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Depinning of three-dimensional drops from wettability defects
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Abstract – Substrate defects crucially influence the onset of sliding drop motion under lateral
driving. A finite force is necessary to overcome the pinning influence even of microscale
heterogeneities. The depinning dynamics of three-dimensional drops is studied for hydrophilic
and hydrophobic wettability defects using a long-wave evolution equation for the film thickness
profile. The model is studied employing effective algorithms for the parameter continuation of
pinned steady drops and for the time simulation of the dynamics of sliding drops that perform
a stick-slip motion. The discussion focuses on common features and significant differences of the
depinning process for three-dimensional and two-dimensional drops.
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Introduction. – Drops sliding along a solid substrate
under the influence of a lateral force are a very common
physical phenomenon. The force might be gravity for drops
on an inclined or vertical wall, centrifugal forces for drops
on a rotating disk or external shear for drops in an ambient
flow. Note that lateral gradients in wettability, tempera-
ture or electrical fields can as well drive sliding motion.
For smooth homogeneous substrates, an arbitrarily small
driving force results in drops that move with constant
velocity and shape [1–3]. Larger driving forces may lead
to shape instabilities, e.g., trailing cusps may evolve that
periodically emit small satellite drops [1,4].
Real substrates, however, are normally not smooth.

They are rough or have local chemical or topographi-
cal defects. Even microscopic defects can have a strong
influence on the drop dynamics. The heterogeneities may
cause stick-slip motion [5,6] or roughening [7,8] of moving
contact lines, and are thought to be responsible for contact
angle hysteresis [9–12]. A local variation of the driving
force (e.g., electrostatic field or temperature gradient) may
play the same role as a substrate defect.
The present paper focuses on the depinning of three-

dimensional (3d) drops from hydrophobic and hydrophilic
line defects that pin them at their front and back,
respectively: A hydrophobic defect is less wettable for the
drop that therefore has to be forced to pass over it. On
the contrary, a hydrophilic defect is more wettable and
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the drop has to be forced to leave it as sketched in fig. 1.
A recent theoretical study of the depinning dynamics of
two-dimensional (2d) drops corresponding to 3d ridges
with imposed transverse translational symmetry finds
stick-slip motion beyond depinning [13,14].
The present work is based on a thin film evolution

equation in long-wave approximation [15,16] that incor-
porates wettability in the form of a disjoining pressure [9].
It models the effective molecular interactions between the
substrate and the free surface of the liquid, e.g., long-range
apolar van der Waals interactions and short-range polar
electrostatic or entropic interactions [17]. With the proper
choice of terms, such a disjoining pressure describes drops
of partially wetting liquid with a small equilibrium contact
angle that coexist with an ultra-thin precursor film. An
advantage of such a model is the absence of a contact
line singularity. Incorporating wettability in such a way
allows one to study the influence of chemical substrate
heterogeneities or defects by a spatial modulation of the
involved material parameters. Note, however, that they
have to vary on length scales much larger than the film
thickness to be consistent with the long-wave approxima-
tion [18]. The presented analysis of the behaviour of 3d
drops is based on a study of i) steady drops and their
stability and ii) the stick-slip motion of droplets beyond
depinning. Both are based on recently developed effective
algorithms for the continuation of pinned steady drops
described by a partial differential equation and the time
simulation of the dynamics of sliding drops [19].
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Fig. 1: Panel (a) gives a sketch of the considered three-
dimensional geometry: a drop on a heterogeneous substrate and
under a driving force µ along the x-direction. The wettability is
assumed to depend on the x-direction only. (b) The employed
heterogeneity profile ξ(x) as defined by eq. (3) in terms of
Jacobi elliptic functions is shown for k= 1− 10−6 and Lx = 40.
It corresponds to a localised wettability defect.

Model and numerical method. – We consider a
liquid layer or drop on an inhomogeneous two-dimensional
solid substrate as sketched in fig. 1. The liquid partially
wets the substrate (with a small equilibrium contact angle)
and is subject to a small constant lateral force µ that acts
in the x-direction. Employing long-wave approximation,
the dimensionless evolution equation for the film thick-
ness profile h(x, y, t) is derived from the Navier-Stokes
equations, continuity and boundary conditions (no-slip at
substrate, force equilibria at free surface) [15,16]. It reads

∂th=−∇ · {m(h) [∇ (∆h+Π(h, x))+µex]} , (1)

where ∇= (∂x, ∂y) and ∆= ∂xx+ ∂yy are the planar
gradient and Laplace operator, respectively. The
mobility function m(h) = h3 corresponds to Poiseuille
flow and ∆h represents the Laplace pressure (capillarity).
Note that the ratio of the used length scales vertical
and parallel to the substrates corresponds roughly to
the small equilibrium contact angle. This implies that
contact angles in the dimensionless models may be of
order one. The disjoining pressure Π(h, x) models the
position-dependent wetting properties that in the case of
transverse line defects only depend on the x-direction.
The literature discusses many different functional forms
for Π(h) [9,20]. Most model the presence of an ultra-thin
precursor film of about 1–10 nm thickness and thereby
avoid a “true” film rupture. We employ long-range apolar
van der Waals interactions combined with a short-range

polar interaction [9,17,21]

Π(h, x) =
b

h3
− [1+ εξ(x)] e−h, (2)

where ε and ξ(x) are the amplitude and profile of the
heterogeneity, respectively. To model a periodic array of
localised defects, ξ(x) is based on Jacobi elliptic functions.
In particular, we employ

ξ(x) = {2 cn[2K(k)x/Lx, k]}2, (3)

where K(k) is the complete elliptic integral of the first
kind. As k→ 1, eq. (3) describes localised defects. The
period Lx is chosen sufficiently large to avoid interactions
between subsequent drops/defects. Throughout the paper,
k is fixed to 1− 10−6 and Lx = 40. The employed profile
ξ(x) is given in fig. 1. The amplitude ε represents the
wettability contrast. For ε < 0 [ε > 0], the defect is less
[more] wettable than the surrounding substrate, i.e., the
defect is hydrophobic [hydrophilic]. The imposed spatial
periodicity allows one to characterise stick-slip motion by
its period in time.
Based on eq. (1) with (2) the depinning behaviour in

the 3d case is analysed as follows: Steady-state solutions
(pinned drops) and their stability are determined using
continuation techniques and the stick-slip motion beyond
the depinning threshold is analysed using time-stepping
algorithms. Note that in the 2d case [13,14] an explicit
scheme suffices for the latter and continuation can be
performed using the package AUTO [22]. This is not
possible in the 3d case where an effective and exact
time simulation of eq. (1) is challenging and leads to a
number of numerical problems [4,23,24]. Here, we employ
an approach based on exponential propagation [25]. It
allows for a very good estimate of the optimal timestep
for the different regimes of the dynamics. This is of
paramount importance as close to the depinning transition
typical time scales vary over many orders of magnitude.
The second advantage lies in the possibility to adapt the
scheme in such a way that it can be used to continue
branches of steady drop states and to determine their
stability [19].

Results and discussion. – Without lateral force
(µ= 0) and for fixed volume, there exists a unique stable
drop solution for each wettability contrast ε. The drop
sits on top of a hydrophilic defect or between hydropho-
bic defects. Other normally unstable steady solutions may
exist [26]. Increasing the lateral driving force µ from
zero, the drop does not start to slide as for a homoge-
neous substrate [2], but remains pinned by the defect.
A hydrophobic defect blocks the drop at the front, it
becomes compressed and increases its height until it finally
depins. In contrast, a hydrophilic defect holds a drop at its
back. With increasing driving, it stretches and decreases
its height until it depins. The mechanism of depinning was
already studied in the case of a 2d drop (3d ridge) [13,14].
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Fig. 2: (Colour on-line) Bifurcation diagram for 3d drops
pinned by a hydrophilic line defect of strength ε=−0.3. Shown
is the (time-averaged) L2 norm ‖ δh ‖ of steady and time-
periodic solutions as a function of the lateral driving force µ.
Branches of stable pinned drops and unstable steady solutions
correspond to solid and dashed lines, respectively. Triangles
represent sliding drops performing a stick-slip motion beyond
depinning. The domain size is 40× 40 and the mean liquid
height is H = 1. Crosses indicate profiles given in fig. 3. The
inset gives for the stick-slip motion the dependence of the time-
period on µ−µc. The straight line corresponds to a power law
with exponent −1/2.

A stable pinned ridge ceases to exist at a saddle-node
bifurcation at µc. For larger µ, one finds a periodic stick-
slip motion: the ridge stays close to one defect for a
long time before it slides fast to the next one. A square
root dependence of the inverse period on µ−µc suggests
that depinning occurs via a Saddle Node Infinite PERiod
(SNIPER) bifurcation.
We now consider truly 3d drops as sketched in fig. 1,
i.e., we lift the restriction of the imposed translational
invariance in y-direction used in the case of ridges (2d
drops) [13]. Figure 2 shows the bifurcation diagram for
a single drop pinned by a hydrophilic line defect with
strength ε=−0.3. Although at first glance the diagram
looks similar to the 2d case (e.g., fig. 20 of [13]), the
results differ in important details due to the additional
degrees of freedom. Without driving (µ= 0), the drop
sits symmetrically on the defect with an elliptic contour
that has its long axis on the defect (not shown). When
increasing µ, the drop shifts to the downstream side of
the defect where it is retained by the high wettability
patch below its tail. The drop stretches downstream but is
compressed transversally. As a result the norm increases
(contrary to the 2d case). The stable drop loses its stability
via a saddle-node bifurcation at the critical driving µc =
5.193 · 10−3. An unstable branch continues backwards
towards smaller µ and turns again at a further saddle-
node bifurcation. The resulting branch of lowest norm
then continues towards large µ. Its properties strongly

Fig. 3: (Colour on-line) Shown are contours of steady-drop
solutions for a hydrophilic defect for µ= 3.5 · 10−3. From left
to right, profiles correspond to crosses in fig. 2 from large to
small norm, i.e., the left panel shows the stable pinned drop.
The thin line marks the maximum of wettability.

differ from the 2d case and will be discussed below.
A selection of steady stable and unstable drop solutions
(crosses in fig. 2) is presented in fig. 3. The left panel
shows the stable pinned drop whereas the middle one
represents an unstable drop that is connected to the
hydrophilic patch only by an almost cusp-like thin bridge
that seems to be at the point of breaking. Physically, it
corresponds to a threshold solution: If the drop is moved
a bit upstream [downstream], it retracts [slips to the next
defect] and converges to the stable drop solution. The right
panel, finally, gives the unstable solution of lowest norm.
It resembles two drops joined by a thin thread with the
smaller one sitting on the heterogeneity.
Beyond depinning (µ> µc), no stable steady drops exist

and we expect a time-dependent behaviour. In the present
spatially periodic setting drops depin from one defect
and slide to the next one. There, however, they do not
stop entirely but slow down as the defect tries to retain
them. The time-averaged norm for several µ is given in
fig. 2 and one can well appreciate that the corresponding
solution branch emerges from the saddle-node bifurcation
at µc. This together with the square root dependence of
the inverse time-period (mean sliding speed) on µ−µc
shown in the inset of fig. 2 indicates that it is actually a
Saddle Node Infinite PERiod (SNIPER) bifurcation [13].
A time series of snapshots for the stick-slip motion of a
single drop is given in fig. 4. Note that the respective times
are not equidistant. It takes the drop about 25000 time
units to slowly stretch away from the defect (snapshots
1 and 2). Then within 500 units it depins and slides to
the next defect (snapshots 2 to 5), where it needs another
25000 units to reach an identical state as in snapshot 1
(snapshots 5 and 6). Unlike the 2d case, the depinning
itself resembles a pinch-off event at a water tap: the bridge
between drop and a “reservoir” on the hydrophilic stripe
becomes thinner until it snaps. Once the main drop slides,
a small drop remains behind on the defect. The particular
ratio of stick/stretch and slip phase is about 50 : 1. It
diverges when approaching the bifurcation.
The bifurcation diagram for the case of a hydrophobic

defect with ε= 0.3 is given in fig. 5. A stable pinned
drop is blocked at its front by the defect (solid line).
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Fig. 4: (Colour on-line) Snapshots of drop profiles are given at
different stages of a stick-slip cycle (times given above panels)
for a drop depinning from a hydrophilic line defect (marked
by the horizontal line). The driving µ= 5.193 · 10−3 is close to
the critical µc. Colour code and remaining parameters are as
in fig. 3.

It becomes higher and more oval with increasing µ as it is
increasingly pushed against the defect. In consequence, its
norm increases up to very close to the depinning transition
at µc. A typical profile is given in the left panel of fig. 6.
There exist two unstable solutions even for µ= 0 (dashed
lines in fig. 5). One of them “annihilates” with the stable
one at the saddle-node bifurcation, whereas the other
one continues towards large driving. Typical profiles are
given in the middle and right panel of fig. 6, respectively.
Both unstable drops are situated mainly upstream of
the defect but have downstream protrusions that reach
beyond the defect. Drops on the middle branch correspond
to threshold solutions similar to the hydrophilic case.
Time simulations indicate that depinning occurs again
via a SNIPER bifurcation, i.e., a branch of time-periodic
solutions emerges at µc. However, the T on (µ−µc)
dependence (inset of fig. 5) slightly deviates from the
−1/2 power law even at only 0.5% distance from µc. This
difference to the hydrophilic case results from the closeness
in parameter space of a higher co-dimension critical
point.
A time series of snapshots for a stick-slip motion of a

depinned drop is given in fig. 7. The depinning process is
rather different from the hydrophilic 3d case and, indeed,
from the 2d case: The drop first lets a “protrusion” slowly
creep over the defect. This takes about 3600 time units
(snapshots 1 and 2). Then within 650 units it depins and
slides to the next defect (snapshots 2 to 5), where it needs
another 5000 units to reach the state as in snapshot 1
(snapshots 5 and 6). Then the cycle starts again. Once
the drop is depinned, a small drop is retained behind the
defect (snapshot 4).
It is interesting to note that the individual stations of a

stick-slip motion that can be seen in figs. 4 and 7 do very
much resemble the unstable steady solutions presented in

Fig. 5: (Colour on-line) Bifurcation diagram for drops pinned
by a hydrophobic defect at ε= 0.3 and H = 1.2. The presented
norms, line styles, symbols, domain size and inset are as in
fig. 2. Profiles at the crosses are given in fig. 6. The straight
line in the inset corresponds to a power law with exponent
−1/2.

Fig. 6: (Colour on-line) Shown are contours of steady-drop
solutions for a hydrophobic defect for µ= 4 · 10−3. From left
to right, profiles correspond to crosses in fig. 5 from large to
small norm. That is, the left panel shows the stable pinned
drop. The thin line marks the minimum of wettability.

figs. 3 and 6, respectively. This indicates that the steady
solutions that exist at µ< µc are above µc still present in
the phase space as “ghost solutions” [27] and can be seen
in the course of the time-periodic motion.
Next, we elucidate the character of the single steady-

state solution that remains for large µ for both hydrophilic
and hydrophobic defects. Continuation far beyond the
range of figs. 2 and 5, respectively, shows that in the 3d
case the norm approaches a finite value, i.e., there remains
a non-trivial large amplitude structure. This is in stark
contrast to the 2d case where the norm approaches zero
and the solutions resemble slightly modulated films. We
show in fig. 8 that in the 3d case equally for hydrophilic
as for hydrophobic defects this solution branch consists of
rivulet states with drop-like transverse cross sections and
comparatively small variation in streamwise direction.
The latter become even smaller with increasing driving.
It is interesting to note that the rivulet becomes linearly
stable at a large finite driving µr. It stabilises via a Hopf
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Fig. 7: (Colour on-line) Snapshots of drop profiles are given at
different stages of a stick-slip cycle for a drop depinning from
a hydrophobic line defect (marked by the horizontal line). The
driving (µ= 5.331 · 10−3) is close to the critical one. Colour
code and remaining parameters are as in fig. 6.

Fig. 8: (Colour on-line) Shown are contours of steady rivulet
solutions for large driving force µ= 0.03 for (left) hydrophilic
and (right) hydrophobic defects. The remaining parameters are
as in figs. 2 and 5, respectively. The horizontal lines mark the
extrema of wettability.

bifurcation where it is joined by the branch of time-
periodic solutions. This behaviour has no counterpart
in 2d.
Finally, we investigate the influence of the load on

depinning by varying the drop volume V for fixed domain
size. We quantify V by the difference of mean height H
and precursor film thickness Hp. In particular, here V =
1600(H −Hp). As the depinning mechanism via SNIPER
bifurcation remains the dominant one when increasing the
drop volume, we characterise the load at depinning in fig. 9
by the dependence of the critical driving on volume.
With increasing load (i.e., drop volume), depinning

occurs at smaller critical driving µc. The accompanying
bifurcation diagrams resemble fig. 5 but with an increas-
ingly pointed fold. The dependencies in fig. 9 are well
fitted by power laws µc ∼ (H −Hp)−α with α≈ 3/4. The
exact value depends slightly on the type of defect: we
find α� 0.72 (hydrophobic) and α� 0.76 (hydrophilic). At
equal drop volume, an about 30% larger driving force is
needed for depinning from the hydrophobic than from the
hydrophilic defect. This applies to the 2d and the 3d case.
Furthermore, one notices a small systematic difference

between the 2d and the 3d case: for identical droplet

Fig. 9: (Colour on-line) Shown is the load at depinning by
a SNIPER bifurcation as indicated by the dependence of the
critical driving µc on drop volume as represented by H −Hp.
The log-log plot gives the cases of hydrophilic (dashed lines)
and hydrophobic (solid lines) in the 3d (heavy lines) and the
2d (thin lines) case. The defect strength is fixed as given in the
legend. Symbols “+” indicate a set of drops that have identical
height at µ= 0. Beyond the ends of the lines, other depinning
mechanisms dominate.

height, the critical driving in the 3d case is slightly larger
than the 2d one. Our interpretation is that the difference
results mainly from a lower “effective 2d loading” in the
3d case (i.e., smaller mass per lateral length of the drop).
When the lines in fig. 9 end in black circles, this

indicates that beyond the corresponding µ a different
mechanism is dominant. The related complex changes in
the bifurcation scenario will, however, be discussed in
detail elsewhere. Here, we give a brief description only.
For small drops, the flow in the precursor film becomes
important and might trigger a depinning via a Hopf
bifurcation in the 2d (see [14]) as well as in the 3d case.
Beyond depinning a stick-slip motion is found; however,
the period does tend to a finite value as one approaches
µc from above. For the present parameter values, such a
mechanism is found for the hydrophobic and hydrophilic
case.
For large drops, the 2d case always shows a SNIPER

scenario of depinning. In the 3d case, the process may
become more involved as a possible coexistence of a ridge
and a drop solution with identical volume comes into
play. In consequence, the Rayleigh instability of a ridge
may couple to the depinning instability studied here. As a
result, one finds a richer behaviour, e.g., the formation of
fingers and transitions between ridges, drops and rivulets.

Conclusion. – We have studied depinning three-
dimensional drops under lateral driving for localised
hydrophobic and hydrophilic line defects employing
on the one hand continuation techniques to obtain
steady-state solutions (pinned drops and rivulets) and
their stability and on the other hand a time-stepping
algorithm to study the dynamics of the stick-slip motion
beyond depinning. As a result, we have found that for the
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parameter range we have mainly focused on, the depin-
ning behaviour seems at first sight to be qualitatively very
similar in the 2d and the 3d case: Drops are pinned up
to a critical driving µc where they depin via a SNIPER
bifurcation as indicated in bifurcation diagrams like figs. 2
and 5. In the limiting case of small drops, depinning
occurs via a Hopf bifurcation. In this limit, drops are
only four or five times higher than the precursor film and
depinning is caused by the flow in the wetting layer. For
realistic forces, the effect cannot be observed for partially
wetting nano- or micro-drops on an incline or rotating
disc and we have not considered the parameter regime
here. Note, however, that micro-drops of dielectric liquids
generated by an electric field in a capacitor can coexist
with a thick wetting layer of 100 nm to 1µm stabilised by
van der Waals interaction [28,29]. In such a setting, both
depinning mechanisms should be observable using gravity
as the driving force. A calculation in the 2d case is given
in the appendix of [13].
The SNIPER bifurcation we have focused on is char-

acterised by a square-root power law dependence of the
inverse time scale of depinning on the distance from
threshold µ−µc. Beyond µc, the unsteady motion resem-
bles the stick-slip motion observed in experiment: The
advance of the drop is extremely slow when overcoming
the influence of the defect, and very fast once it has
broken away and slides to the next defect. This general
agreement of 2d and 3d case corroborates the often voiced
expectancy that studies of two-dimensional thin film
systems can be employed to deduct many properties of
physically more realistic three-dimensional systems. To
show this has been an important aim of the present work.
However, beside the common general picture we have

as well found significant qualitative differences mostly
related to the additional degrees of freedom that the 3d
system has. They allow the 3d drop to employ pathways
of morphological changes for depinning that a 2d drop
is not able to access. In particular, they allow the drop
to “probe” barriers locally by sending an advancing
protrusion over the defect (in the hydrophobic case) or
by gradually thinning the backward thread that connects
it to the defect (in the hydrophilic case). A short glance
at the presented actual steady and non-steady drop
profiles shows that they represent truly three-dimensional
drops entirely different from 2d ones. Other significant
differences are the existence of stable rivulets that do not
exist in 2d and the mentioned coupling of Rayleigh and
depinning instabilities that will be the subject of future
studies.
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