liquid resulting in
concentric core-shell columns, (d) droplets of upper liquid on a largely undisturbed lower layer, and (f) evolution
of two different wavelengths at the two interfaces of the bilayer. The simulated morphology types (a), (b) and (d)
have been seen previously in experiments.39,41,45 The effect of the film viscosities on the evolution of the instability
and final morphologies is also discussed.

I. Introduction

Self-organized surface patterns of thin (<100 nm) polymer
films have recently been studied extensively because of their
technological and scientific importance.1-24 The instabilities

engendered by intermolecular interactions or by externally
applied fields are often employed to generate patterns. Recent
studies on the patterning25-28 of polymer films have also been
motivated by technological applications in soft lithography,
microfabricated integrated circuits, DNA arrays,26 biological
optics for advanced photonic systems,27 microfluidics,28 and
so forth. Understanding the stability, dynamics, and mor-
phology of polymer films is also important because such
systems appear in various products and processes ranging
from coatings, adhesives, flotation, and biological mem-
branes to a host of areas in nanotechnology. Thin polymer
films are also model mesoscale systems for the study of several
fundamental scientific issues such as deformations in biolo-
gical membranes,29,30 intermolecular forces, self-organiza-
tion of interfaces, confinement and finite-size effects,
mesoscale dewetting, multilayer adsorption, and phase tran-
sitions. This motivates the continuous research effort aimed
at understanding the instabilities and the dynamics of thin
polymer films.
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Previous studies31-61 reveal that the application of an external
electric field is a simple and versatile method to generate self-
organized mesoscale polymer patterns on solid substrates. Ex-
perimental works35-49 show that the application of an electric
field across initially flat interfaces of ultrathin polymer films may
lead to the formation of regular, hierarchical39 and phase in-
verted45 columnar structures. It is well understood31-34 that,
above a critical field strength, the electric-field-induced instabil-
ities at macroscopic fluid interfaces lead to the growth of inter-
mediate wave numbers because gravity and capillary forces
stabilize long and short wavelength disturbances, respectively.
The studies involving the electric-field-induced deformation of
elastic films under air demonstrate that the surface of thin elastic
films can also deform into complex interfacial patterns when an
applied electric field overcomes the restoring elastic and capillary
forces.49,61 Thus far, the characteristics of the electric-field-in-
duced instabilities have been studied for (i) a thin dielectric film in
air,35,36,38,43,44,46-48,51,57-59 (ii) a bilayer of a dielectric and a
conducting fluid,52 (iii) a bilayer of viscous dielectric liquids,37,40

(iv) a single layer of leaky dielectric liquidwith an air gap above,50

(v) a bilayer of leaky dielectric liquids,53-56 (v) a bilayer of viscous
liquids under air,39,41,45,60 and (vi) a single elastic film under air.61

Figure 1 shows a schematic diagramof abilayer. The interfacial
dynamics of bilayers involves the coupled deformations of the two
interfaces. The presence of twin fluid interfaces allows for two
basic modes of surface instabilities:62 either in-phase bending or antiphase squeezing. A number of experimental63-73 and theore-

tical74-90 works show many interesting features of viscous and
viscoelastic bilayer dynamics under the influence of van derWaals
forces. Recent studies71,90 of the patterning of elastic bilayers
under the influence of van der Waals forces show that the length
scale of the patterns do not only vary with the film thickness but
also depend on the physical properties of the films. However, the
use of an external electric field allows for a better control of the
destabilizing forces because the field strength can be easily
modulated. Only few experimental39,41,45 and theoretical60 works
focus on the bilayer instabilities under the influence of an external
electric field.

Figure 1. Aschematic diagramofabilayer under the influence of a
static electric field applied through the electrodes, (i) the solid
substrate on which the bilayer rests, and (ii) the contactor that is
placed at the top. The mean and the local thicknesses of the lower
[composite] layer are h10 and h1 (x,y,t) [h20 and h2 (x,y,t)], respec-
tively. The material parameters γ1, γ2, and γs are the surface
energies of the lower layer, the upper layer and the solid substrate,
ε1, ε2, and εg are the relative dielectric constants of the lower layer,
upper layer andair,μ2 andμ1 denote the viscosities of theupper and
lower layer, G2 and G1 denote the shear modulus of the upper and
lower layer, and d is the distance between the electrodes. The solid
and the dotted line at the upper interface indicate the squeezing and
bending modes of evolution with respect to the solid line at the
lower interface. The dashed horizontal lines indicate the base state.
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In the present work, we study the stability, dynamics, and
morphology of either purely elastic or purely viscous bilayers
subjected to an external electric field. Linear stability analysis
(LSA) shows that in both cases, the physical properties (shear
modulus, viscosity, and dielectric permittivity) and thicknesses of
the films can profoundly influence the length and time scales of
the evolving structures. In a previous study,60 we focused on the
short-time linear and two-dimensional (2-D) nonlinear analyses
for a viscous bilayer. The truemorphology and pattern formation
cannot be captured by 2-D simulations. For example, the effects
of out-of-plane curvature and flow are not retained in two
dimensions. In this study, we consider the electric-field-induced
instabilities of both viscous and elastic bilayers, including the
study of the long-time evolution in three dimensions (3-D).
Further, we extend the analysis of a previous study on purely
viscous bilayers,60 where a simplified, but incomplete electrical
potential was considered at the liquid-liquid interface. Finally,
we compare the simulated interfacial morphologies with those
observed in recent experiments.39,41,45

II. Problem Formulation

In this section, we formulate the governing equations for an
elastic bilayer under the influence of a destabilizing electric field and
develop a linear theory to study the length and time scales of
interfacial instabilities in such systems. Following this, long-wave
linear andnonlinear analyses of a thin viscousbilayer are presented.

In what follows, x and y are the span-wise and transverse
coordinates parallel to the substrate, respectively, and z is the
coordinate normal to the substrate (as shown in Figure 1). The
symbol t represents time, the subscript i denotes the respective
layer (i=1 lower layer and i=2 upper layer, i= s denotes solid
substrate and i = g denotes bounding nonviscous gas). The
superscripts denote components of vectors. Thus, for the layer i,
ui
x and ui

z are the x- and z-components of displacement, vi
x, vi

y, and
vi
z are the x-, y-, and z-components of velocity, Gi is the shear
modulus, μi is the viscosity, Fi is the density, γi is the surface
tension, εi is the dielectric permittivity,πi is the excess pressure due
to the externally applied electric field, Pi= pi- πi is the effective,
nonbody force pressure inside the films, and pi denotes the
isotropic static pressure in the liquid. The subscripts t, x, y, and
z denote differentiation with respect to time and the respective
coordinate. The variable thicknesses of the bilayer and of the
lower layer are represented by h2 and h1, respectively. Thus, h3 =
h2 - h1 is the thickness of the upper layer. The symbols h20, h10,
and h30 represent the respective constant base state thicknesses.
1. Elastic Bilayer. A. Governing Equations. Inertia is

neglected from the equations of motion owing to the small
thicknesses of the elastic films. In consequence, the equations of
motion and the condition for incompressibility that describe the
deformations of the elastic layers are

-rPi þr 3 σi ¼ 0 and r 3 ui ¼ 0 ð1Þ
Hereσi [=Gi(rui+rui

T)] is the stress tensor and ui {ui
x,ui

z} is the
displacement vector of the ith layer.

B. Boundary Conditions. At z = 0, no-slip and imperme-
ability boundary conditions (u1 = 0) are applied. At z = h1,
continuity of x- and z-components of displacements (u1 = u2),
shear stress balance (t1 3σ2 3n1 = t1 3σ1 3n1), normal stress balance
(n1 3σ2 3n1 - n1 3σ1 3n1 = γ21κ1), and the kinematic condition (

:
h1 +

(
:
u1 3rs)h1 =

:
u1 3n1) are enforced. At z = h2, the normal stress

balance (n2 3σ2 3n2 = -γ2κ2), shear stress balance (t2 3σ2 3n2 = 0)
and thekinematic condition (

:
h2+(

:
u2 3rs)h2=

:
u2 3n2) are enforced.

Here ni and ti are normal and tangent vectors, andrs is the surface

gradient operator at the interfaces. The superscript dot in the
expressions represents the time derivative of the variables.

C. Excess Pressure Engendered by Electric Field. The
excess pressure at the interfaces π1 and π2 resulting from the
electric field can be obtained by considering the substrate and
the contactor in Figure 1 as two electrodes. They attract each
other because of their opposite charges when the electric field is
turned on. The electric field polarizes the dielectric polymers
resulting in an effective surface charge density and hence in an
excess pressure at the deformable polymer interfaces. The capa-
citance of the composite layer (C) can be expressed as for a series
capacitor:

1

C
¼ 1

C1
þ 1

C2
þ 1

Cg
, where C1 ¼ ε0ε1A

h1
,

C2 ¼ ε0ε2A

ðh2 -h1Þ , and Cg ¼ ε0A

ðd -h2Þ ð2Þ

HereC1,C2, andCg represent the capacitances of the lower layer,
upper layer, and boundingmedium, respectively,A represents the
area of the flat interfaces, and d is the distance between the
electrodes. For a constant voltageψ, the free energy stored in the
capacitor device is

ΔG ¼ -
1

2
Cψ2

¼ ε0ε1ε2ψ2

2

1

½ðh1 þ h3Þε1½ε2 -1�-h1½ε2 -ε1�-ε2ε1d�
� �

ð3Þ

The excess pressures at the interfaces π1 and π2 correspond
to derivatives of eq 3 with respect to the respective layer
thickness:

π1 ¼ Dð-ΔGÞ
Dh1

¼ -
ε0ε1ε2ψ2ð½ε2 -ε1� þ ε1½1-ε2�Þ

2½ε1ðh1 þ h3Þ½ε2 -1�-h1½ε2 -ε1�-ε2ε1d�2
" #

ð4Þ

π2 ¼ Dð-ΔGÞ
Dh3

¼ -
ε0ε12ε2ψ2½1-ε2�

2½ε1ðh1 þ h3Þ½ε2 -1�-h1½ε2 -ε1�-ε2ε1d�2
" #

ð5Þ

Here, ε0 is the permittivity of the vacuum.
D. Linear Theory. The LSA is carried out under the

following two assumptions: (i) the kinematics of deformation
of the films is treated using a small-deformation formula-
tion, and (ii) the disjoining pressures are expanded in Taylor
series about the base state and terms up to first order are
retained.

π1ðh10 þ δ1, h20 þ δ2Þ ¼ π1ðh10, h20Þþ
½ðDπ1=Dh1Þjh10, h20δ1 þ ðDπ1=Dh2Þjh10, h20δ2 þ ::::�

π2ðh10 þ δ1, h20 þ δ2Þ ¼ π2ðh10, h20Þþ
½ðDπ2=Dh1Þjh10, h20δ1 þ ðDπ2=Dh2Þjh10, h20δ2 þ ::::� ð6Þ
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where δ1 and δ2 are the infinitesimal perturbation at the elastic-
elastic and elastic-air interface, respectively. In order to perform
LSA, the governing differential equations are linearized using
the normal linear modes, ui = ~uie

wt+ikx, Pi = ~Pie
wt+ikx, and

hi= hi0+ δ~ie
wt+ikxwhere the symbolsω and k represent the linear

growth coefficient and the wavenumber of disturbance, res-
pectively. Eliminating ~Pi from the linearized governing equations
(eq 1) results in a biharmonic equation for each of the two layers:

d4~uzi
dz4

-2k2
d2~uzi
dz2

þ k4~uzi ¼ 0 ð7Þ

The general solution of eq 7 is

~uzi ¼ ðB1i þ B2izÞekz þ ðB3i þ B4izÞe-kz ð8Þ
where the coefficients Bji (j =1-4) are constants. Replacing the
expressions for ~ui

(z), ~ui
(x) and ~Pi in the linearized boundary

conditions lead to a set of eight homogeneous linear algebraic
equations involving eight unknown constants Bij (i = 1 and 2, j =
1-4). Equating the determinant of the coefficient matrix of the set
of linear equations to zero, the dispersion relation for the elastic
bilayer is obtained [eq ix in the Appendix]. The details of the
derivation are supplied in the Appendix. The general dispersion
relation is then solved for the applied voltageψ= f(k). The critical
condition for instability is obtained by determining the minimum
voltage (ψc) from the dispersion relation. The wavenumber (kc)
corresponding to ψc gives the length scale (λc =
2π/kc) of the instability. The derivation is done employing the
commercial package Mathematica.
2. Viscous Bilayer. A. Nonlinear Equation. The

coupled evolution equations for the liquid-liquid and liquid-
air interfaces are derived under the assumptions that (i) the layers
are thin enough that convective terms can be neglected and (ii) the
long-wave approximation is valid because all interfaces deforma-
tions have small slope. Thus, starting with the Stokes equations,
μivi

x
zz = (pi + φi)x and μivi

x
zz = (pi + φi)y, the equations of

continuity, vi
x+ vi

y+ vi
z=0, the kinematic boundary conditions

for the individual layers hit+ vi
x|at hi hix+ vi

y|athi hiy= vi
z|athi, and the

velocity and stress boundary conditions at the two interfaces, we
obtain the equations for the interfaces, hi = hi (x,y,t). The
boundary conditions employed for this derivation are as follows:
μ2v2z

x =0, μ2v2z
y =0 at z= h2 (zero shear at liquid-air interface);

v2
x= v1

x, v2
y= v1

y, v2
z = v1

z, μ2v2z
x = μ1v1z

x , μ2v2z
y = μ1v1z

y , all at z= h1
(continuity of velocity and shear stress at liquid-liquid inter-
face); and v1

x= v1
y= v1

z =0 at z=0 (no-slip and impermeability
at the solid-liquid interface). Details of the derivation of the
2-D case are given elsewhere.78 The resulting evolution equa-
tions are

Dh1
Dt

-r 3
ðh1Þ3
3μ1

rP1

 !
þ h1

2ðh2 -h1Þ
2μ1

rP2

 !2
4

3
5 ¼ 0 ð9Þ

Dh2
Dt

-r 3
ðh2 -h1Þ3

3μ2
þ ðh2 -h1Þh1

μ1
h2 -

h1

2

� �" #
rP2 þ

2
4

h1
2

2μ1
h2 -

h1

3

� �" #
rP1

#
¼ 0 ð10Þ

Equations 9 and 10 describe the stability, dynamics, and mor-
phology of the liquid-liquid (i = 1) and the liquid-air (i = 2)

interfaces. The effective pressures at the liquid-liquid and
liquid-air interfaces are derived from the normal stress balances
at the respective interfaces as

P1 ¼ p1 þ φ1 ¼ p2 -γ21r2h1 -π1 ð11Þ

P2 ¼ p2 þ φ2 ¼ p0 -γ2r2h2 -π2 ð12Þ
Here P0 is the ambient gas pressure, and π1 and π2 are the excess
pressures resulting from the electric field. They are given by eqs 4
and 5, respectively. To capture the long-time dynamics for the
viscous films and remove the contact-line singularities in the
nonlinear analysis, we introduce short-range repulsion in the
following manner:

ΔG ¼ ε0ε1ε2ψ2

2

1

½ðh1 þ h3Þε1½ε2 -1�-h1½ε2 -ε1�-ε2ε1d�
� �

þ

B1

ðd -h1 -h3Þ3
þ B2

h1
3
þ B3

h3
3

ð13Þ

Here we use a “softer” repulsive potential12 for the ease of
numerical computations. The expressions for B1 and B2

are obtained by imposing the minimum of the free energy
[π1 = ∂(-ΔG)/∂h1 = 0] at h1 = l0 and (d - h2) = l0.
The expressions for B1 and B3 are obtained by imposing the
minimum of free energy [π2 = ∂(-ΔG)/∂h3 = 0] at h3 = l0 and
(d - h2) = l0.

B. Linear Stability Analysis. Perturbing the interfaces by the
linear normal modes, hi = hi0 + δie

wt cos kx, the dispersion
relation is obtained by linearizing eqs 9 and 10:78

ω ¼
-ðB þ CÞ(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB-CÞ2 þ 4AD

q
2

ð14Þ

Here,

A ¼ ½ðh310=3μ1Þðγ2k4 -k2π1h2Þ� þ
½ð1=2μ1Þðh20 -h10Þh210ðγ2k4 -k2π2h2Þ�

B ¼ ½ðh310=3μ1Þðγ21k4 -k2π1h1Þ�-½ð1=2μ1Þðh20 -h10Þh210ðk2π2h1Þ�

C ¼ ½ð1=2μ1Þh210ðh20 -h10=3Þðγ2k4 -k2π1h2Þ� þ

½ð1=3μ2Þðh20 -h10Þ3 þ
ð1=μ1Þh10ðh20 -h10Þðh20 -h10=2Þ�ðγ2k4 -k2π2h2Þ

D ¼ ½ð1=2μ1Þh210ðh20 -h10=3Þðγ21k4 -k2π1h1Þ�-½ð1=3μ2Þ
ðh20 -h10Þ3 þ ð1=μ1Þh10ðh20 -h10Þðh20 -h10=2Þ�ðk2π2h1Þ

Here, δ1 andδ2 represent the infinitesimal amplitudes of the initial
interface perturbations. The πjhi=(∂πj/∂hi) are evaluated atmean
thicknesses h10 and h20, where j and i are indices representing films
1 or 2. The dominantwavelength (λm=2π/km) corresponds to the
fastest growth rate of disturbance (ωm) and is obtained from the
condition ∂ω/∂k = 0. The deformation mode induced by the
electric field and the resulting relative amplitudes at the two
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interface deformations correspond to the sign and the magnitude
of the ratio of the linear amplitudes δr = δ2/δ1, respectively. A
detailed derivation of the expression for δr = -(ωm + B)/A =
-D/(ωm + C) is given elsewhere.78,81 In particular, δr < 0 and
δr > 0 correspond to the squeezing and bending mode of
deformation, respectively. Thereby, the upper interface deforms
more (less) than the lower one when |δr| > 1 (|δr| < 1).

C. Solution of the Nonlinear Equations: Numerical
Methods. The evolution eqs 9 and 10 are nondimensionalized
for a compact representation of numerical results by introducing
X= K1/2(x/h10); Y= K1/2(y/h10); T= (γ21K

2/3μ1h10)t;H1 = h1/
h10; H2 = h2/h10; D = d/h10; M = γ2/γ21; R = μ1/μ2;
P1 = P1h10/K1γ21; P2 = P2h10/K1γ21; and K = (ε0ψb

2/2γ21h10).

H1T -r 3 ½H1
3rP1�- 3

2
r 3 ½H1

2ðH2 -H1ÞrP2� ¼ 0 ð15Þ

H2T -r 3
3

2
H1

2 H2 -
H1

3

� �
rP1

" #
-

r 3 RðH2 -H1Þ3 þ 3ðH2 -H1ÞH1 H2 -
H1

2

� �" #
rP2

2
4

3
5 ¼ 0

ð16Þ
Equations 15 and 16 are discretized using a central difference
scheme with half node interpolation. The resulting set of coupled
stiff ordinary differential equations in time is solved using Gear’s
algorithm with a volume preserving initial random perturbation
and periodic boundary conditions in space. The grid indepen-
dence of the solutions is ensured by varying the number of grid
points.

It may be noted that all the simulations shown below use the
nondimensional coordinates, X and Y, which are highly com-
pressed compared to the nondimensional film thickness (∼1).
Thus, the slopes, (∂H/∂X), are highly exaggerated in these figures,
even though the dimensional slopes are small in conformity with
the long-wave theory.

III. Results and Discussion

The application of a static electric field across the interface of
two dielectric materials generates an additional stress because of
the charge separation. The generated electrical stresses invoke a
deformation of the interface as a measure of stress-relaxation.
Deep in the nonlinear regime of evolution, the interface deforms
more toward thematerial of lower dielectric constant. Thus, when
a bilayer of dielectric liquids (Figure 1) is subjected to an electric
field, the interface between the upper layer and air always deforms
more toward the upper electrodebecause the dielectric constant of
the upper film is large as compared to the one of air (ε2 > εg). In
contrast, the interface between the upper and lower layer can
deform more either toward the upper electrode (ε1 > ε2) or
toward the substrate (ε1< ε2). The relative strength of the electric
field and the hydrodynamic forces play an important role in the
growth of the instability. For example, an increase of the strength
of the elastic, viscous, or capillary force leads to a slower kinetics
of destabilization, whereas an increase in the voltage (ψ) or a
reduction of the separation distance between the electrodes (d )
leads to a stronger destabilizing electric field and hence to a faster
growth of the instability. In the following, we illustrate the key
features of the instability for (i) elastic and (ii) viscous bilayers.
The time and length scales of the instability are determined

employing linear theory, whereas the morphological evolution
of viscous bilayers is studied through a series of 2-D and 3-D
nonlinear simulations.
1. Elastic Bilayers. A. Linear Stability Analysis. In

this section, we employ LSA to explore the salient features of
the electric-field-induced instabilities in thin elastic bilayers. The
critical conditions to initiate the instabilities are identified and the
variation of their wavelength with the ratio of the shear moduli
and the dielectric permittivities is demonstrated.

Figure 2 shows the LSA results obtained for the elastic bilayer
(as sketched in Figure 1) under the influence of an electric field.
Curves 1-3 inFigure 2a represent borders of stability in the (k,ψ)
plane obtained from dispersion relation. The bifurcation point
(denoted by ψc and kc in Figure 2a) corresponds to the critical
voltage (ψc) required to initiate instability. Under this condition,
the destabilizing forces exactly balance the stabilizing forces. An
infinitesimal increase in the strength of the electric field from this
value leads to the roughening of the interfaceswith a lateral length
scale of λc (= 2π/kc). The critical voltage required to instigate the
instability changes with the ratio of the thicknesses, shear moduli,
and dielectric permittivities of the two layers. Figure 2b shows the
variation of ψc with Hr (= h30/h10). Curve 1 represents the case
ε1> ε2, and curve 2 represents the case ε1< ε2. The curves reveal
that the critical voltage decreaseswith the increase of the thickness
of the film that consists of the material of higher permittivity (the
other thickness is fixed). This is due to an accompanying increase

Figure 2. LSA results for elastic bilayers under the influence of an
electrical field. Plot a shows the variation of k withψ. Curves 1-3
representG2= 105, 106, and 107 Pa at constantG1= 105 Pa. Plots
b-d show the variations of ψc withHr (= h30/h10), Gr (= G2/G1),
andEr (= ε2/ε1), respectively, and plots e-f show the variations of
λc/h20 with Gr and Er, respectively. In plot b, curves 1 and 2
correspond to ε1(= 5.5) > ε2(= 2.0) and ε1(= 2.0) < ε2(= 5.5),
respectively, at constantG1=G2= 105 Pa and an air gap between
the upper layer and the top electrode (d- h20) of 100 nm. In plots c
and e, curves 1 and 2 correspond to G1= 106 and G2= 106 Pa,
respectively, when ε1 = ε2 = 5.5. In plots d and f, curves 1 and 2
correspond to ε1(= 5.5) and ε2(= 5.5) when G1 and G2 are kept
constant at 105 Pa. The remaining parameters in a, b, and d are
h10= 1 μm, h20= 2 μm, and d=2.1 μm. For all plots, ε0= 8.85�
10 -12 C2/N m2, γ2 = 0.03 N/m, and γ12 = 0.000015 N/m.
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in the total capacitance of the system, which eventually increases
the strength of the destabilizing electric field. Figure 2c shows the
variation ofψc with Gr (= G2/G1). It indicates that an increase in
the shear modulus of the upper (curve 1, increasing Gr) or the
lower layer (curve 2, decreasing Gr) stabilizes the bilayers, i.e., it
increases the critical voltage. Curves 1 and 2 in Figure 2d show
that ψc decreases when the capacitance of the bilayer is increased
by increasing the dielectric permittivity of any of the films.
Figure 2e and 2f depict the variations of normalized wavelength
(λc/h20) with Gr(=G2/G1) and Er (= ε2/ε1), respectively. It shows
that, compared to the simple law λc ∼ 3h for single elastic films,
elastic bilayers show a considerable change in the wavelength
when the ratio of the shearmoduli and dielectric permittivities are
changed.For example, Figure 2e shows that atHr=1 andEr=1,
a soft upper film (106 Pa) on a relatively hard lower film (2 � 107

Pa) results in a smaller wavelength (λc ∼ 1.5h20) than a very hard
(107 Pa) upper film resting on a softer lower film (106 Pa) that
leads to λc ∼ 3.5h20. Note that, for identical shear moduli, the
wavelength is λc ∼ 3h20 (Figure 2e), which corresponds to the
correct single film limit (for Er = 1). Figure 2f shows that
changing Er can also alter the length scale of the instabilities.
For example, atHr = 1 and Gr = 1, one finds λc ∼ 2.5h20 at low
Er. However, at high Er, it can increase to λc ∼ 3.5h20 (curve 1).
Thus, to reduce the critical voltage required to initiate the
instability or to reduce the corresponding wavelength of patterns,
one may increase the thickness of the material with the larger
dielectric constant, or compose the bilayer ofmaterials with larger
dielectric permittivities and/or lower shear moduli.
2. Viscous Bilayers. In this section, we explore the key

features of the electric-field-induced instabilities in thin viscous
bilayers. Unlike elastic bilayers, the viscous bilayers readily
deform under the influence of a destabilizing electric field. In this
section, first, we discuss the LSA results, which show the varia-
tions in the length and time scales of the instabilities with the
thicknesses and the dielectric permittivities of the films. There-
after, we study the nonlinear evolution of the unstable interfaces.
The results obtained from the simulations are compared to the
available experimental results.

A. Linear Stability Analysis. Figure 3 summarizes the LSA
results when the film thicknesses are varied. Figure 3a,b shows the
dependence of the linear growth coefficient (ω) on wavenumber
(k). Figure 3c,e shows the variations of the maximal growth
coefficient (ωm) with the thickness ratioHr(=h30/h10). Figure 3d,f
shows the variations of the wavelength (λm) with Hr. In all
Figure 3c-f, the solid and the dashed lines correspond to ε1 >
ε2 and ε1 < ε2, respectively.

In Figure 3a-d, the composite film thickness (h20) is kept
constant, and the ratio h30/h10 is varied. For ε1 > ε2, Figure 3c,d
shows (solid lines) that ωm increases and λm decreases for a
decreasing thickness ratio of upper and lower layer.An increase in
h10 (decreasing Hr) enhances the capacitance and hence the
electrical stresses at the interfaces, thereby reducing the time
and length scales of the instability. The dashed line in
Figure 3c,d shows that, when the upper layer has higher dielectric
constant (ε1 < ε2), an increase in h10 (decreasing Hr) reduces the
capacitance of the bilayer, which results in the progressive
reduction of ωm and λm. Figure 3e,f looks at another scenario,
in particular, when the gap between the electrodes (d) and one of
the film thicknesses is varied (h30 or h10), whereas the other one is
kept constant. Curve 1 in Figure 3e,f indicates that, keeping h10
constant for ε1 > ε2, an increase in h30 (increasingHr) leads to a
reduction of the air gap between the upper layer and the top
electrode. This causes an increase inωm and reduces λm. For ε1>
ε2, curve 2 shows a progressive increase in ωm and decrease of λm

with increasingh10 (decreasingHr) at constant h30. In comparison,
curve 1a shows that bilayers with ε1 < ε2 can be more unstable
(larger ωm) because an increase in h30 leads to a larger total
capacitance of the bilayer. Similarly, curve 2a shows that bilayers
with ε1 < ε2 are more stable (smaller ωm) when h10 is relatively
large (small Hr).

Figure 4 summarizes the LSA results when the dielectric
constants are varied for constant film thicknesses. Figure 4a,b
shows selectedω versus k plots at constant ε1> ε2 and constant ε2
> ε1, respectively. Figure 4c,d shows the variation of ωm,
Figure 4e,f shows the variation of λm, and Figure 4g,h show the
variation of the relative deformations of the interfaces δr with
Er = ε2/ε1. The ω versus k plots in Figure 4a,b are bimodal in
nature, i.e., they have twomaxima. The higher one represents the
dominant mode. Figure 4a,b shows that, in both cases, ε1 > ε2
(Figure 4a) and ε2> ε1 (Figure 4b), the large (small) wavenumber
mode dominates for larger (smaller) permittivity contrast. The
shift of the dominant mode of instability from larger to smaller
wavenumber mode with Er results in the discontinuities visible in
Figure 4c-f. Figure 4g indicates that, when ε2< ε1, the interfaces
always deform in bendingmode (δr > 0), and the deformation at
the liquid-liquid interface is much larger (δr , 1) when ε2 , ε1
(low Er). The wavelength of instability in this case is smaller (low
Er in Figure 4e) because of the smaller interfacial tension at
the liquid-liquid interface. However, when ε2 is progressively
increased at constant ε1, the stronger deflection shifts to the

Figure 3. LSA results for the viscous bilayers under the influence
of an electrical field. Plots a andb show the variationofωwithk for
ε1(= 2.0) < ε2 (= 3.0) and ε1 (= 3.0) > ε2(= 2.0), respectively,
at constant h20 = 250 nm. Curves 1-3 in plot a correspond to
h10=25nm, 150 nm, and 200 nm, and in plot b they correspond to
h10= 25 nm, 125 nm, and 200 nm, respectively. Plots c and d show
the variations of ωm and λm, respectively, with Hr (= h30/h10) at
constant h20. Curves 1, 1a and 2, 2a correspond to h20 = 500 nm,
and 400 nm, respectively. Plots e and f show the variations of ωm

and λm, respectively, with Hr. In plots e and f, curves 1 and 1a
correspond to constant h10 = 100 nm, and curves 2 and 2a
correspond to h30 = 100 nm. In plots c, d, e, and f, the solid lines
correspond to ε1(= 3.0) > ε2(= 2.0), and the dashed lines
correspond to ε1(= 2.0) < ε2(= 3.0). The other necessary para-
meters used for all these plots are shown in SET I of Table 1.
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liquid-air interface (δr > 1), and the instability grows with a
larger wavelength because of the larger interfacial tension at the
liquid-air interface (high Er in Figure 4e). In comparison,
Figure 4h indicates that, when ε2>ε1, the interfaces deform in
the squeezing mode (δr < 0 as shown in the inset). The deforma-
tion at the liquid-liquid interface is much larger (δr , 1) when
ε2. ε1 (highEr). Again, the dominantwavelength of instability in
this case is smaller (high Er in Figure 4f) because of the smaller
interfacial tension at the liquid-liquid interface. At a larger value
of ε1, the stronger deflection shifts to the liquid-air interface
(δr> 1), and instability grows with a larger wavelength (lowEr in
Figure 4f).

B. Morphological Evolution of Interfaces. The nonlinear
time evolution described by eqs 15 and 16 is simulated to verify
and extend the results obtained from the linear analysis. In
particular, we focus on the growth of the two qualitatively
different linear modes (squeezing and bending) of instability at
the early stages of evolution and the subsequent long-time
morphologies. All the simulations presented here show different
important features of the electric-field-induced structural evolu-
tionprior to the actual rupture of the films. It should also be noted
that the long-wave bilayer equations cease to be valid when the

top film ruptures and the fluid-fluid and fluid-gas interfaces
coalesce. The subsequent experimentally possible “leakage” of the
bottom fluid to cover the top surface implies the formation of a
new interface, and a multivalued function for the thickness of the
bottom layer arises. This situation goes well beyond the capacities
of the long-wave model of two layers of immiscible fluids
employed here and elsewhere.74-88 In particular, a true encapsu-
lation of the top fluid by the bottom fluid cannot be studied.
However, the stages of the evolution close to rupture captured
here already point to imminent layer inversion and encapsulation.
The typical parameter values used for the nonlinear analyses
correspond to those of previous experimental work39,45 and are
listed in Table 1.

Figures 5 and 6 show 2-D and 3-D nonlinear simulations,
respectively, of a SET I bilayer with ε2 > ε1. Here, Λ is the
dimensionless dominant wavelength corresponding to the max-
imumgrowth rate of the instability obtained from the linear LSA.
The instability starts as a bending mode of the interfaces
(Figure 5a and images 6I). Thereafter, the upper layer forms
periodic columnar structures because in the nonlinear regime of
evolution a higher dielectric constant of the upper layer (ε2 > εg)
leads to a larger upward than downward deformation of the
liquid-air interface (Figure 5b and image 6II). It is also interest-

Figure 4. LSA results for the viscous bilayers under the influence
of an electrical field. Plots a and b show the variation of ω with k.
Curves 1-3 in plot a correspond to ε2 = 1.6, 2.1, and 2.6,
respectively, at constant ε1 = 5.5. In plot b, they correspond to
ε1=1.6, 2.1, and 2.6, respectively, at constant ε2=5.5. Plots c and
d show the variation ofωmwithEr (= ε2/ε1), plots e and f show the
variation of λm with Er, and plots g and h show the variation of δr
with Er. In all the plots, the solid lines correspond to ε1 = 5.5, and
the dashed lines correspond to ε2 = 5.5. The other parameters are
shown in SET II of Table 1.

Table 1. Typical Values of Bilayer Parameters

variables SET I SET II

ε0 (C
2/N m2) 8.85 � 10-12 8.85 � 10-12

ψ (V) 50 140
γ21 (N/m) 0.0007 0.000015
γ2 (N/m) 0.03 0.03
μ2 (Pa s) 1 2.3 � 105

μ1 (Pa s) 1 24
d (nm) 1000 3000
h10 (nm) 150 500
h30 (nm) 100 500

Figure 5. 2-D spatiotemporal evolution of instability of a SET I
bilayer for an L = 3 Λ domain when ε1 = 2.0 and ε2 = 3.0. The
initial amplitudes are δ1= δ2= 0.05. Snapshots are given at times
(a)T=7.9� 106, (b)T=1.8� 107, (c)T=2.1� 107, and (d)T=
7.7 � 108.
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ing to note that the linear bending mode no longer prevails in the
nonlinear regime. The larger dielectric permittivity of the upper
layer (ε2 > ε1) causes a zone of downward depression of the
liquid-liquid interface under each column formed by the upper
layer (Figure 5b and image 6II). Subsequently, the columns of
upper liquid almost reach down to the substrate, while the lower
layer liquid starts to encapsulate them (Figure 5c). At the late
stages of the evolution, the upper layer touches the top electrode
and starts to spread on it, while the lower layer liquid forms
beaker-like structures under the upper layer columns (image 6III).
The sides of the beakers grow further toward the top electrode to
encapsulate the columns (Figure 5d and image 6III).Note that the
simulation shown in Figure 5 has parameters similar to the
experimental ones of ref 39. The final morphologies shown in
the Figure 5d and image 6III are very similar to the experimental
results shown in Figures 1 and 2 of ref 39.

Figure 7 (Figure 8) shows a 2-D (3-D) nonlinear simulation of a
bilayer similar to the one in Figure 5 (Figure 6), however, with the
permittivity ratio reversed (ε2 < ε1). The choice of the dielectric
constants (ε1 > ε2 > εg) now ensures that both interfaces deform
more toward the top electrode in the nonlinear regime. The
instability starts as a bendingmode of the interfaces with a larger
deformation at the liquid-air interface (Figure 7a and image 8I).
As the evolution progresses, the liquid-air interface develops into
columnar structures (Figure 7b and image 8II). At the late
evolution stages, the lower layer also grows stronger toward the
top electrode and, consequently, forms columnar structures
(Figure 7c and image 8III). The final morphology shows an array
of concentric columnar structures with a lower layer core and an
outer-shell composed of the upper layer liquid. The final
morphologies shown in Figures 5-8 reveal that interchanging
the dielectric permittivities of the films can change the composi-
tion of the columnar structures from an upper layer encapsulated
by a lower layer to lower layer encapsulated by an upper layer. As
also seen in the case of a single layer destabilized by an electric
field,35,36,46-48,57 the structures show a hexagonal order, which

may be less (Figure 8) ormore (Figure 6) prominent depending on
the conditions. The structure generated by a fast penetration of
the upper layer in the lower fluid displays a higher degree of order
inFigure 6, whereas a slower evolution of the core-shell structure
in Figure 8 has more opportunity for ripening, leading to less
order.

Figure 9 shows a collage of 2-D and 3-D nonlinear simulations
of another interesting SET I bilayer. In contrast to the simulations
discussed above, the choice of dielectric constants of thematerials

Figure 6. 3-D spatiotemporal evolution of instability of a SET I
bilayer for an L = 4 Λ domain when ε1 = 2.0 and ε2 = 3.0. The
remaining parameters are δ1 = δ2 = 0.05 and d = 500 nm. The
first, second, and third row present the liquid-air interface,
liquid-liquid interface, and the composite images, respectively.
The images correspond to times (I)T=3.34� 104, (II)T=5.34�
104, and (III)T=5.75� 104.Lighter shadesofyellowrepresent the
lower thickness regions.

Figure 7. 2-D spatiotemporal evolution of instability of a SET I
bilayer for an L = 3 Λ domain when ε1 = 3.0 and ε2 = 2.0. The
initial amplitudes are δ1= δ2= 0.05. Snapshots are given at times
(a)T=1.37� 107, (b)T=1.95� 107, (c)T=2.08� 107, and (d)T
= 3.8 � 107.

Figure 8. 3-D spatiotemporal evolution of instability of a SET I
bilayer for an L = 4 Λ domain when ε1 = 3.0 and ε2 = 2.0. The
remaining parameters are δ1 = δ2 = 0.05 and d = 500 nm. The
first, second, and third row give the liquid-air interface, liquid-
liquid interface, and the composite images, respectively. The
images correspond to times (I) T = 1.37 � 107, (II) T = 1.95 �
107, and (III)T=3.8� 107. Lighter shades of yellow represent the
lower thickness regions.
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for this simulation ensures thatω versus k plots are bimodal in the
LSA. In consequence, one observes that the two interfaces evolve
with different wavelengths. The plots show that the liquid-liquid
interface rapidly evolves the mode with the shorter wavelength.
The smaller time and length scales result from the weaker
stabilizing effect of its lower interfacial tension (Figure 9a and
image 9I). In contrast, the larger interfacial tension at the liquid-
air interface results in the evolution of a larger wavelength. As
evolution progresses, the out-of-phase interfacial structures grow
further (Figure 9b and image 9II). The faster growth of the lower
layer structures late in the nonlinear regime of evolution can also
be attributed to its weaker interfacial tension. The final morphol-
ogy corresponds to an array of columnar structures of the lower
layer embedded inside the modulated upper layer (Figure 9c and
image 9III).

It is interesting that the interfacial morphologies can also be
altered profoundly by changing the film viscosities, which are
kinetic, rather than thermodynamic, parameters. One recent
experimental study45 has shown that a bilayer consisting of a
high viscosity upper layer on a low viscosity lower layer can
undergo a phase inversion of layers when subjected to an electric
field. The parameters of the experimental study are listed as SET
II in Table 1. Figure 10 shows 2-D and 3-D nonlinear simulations
of a SET II bilayer. Figure 10a,b shows the case of a lower layer
that has a very low dielectric permittivity as compared to the
upper layer (ε2> ε1). Figure 10a shows that the interfaces rapidly
develop an asymmetric squeezingmode. Thereby the deformation

is almost exclusively located at the liquid-liquid interface because
of its smaller interfacial tension. This feature is in agreement with
the LSA results of Figure 4. Then the deformation of the liquid-
liquid interface increases further (Figure 10b) until it becomes
clear that the evolution corresponds to the early stages of layer
inversion. However, here the model breaks down when the lower
liquidbreaks through the liquid-air interface.Figure 10c,d shows
that, when the lower layer has a very high dielectric permittivity as
compared to the upper layer (ε2 < ε1), the instability starts as a
bending mode. However, again the strong stresses because of the
difference in the dielectric permittivities of the films and a smaller
restoring surface tension lead to a larger deformation at the
liquid-liquid interface (as predicted by LSA). The final morphol-
ogy shows an array of columnar structures of the lower layer
embedded in the upper layer. The 3-D evolution shown in images
10I-III demonstrate the early stages of layer inversion obtained
by the experiments in ref 45, before the lower liquid interface
breaks through the liquid-air interface.

Unlike the previous case shown above, reduction in the upper
layer viscosity can also profoundly influence the final morphol-
ogy. For example, Figure 11 shows a collage of 2-D and 3-D
nonlinear simulations of a bilayer similar to that discussed in
Figures 5 and 6, however, with a reduced upper layer viscosity.
Reduction in the viscous resistance of the upper layer causes a
faster destabilization of the upper film, which produces an array
of columnar structures before the lower layer starts evolving
(Figure 11a,b and image 11III). The morphological evolution
shown in Figure 11 is similar to that found in the experiments of
ref 41. Thus, the viscosity ratio in a bilayer has a profound
influence not only on the dynamics, but also on the pathway of
evolution and the resulting morphologies. This is in complete
contrast to the evolution of a single thin film where the viscosity

Figure 9. 2-D spatiotemporal evolution of instability of a SET I
bilayer for an L = 3 Λ when ε1 = 5.0 and ε2 = 1.5. The initial
amplitudes are δ1 = δ2 = 0.05. Snapshots are given at times (a)
T=1.35� 107, (b)T=1.64� 107, and (c)T=1.90� 107. Images
I-III show 3-D spatiotemporal evolution of the same bilayer but
with d= 500 nm. The images correspond to times (I) T= 3.39�
103, (II) T= 2.66� 104, and (III) T=4.58� 104. Lighter shades
represent the lower thickness regions in the 3-D simulations.

Figure 10. 2-D spatiotemporal evolution of instability of a SET II
bilayer for anL=3Λ domain. Images a and b show the evolution
when ε1=2.0 and ε2=5.5,whereas c andd correspond to ε1=5.5
and ε2= 2.0. The initial amplitudes areδ1= δ2= 0.05. Snapshots
are given at times (a)T=4.4� 108, (b)T=2.7� 1010, (c)T=6.2
� 107and (d)T=6� 1010 . Images I-III show3-Dspatiotemporal
evolution of instability of a SET II bilayer system for an L= 3 Λ
domain when ε1 = 5.5 and ε2 = 2.0. The images correspond to
times (I)T=5.9� 104, (II)T=1.3� 108, and (III)T=1.6� 108.
Lighter shades represent the lower thickness regions in the 3-D
simulations.
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merely modifies the time scale of pattern evolution, but not the
emerging morphology.

IV. Conclusions

We have presented a detailed linear analysis of interfacial
instabilities of elastic and viscous bilayers due to an applied
electric field. This has been followed by a long wave nonlinear
analysis of the unstable evolution of viscous bilayers. The main
features of the instabilities that have been obtained are as follows:

(i) The elastic bilayers provide a larger flexibility toward
attaining patterns of diversewavelength as compared
to single-film systems because, apart from film thick-
ness, the shear moduli and the dielectric permittiv-
ities of the films also play a crucial role in altering the
length scale of the instability. In addition, our study
has demonstrated that the destabilizing forces in the
bilayers can be strengthened either by increasing the
thickness of the material that has the larger dielectric
constant or by composing the bilayer of materials
that have larger dielectric permittivities and/or lower
shear moduli. This can effectively reduce the critical
voltage required to initiate the instability and the
corresponding wavelength of patterns.

(ii) For viscous bilayers, the linear analysis has shown
that a shorter unstable wavelength can be achieved
by increasing the strength of the destabilizing forces.
This can be done by increasing the thickness of the
layer of the liquid with larger permittivity and by
composing the bilayer employing liquids of larger
dielectric permittivity.

(iii) The linear analysis together with nonlinear simula-
tions have shown that the interfaces can evolve in
squeezing mode when the ratio of the dielectric con-
stants of the upper and the lower liquid layer (Er =
ε2/ε1) is high and the interfacial tension at the liquid-
liquid interface is low. A larger difference in the
dielectric permittivities (ε2 . ε1 or ε2 , ε1) of the
films can also lead to out-of-phase deformationswith

two different wavelengths at the two interfaces.
Otherwise, the bilayers evolve in the bending mode.

(iv) Nonlinear simulations have been used to investigate
the details of the morphological evolution found in
several experimental studies.39,41,45 A number of inter-
esting interfacial morphologies have been obtained
under different conditions: (a) upper layer columns
embedded in lower layer beakers (Figures 5 and 6), 39

(b) lower layer columns sheathed by the upper layer
liquid resulting in concentric core-shell columns (Fig-
ures 7 and 8), (c) droplets of the upper liquid on a
largely undisturbed lower layer (Figure 11),41 and (d)
structures of two different structure lengths at the two
interfaces of a bilayers (Figure 9).

In summary, the theory presented in this work addresses many
interesting scenarios of electric-field-induced instabilities in thin
bilayers that are relevant for applications such as self-organized
patterning, and micro- and nanofluidics. Previous simulations of a
single liquid-air surface48,54,57 or a single liquid-liquid56 interface
subjected to an electric field have resulted in a considerable
understanding of experimental patterns. The results shown in this
study have provided some very useful insights into the formation of
complex structures in thin polymer bilayers as observed in experi-
ments.39,41,45 The main restriction of a long-wave bilayer theory
is that it can not, in principle, be used for a study of layer inver-
sion. The evolving free surface of a decomposing or decomposed
mixture employing diffuse interface theory93,94 can indeed model
phase inversion of layers and is left as a future scope of research
work.
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Appendix

Linear Stability Analysis. The governing equations are
linearized employing the normal linear modes ui = ~uie

wt+ikx,
Pi = ~Pie

wt+ikx, and hi = hi0 + δ~ie
wt+ikx:

-ik ~Pi þ Gi -k2~uxi þ D2~uxi
Dz2

 !
¼ 0 ðiÞ

-
D ~Pi

Dz
þ Gi -k2~uzi þ D2~uzi

Dz2

 !
¼ 0 ðiiÞ

ik~uxi þ D~uzi
Dz

¼ 0 ðiiiÞ

Eliminating ~Pi from the linearized governing equations (eqs i-iii)
results in a biharmonic equation for each of the two layers:

d4~uzi
dz4

-2k2
d2~uzi
dz2

þ k4~uzi ¼ 0 ðivÞ

Figure 11. 2-D spatiotemporal evolution of instability of a SET I
bilayer for an L = 3 Λ domain when ε1 = 2.0 and ε2 = 3.0.
The initial amplitudesareδ1=δ2=0.05. Inplots a andb,μ1=105

kg/ms,μ2=0.1 kg/ms, and d=500nm.Times are (a)T=0.7 and
(b) T =1.24. Images I-III show 3-D spatiotemporal evolution
of the same bilayer with d=500 nm for a domain size ofL=5Λ.
The images correspond to times (I) T = 0.17, (II) T = 0.67, and
(III)T=0.76. Lighter shades represent the lower thickness regions
in the 3-D simulations.
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The general solution of eq iv is

~uzi ¼ ðB1i þ B2izÞekz þ ðB3i þ B4izÞe-kz ðvÞ
Here the coefficients Bji (j = 1-4) are constants. The expressions
for the linearized boundary conditions are

at z ¼ 0, ~ux1 ¼ ~uz1 ¼ 0 ðviÞ

at z ¼ h1, ~ux1 ¼ ~ux2, ~uz1 ¼ ~uz2, G1
D~ux1
Dz

þ ik~uz1

� �
¼ G2

D~ux2
Dz

þ ik~uz2

� �
, ~ε1 ¼ ~uz1jh10 , and

~P1 - ~P2 -2G1
D~uz1
Dz

þ 2G2
D~uz2
Dz

þ
���� -k2γ21 þ Dπ1

Dh1
-
Dπ2

Dh1

� �
~uz1 j

h10, h20
þ j Dπ1

Dh2
-
Dπ2

Dh2

� �
~uz2

����
h10, h20

¼ 0 ðviiÞ

at z ¼ h2, G2
D~ux2
Dz

þ ik~uz2

� �
¼ 0, ~P2 -2G2

D~uz2
Dz

þ j -k2γ2 þ Dπ2

Dh2

� �
~uz2 j

h10, h20
þ Dπ2

Dh1

� �
~uz1

����
h10, h20

¼ 0, and ~ε2 ¼ ~uz2 j
h20

ðviiiÞ

Replacing the expressions for ~ui
z, ~ui

x, and ~Pi in the linearized
boundary conditions leads to a set of eight homogeneous linear
algebraic equations involving eight unknown constants Bij (i=1

and 2, j = 1-4). Equating the determinant of the coefficient
matrix of the set of linear equations to zero leads to the dispersion
relation for the elastic bilayers:j 1 -1

1

k

1

k
0 0 0 0

1 1 0 0 0 0 0 0

J1 -J2
J1J5

k
-
J2J6

k
-J1 J2 -

J1J5

k

J2J6

k
J1 J2 h1J1 h1J2 -J1 -J2 -h1J1 -h1J2

2kG1J1 2kG1J2 2G1J1J5 2G1J2J6 -2kG2J1 -2kG2J2 -2G2J1J5 -2G2J2J6
0 0 0 0 2kG2J3 2kG2J4 2G2J11J3 2G2J12J4

-J1J10 J2J7 -h1J1J10 h1J2J7 J13 J14 J15 J16
J1φ2 J2φ2 h1J1φ2 h1J2φ2 J3J8 J4J9 h2J3J8 h2J4J9

j ¼ 0 ðixÞ

where J1 = ekh1; J2 = e-kh
1; J3 = ekh2; J4 = e-kh

2; J5 = (1 +
kh1); J6 = (-1 + kh1); J7 = (2kG1 - k2γ12 + φ1); J8 =
(-2kG2 - k2γ2 + φ4); J9 = (2kG2 - k2γ2 + φ4); J10 =
(2kG1 + k2γ12 - φ1); J11 = (1 + kh2); J12 = (-1 + kh2);

J13 = (2kG2J1 + J3φ2); J14 = (- 2kG2J2 + J4φ2); J15 =
(-2kG2h1J1 + h2J3φ2); J16 = (-2kG2h1J2 + h2J4φ2); φ1 =
∂π1/∂h1 - ∂π2/∂h1; φ2 = ∂π1/∂h2 - ∂π2/∂h2; and φ3 = ∂π2/∂h1;
and φ4 = ∂π2/∂h2.
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