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Abstract. We study large scale surface deformations of a liquid film unstable due to the Marangoni effect
caused by external heating on a smooth and solid substrate. The work is based on the thin film equation
which can be derived from the basic hydrodynamic equations. To prevent rupture, a repelling disjoining
pressure is included which accounts for the stabilization of a thin precursor film and so prevents the
occurrence of completely dry regions. Linear stability analysis, nonlinear stationary solutions, as well as
three-dimensional time dependent numerical solutions for horizontal and inclined substrates reveal a rich
scenario of possible structures for several realistic fluid parameters.

PACS. 68.15.4¢ Liquid thin films — 47.20.Dr Surface-tension-driven instability — 68.55.-a Thin film struc-

ture and morphology

1 Introduction

Surface structures on (thin) liquid films may arise al-
though surface tension and gravitation stabilize the plane
free surface of the film because several other mechanisms
are able to destabilize it. The resulting self-organized sur-
face patterns manifest themselves in form of depressed re-
gions or holes. For extremely thin films of thickness in the
range under 100 nm the effective molecular interaction be-
tween the free surface and the solid support, phenomeno-
logically described by the disjoining pressure, is one of
these mechanisms. Another one is present if the fluid is
heated from below. Then the surface temperature is pro-
portional to the height and a long wavelength instability
may occur if a critical vertical temperature gradient is ex-
ceeded. This is due to the Marangoni effect, which denotes
the (linear) dependence of surface tension on tempera-
ture [1]. A slightly depressed piece of the surface comes
closer to the hot bottom plate, heats up and consequently
gets a lower surface tension than its surrounding. The re-
sulting surface tension gradient causes a flow away from
the depressed piece pulling out even more liquid from this
region thereby deepening the depression further. This pos-
itive feedback corresponds to an unstable situation.

The evolution in time and space of the instability is
normally described by a simplified equation for the profile
of the free surface. It can be derived from the Stokes equa-
tion using the lubrication approximation [2]. For the thin
film on a heated horizontal substrate this was done for a
linear dependence of surface tension on temperature by
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Burelbach et al. [3]. Oron and Rosenau studied the effects
of a quadratic dependence of surface tension on tempera-
ture [4] and extended the study towards an inclined sub-
strate [5]. In the latter case the evolution equation looses
its variational structure allowing for a richer bifurcation
structure, as studied recently in some detail by Thiele and
Knobloch [6]. All the mentioned work focused on the struc-
ture formation in two spatial dimensions, i.e. the object of
study is a film thickness profile that depends on one spa-
tial coordinate. Pattern formation in three dimensions, i.e.
the evolution of a film thickness profile that depends on
two spatial coordinates was studied by Deissler and Oron
for a film on the underside of a cooled horizontal plate
where now gravitation acts destabilizing and the surface
tension gradient acts stabilizing [7]. Corresponding results
for a film on top of a heated plate were given by Oron [8].

Van Hook et al. [9] performed extensive experiments on
the long-wavelength surface-tension-driven convection for
heated horizontal films below a gas layer of finite thick-
ness. They observed both, the formation of depressions
(dry spots) and elevations depending on the used gas.
They also derived an evolution equation for the film thick-
ness for the used two-layer geometry. It has a similar form
as the equation for the one-layer equation but leads to a
different definition of the Biot number.

In a different approach Boos and Thess followed nu-
merically the evolution of a film profile towards rupture
using the full Stokes equation in combination with a lin-
ear temperature field [10]. They found a cascade of con-
secutive “structuring events” pointing towards the forma-
tion of a set of drops as the final state of the system.
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Due to a slowing down of the numerical scheme once
the minimum film thickness becomes very small the fi-
nal state of the system could not be reached. However,
the qualitative agreement between these results and those
obtained from long wave approximation [8] indicates that
the main features of the physical system are well captured
by this approximation, as already noted for falling liquid
films [2,11].

In the last few years some theoretical and numerical
work was dedicated to pattern formation and instabilities
of liquid films in three spatial dimensions [8,12-17]. Espe-
cially [8] deals with films unstable due to the Marangoni
effect. There, the temporal evolution was restricted due
to rupture which occurred when the thickness of the film
achieved unphysical negative values. Therefore no results
in the long time limit are known up to now. The purpose
of the present work is to examine a fluid film in three
dimensions under a vertical temperature gradient includ-
ing a stabilizing effect which is obtained by introducing a
disjoining pressure which becomes effective for very small
film thickness. Instead of rupture and completely dry do-
mains the solid support is always covered by a thin pre-
cursor film of thickness of some 10 nm. This allows to
study the long-time evolution of a film unstable due to
the Marangoni effect. In the last section we analyze the
spatio-temporal evolution of the film surface when a hor-
izontal force is applied externally. This situation is found
when the fluid layer is inclined with respect to the vertical.
We discuss the formation of periodic structures perpendic-
ular to the slope as well as the instability of fronts moving
downwards the inclined plane.

2 The model
2.1 Thin film equation

The commonly used description is based on the hydrody-
namic equations with appropriate boundary conditions.
We assume a liquid film with mean thickness d, viscosity
v, density p, thermal diffusivity x, and heat conductiv-
ity a. On its free upper surface it is in contact with the
ambient air having the heat conductivity «, and thick-
ness d,. Application of the lubrication approximation [2]
allows for the elimination of the velocity field which can
be expressed by a single scalar field, namely the height of
the film A(z,y,t). At the same order, also the temperature
field can be expressed as a function of that state variable.
Tangential surface stresses come into play if the surface
tension I is assumed to be proportional to the surface
temperature Tj:

I' =~ —(Ts — To)

where Tj acts as a reference temperature. The adimen-
sionalized evolution equation describing the height of the
film then reads

Oth =V - { {h3(30 - ‘Z—IZ —A) — %iﬁ%] Vh}

(2.1)
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Fig. 1. Sketch of the linear growth rate A = ek* — k* in the
case of a type-I1; instability. The solid line is above threshold,
and dotted-dashed below. Above threshold patterns with the
typical length scale ¢ = 27 /ky, = 27/+/€/2 grow in the linear
stage on the time scale 7 = 4/2.

where A = 0,4 + Oyy is the 2D-Laplacian and
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denote the Marangoni number, the Biot number, the
Crispation number, and the static Bond number respec-
tively. We adopted the scaling of [8], where h and z,y are
in units of d and time scales with 3pvd/~y. The temper-
ature AT is defined as the difference between the tem-
perature at the bottom and that of the free film surface
in the non-convective case. In equation (2.1) the effective
molecular interaction between substrate and film surface
is taken into account by the disjoining pressure IT(h). It
will be discussed in detail below in Section 2.2. A linear
stability analysis of the flat film without disjoining pres-
sure (IT = 0) shows that it gets unstable if M exceeds a
certain critical value
2 B, 2
M. = 3T (1+B)= 3G(1+B)

where G = B, /C is the Galileo number.

If M exceeds M., a so-called type-IT, [18] instability
occurs (Fig. 1) and on the linear (short-time) regime one
expects patterns with the typical length scale

¢ =2n/\/eB,

where ¢ is defined as the reduced distance from threshold

(2.2)

(2.3)

e=(M - M.)/M.. (2.4)
Previous work shows that above the onset of the instabil-
ity holes are formed and film rupture occurs after a finite
evolution time [8]. Thereby rupture is defined by the oc-
currence of zero film thickness values. Then equation (2.1)
is clearly not longer applicable.

However, the possible stationary two-dimensional so-
lutions of equation (2.1) with I = 0 can be determined
directly [6] independently of the fact that they cannot be
reached from the initial condition of a flat film by inte-
gration in time. The stationary solutions consist of a vast
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Table 1. Values of the adimensional parameters used in the paper.

water 60 °C silicone oil 50 ¢S, 25 °C
p =983 kg/m®, v =4.7x 107" m?/s, k = 1.6 x 107" m?/s | p =960 kg/m>, v =5 x 107° m?/s, x = 107" m?/s
Y0 =6.6 x 1072 N/m, v = 1.74 x 10~* N/mK Y0 =2.08 x 1072 N/m, v = 6.8 x 107° N/mK
d=10"%m d=10"°%m d=10"%m d=10"%m
AT, 37 °C 4.3 x 1075 °C 92 °C 1.07 x 107* °C
M. 86970 1.01 x 1074 1308 1.53 x 1076
B, 0.146 1.46 x 1077 0.453 4.53 x 1077
C 1.12 x 107° 1.12 x 1073 2.31 x 107* 0.23
A 8.0 x 1071 8.0 x 107° 2.6 x 107 2.6 x 1078
A/B, 5.5 x 107 5.5 x 1072 5.6 x 107 5.6 x 1072
Lxd 1.6 x 1072 m 1.64 x 1072 m 9.3 x 10°m 9.3x10% m
R x d 55%x 1078 m 71%x107" m 5.5%x107% m 73%x107" m

family of drop solutions separated by dry regions of differ-
ent lengths. All of these solutions are nominally linearly
stable since drops separated by dry regions do not inter-
act if no non-hydrodynamic interaction is included. In the
formulation without disjoining pressure the solutions with
zero microscopic contact angle are energetically favored.
However, the inclusion of a disjoining pressure would se-
lect a certain contact angle and remove the degeneracy as
discussed in [6].

2.2 The disjoining pressure

Now we extend the evolution equation by a disjoining pres-
sure that is of repelling character. It therefore stabilizes a
very thin film and avoids the film rupture that restricted
the simulations in time to investigations of the short-time
behavior. With this extended model we are able to study
pattern formation in three dimensions in the long-time
limit.

If Van der Waals forces are responsible for the stabi-
lization, the disjoining pressure IT has the form [19,20)

A

1(h) = =

(2.5)

where A is a dimensionless positive constant which is re-
lated to the Hamaker constant Ay, [21] in the scaling used
here by

Ap
A= 2
6myd?

With (2.5), the range of unstable flat films is also bounded
from below, i.e. flat films with the height h = hy are
unstable if

(2.6)

Rl < ho < hl. (2.7)

The two values h’ and h! are named spinodals. For thick
films in the millimeter range, one finds the scaling h% o
d=1/3. The values of h? are very small in the range of

1077...1078m (see Tab. 1). Approximately flat parts of
the film profile which have a thickness in the stable region
below h’ can be considered as a precursor film. They cover
the substrate even in regions where the dry spots occur
with the height in the range of some 10 to 100 nm.

We note that the inclusion of the disjoining pressure
changes the value for M. to

2B, A
20 4 9.

M, =
3¢ " °C

(2.8)

Here we approximated (1 + B) by 1, which is good for
small Biot number, i.e. for a thermally almost insulating
upper boundary. We shall use this approximation for the
rest of the paper.

2.3 Fluid parameters

To compare with the experiments we show in Table 1 the
values of the adimensional parameters introduced above as
well as those of some important properties of the fluid film.
To demonstrate also the dependence on the film thickness,
we choose the four cases water and silicone oil, each with
layer thicknesses of 1 mm and 1 u. For the Hamaker con-
stant we took the value A, = 1072°J from [22]. The typ-
ical length scale ¢d is computed from (2.3) for ¢ = 1. It is
remarkable that for thin films the critical Marangoni num-
ber as well as the applied temperature gradients seem to
be very small. This means in real experiments one would
usually exceed the critical point by a factor of some thou-
sands. However, in a film of 1 mm depth, the value of M,
in silicone oil is already much larger than that for small
scale convection (about 80...100). Consequently to obtain
a pure surface instability without small convective cells
(hexagons) the liquid depth should be below 1 mm. We
note that in the case of a fluid depth where both insta-
bilities may occur, pattern formation is expected to be
much more involved and the small scale structure cannot
longer be eliminated using the lubrication approximation.
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In this case the full system including Navier-Stokes as well
as heat equation has to be considered. A detailed linear
analysis was done by Golovin et al. [23].

3 Stationary solutions

3.1 Holes, drops, and walls

In the case of stationary solutions equation (2.1) can be
integrated twice which yields

1 d

A= gV~ (3.1)
with
V(h) = —%hQ — %% + (1 +e)(1+a)h(lnh—1) (3.2)

beyond the small bifurcation parameter ¢ defined in (2.4)
we have introduced the reduced Hamaker constant «

34
=&

which enters the equation as the only parameter that de-
pends on the material. As already shown in [7], the inte-
gration constant u is fixed by the mean value of dV/dh
which follows from (3.1) by integration over the spatial
domain A (periodic lateral b.c.):

1 d

In the 2D-case Thiele et al. studied extensively a sim-
ilar problem in the case of dewetting. There the dis-
joining pressure contributes both, the destabilizing long-
range and the stabilizing short-range, components [24-26],
whereas here they are given by the Marangoni effect and
the stabilizing disjoining pressure, respectively. For the
functions V(h) they used it was found, that the system
has three qualitatively different solutions: drop-, hole- and
wall-solutions. The 3D-case is, however, qualitatively dif-
ferent from the two-dimensional one. First, it is not so
simple any more to solve (3.1) by reducing it to an ordi-
nary differential equation. Second, even if we have found
some special numerical solutions, we still cannot say any-
thing about other solutions, since the function space in
3D is much more complicated than in 2D.

In this section we wish to focus on radial symmet-
ric solutions reducing again the spatial dimension by one
and state conditions where the types known from the
2D computations may occur. To obtain an effective one-
dimensional equation we use polar coordinates in (3.1).
For such a radial-symmetrical function h(r) we have the
following equation (see also the discussion in [7]:

2
% tdh Ay,
r rdr dh

In the 2D-case it was possible to rewrite (3.1) in the
“energy-conservation” form [6,26]:

(07

(3.3)

l<@> V() +uh—ho)=E.  (3.4)

2 \ dx
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Fig. 2. Left: Hole solution in the case of radial symmetry. The
effective energy V' (h) + ph is shown on the left image. The
hole solution corresponds to the classical motion of a particle
in the potential: trajectory starts at point » = 0 with the
height h(r = 0) = hmin, this is between the left maximum
and the minimum of the effective energy. The height of the
film increases monotonically to the value corresponding to the
right maximum of the effective energy. The period of such a
solution is infinitely large.

Using the formal equivalence of this equation to the equa-
tion of motion for a particle in a potential V', when seeing
x as “time” one could find all main features of station-
ary solutions by studying the effective potential energy
V(h) + ph. Equation (3.3), however, contains an addi-
tional term that explicitely depends on r. This leads to
the fact, that the “energy” is no longer conserved along
the “trajectory”. Equation (3.3) may describe some me-

chanical system with “time”-dependent friction %% It is
still possible to analyze the behavior of such a “mechani-
cal” system by studying its effective energy. The function
V(h) + ph with V given as (3.2) is shown on the left im-
ages of Figures 2 and 3 for different values of p. In all cases
this function has two maxima and one minimum, but in
Figure 2 the left maximum is higher then the right one, in
Figure 3 the left one is lower then the right one. Further
we are looking for the solutions of (3.3) with the “initial
condition”: (%),«:0 = 0. Each value of h(r) corresponds
to a point on the effective energy curve. The real film pro-
file is given by the motion of such a point along the curve
V(h)+ ph. If equation (3.3) describes a mechanical system
with “time”- dependent friction, we can say the following
about possible stationary states:

In the wide range of initial heights, (the film thickness
at the origin) h(r = 0), between the maxima of the ef-
fective energy (Fig. 4), there exist damped periodical or
even unbounded solutions, that have no direct physical
meaning. However, if rotational symmetry is broken the
damped oscillations in 7 may be associated with satellite
holes observed for dewetting in simulations by Kargupta
et al. [27]. But among such solutions, there exist three so-
lutions with infinitely large period. These are similar to
the drop-, hole- and wall-solutions from [25,26,28].
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Fig. 3. Drop solution. As in Figure 2, the curve starts at r =0
between the right maximum and the minimum of the effective
energy. The height of the film decreases monotonically to the
left maximum.
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Fig. 4. The disjoining pressure d,V (h) according to (3.2) for
different values of a and € = 0.2. The critical film depth A,
is obtained by a Maxwell-equal-area construction for each po-
tential. If h. < 1 (thick film) holes are energetically preferred,
otherwise drops will be formed in the nonlinear stage. Between
the two extrema (the spinodals) the film is absolutely unstable,
between h~ and h' (the binodals) it is bistable.

1) Hole-solution: the initial height is somewhere be-
tween the left maximum and the minimum of the effec-
tive energy (see Fig. 2), the “mechanical” system starts
to move to the right along the curve of effective energy,
passes the minimum with the highest “velocity” %, and
continues to the right maximum h = hj,4,. This process
takes an infinitely long “time” r — oo. In order to proof
that we linearize d,V(h) at h = hpmaq. Since —dpV(h =
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himaz) — 1 = 0 and since —dppV (h = hpaz) > 0, we have
instead of (3.3):

d*h 1dh

W ;E — W (h_hma;c) =0 (35)

here is w? = —dppV (h = hmaz)-

The solution of the last equation is the first Bessel
function (m = 0): A(r) = Amaes — Ko(wr). Since Ky has
the property: lim, o, Ko(r) = 0, it is clear that only for
r = 0o the hole-solution reaches R,z -

2) Drop-solution: the initial height is somewhere be-
tween the right maximum and the minimum (Fig. 3). This
case is similar to the hole-solution. The only difference is
that h(r) decreases monotonic to Apin. The proof that the
drop-solution has infinitely large period is similar to the
case of the hole-solution.

3) Wall-solution: the values of two maxima of the ef-
fective energy are equal. The initial height of the film is
h = hi,. Let the motion start at the left maximum. But
now it takes infinitely long to leave the initial point and
the “damping” plays no role for this type of motion. For
r = oo the height h passes through the minimum of the
effective energy, and continues to the right maximum. The
film profile in this case is similar to the hole-profile, with
the difference that the size of the hole is now infinitely
large. This corresponds to a zero curvature of the whole,
i.e. a plane front.

3.2 Holes or drops?

For the experiment as well as for the numerical solutions
of the next paragraph it is important to know whether
drops or holes are formed in the unstable range of the flat
film ¢ > 0. Assuming that the flat film has the height
ho = 1 this can depend only on the values of ¢ and «.
Figure 4 shows plots of the pressure d,V (k) for several
values of these parameters. If hg = 1 lies on the left-hand-
side of the critical film depth h = h. (Maxwell point),
drops are energetically preferred, in the other case holes
are expected. The condition that hy = 1 coincides with
the Maxwell point allows to compute « as a function of ¢,
as done in Figure 5. From that figure it is clear that for
small values of the reduced Hamaker constant holes should
be observed. But it is interesting that for a@ > 1/3 drops
are the only possible structures. Since o oc d~* this means
that for very thin films always drops evolve, whereas for
thicker ones the pattern at onset consists of holes but turns
to drops for larger temperature gradients far from thresh-
old. From these calculations one would expect drops even
in rather thick films, but farther from threshold as a kind
of secondary instability.

However, the depth of the precursor film may decrease
slightly if the physical thickness of the flat film is very large
(Fig. 6). For thin precursor films the validity of equation
(2.1) seems not longer justified and one cannot say from
the present theory if rupture occurs or not. But even for a
thick film with d = 1mm (at e = 5) we compute the height
of the precursor film to 10nm. As already mentioned in
Section 2.3, for fluids above a certain thickness, small scale
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Fig. 5. Phase diagram in the parameter plane. The
codimension-one line results from the condition he = ho (cf.
Fig. 4 and text). Solving the fully time dependent equation
(4.1) numerically, one obtains mazes (squares), holes (up-
triangles) and drops (down-triangles) in excellent agreement
with the theory. The inset shows that there is a finite € ~ 1.47
above which drops mathematically exist even at a = 0.
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Fig. 6. The thickness h™ of the precursor film as a function of
the mean film thickness d, both in physical units (m). For in-
creasing d the precursor film becomes thinner and would finally
vanish. But right from the dashed line, small scale convection
sets in (silicone oil) in form of hexagons and the description
used here is not valid in this part. In water, small scale con-
vection would set in for even smaller values of d =~ 0.1 mm.

motion sets in first leading to the well known hexagonal
convection cells.

4 Fully time dependent 3D-solutions
4.1 Normal form
To obtain numerical results in three dimensions, we first

transform equation (2.1) into a more convenient form. In-
troducing the reduced control parameter € according to

The European Physical Journal B

(2.4) and after rescaling of space and time variables, it
takes the form

O = —eAu— A*u+V - [f(u, A)Vu] . (4.1)

Here,
U(Zayat) = h(l‘,y,t) -1

is the normalized, shifted height with vanishing mean
value. Space and time are scaled again to (the primes are
omitted in (4.1))

v =2a'(B, +34)7Y2  t=41(B,+34)72

in (4.1), f(u,A) stands for the operator function

1
14+«

ou
1+u

f(uaA): (1+u)3_1_

—(I4e) [1+u?-1] - [1+u)?®-1]A (42)

which vanishes with u. Note that this form contains only
one material parameter, namely a. Equation (4.1) can be
considered as a kind of normal form for pattern formation
of this type, at least its linear part. The dispersion relation
shown in Figure 1 is obvious, the linearly fastest growing
mode has the wave vector k,, = \/£/2 and grows with the
typical rate 7 = 4/¢2. The nonlinear part (as well as the
linear one) has the form of the divergence of a flux and
clearly conserves the mean value of u to zero. We note
in passing that the lowest order truncation O(e?) of (4.1)
reads

O = —eAu — A?u + V(uVu) (4.3)

and coincides with the lowest order truncation of the
Knobloch equation [29].

4.2 The numerical method

To solve equation (4.1) numerically, it is of advantage to
use a semi-implicit time integration scheme [30,31]. The
linear parts of (4.1) are therefore taken at the new time
step t + dt, the nonlinearities at ¢. This allows for a much
larger time step than a fully explicit method. Approxima-
tion of the time derivative by the first order differential
quotient leads to the relation

[% LAy A2] ult +51) = ult) + V(FVulb). (44)

To solve for u(t + 0t) one has to invert the linear differ-
ential operator in square brackets on the left hand side of
(4.4). Assuming periodic lateral boundary conditions in
real space, this can be done best in Fourier space:

1 -t
Up (t + 5t) = [E — ek? + k4:| @k(t) (45)
where @y, denotes the Fourier transform of u and &y that
of

B(t) = ~u(t) + V(FVu(t)).

~ (4.6)
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To avoid singularities, the expression in the square bracket
in (4.5) must be positive for all &, yielding an upper bound
of the time step

Stmaz =4/ g2

which is rather large since ¢ is usually of order 0.1. We note
that numerical stability is already lost for much smaller
time steps then 0t,,q, due to the explicit terms on the
right hand side of (4.4). In all runs described below we fix
the time step in the region 0.1 < 6t < 1.

The numerical scheme must fulfill the conservation of
the mean height, i.e.

/dxdy u(t) =0

must hold for all times. In Fourier space this is equivalent
to
to(t) =0

which is fulfilled for all time steps if &9 = 0. From (4.6) it
follows that

/dxdy V(fVu(t)) =0 (4.7)
must vanish, which is obvious for periodic boundary con-
ditions. Numerically, the validity of (4.7) may depend on
the way how the derivatives in real space of u are com-
puted. We use a centered space finite difference method
which clearly satisfies (4.7). This ensures conservation of
J dady u(t) up to the numerical precision which is of or-
der 1078.

4.3 The horizontal layer

To show the temporal evolution of the film we present runs
for several parameter values in the € —« plane. For all runs
that follow random dot initial conditions have been used
with vanishing mean value. We take a large aspect ra-
tio of 520, in units of equation (4.1), what corresponds to
about 0.5 m for the silicon oil of Table 1. This of course is a
very large value, expressing the huge scale of the structure,
which is due to the small supercriticality of ¢ = 0.1. Start-
ing with the relatively large value of & = 0.35 (rather thin
film) drops are expected even at onset. This can be seen
in the evolution of Figure 7 where larger and larger drops
are found with increasing time. We note that the evolu-
tion times are extremely long, also a consequence of the
small supercriticality (see also the remarks in Sect. 2.3).

Next we use the smaller value a = 0.05, corresponding
to a thicker film. Holes are formed now quite early (Fig. 8).
As can be also seen a small depression is formed along
the border of each hole. The long-time behavior can be
compared with that of drops. One observes a coarsening
of the holes as for the drops. Eventually all holes (drops)
merge into a single big hole (drop). However, this process
may take a very long time, depending on the several fluid
parameters and the geometry of the layer.

To examine the temporal behavior further, we compute
the mean modulus of the wave vector in Fourier space
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t= 2100 50100

5E)2

t = 500100 t = 10000100

Fig. 7. Time series found by numerical integration of (4.1) in
the drop regime at ¢ = 0.1 and a = 0.35. The numerical resolu-
tion is 256 X 256 mesh points, the aspect ratio (length to depth)
520. Dark regions correspond to an elevated surface. Periodic
boundary conditions are assumed in the lateral directions.

g

t = 200010 t = 2000010

Fig. 8. Time series in the hole regime at ¢ = 0.1 and o = 0.05.
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From Figure 9 a scaling law of the form

(k) =ct™P (4.8)

can be clearly extracted. It is remarkable that the expo-
nent for both series, i.e. drops and holes, is almost the
same. We found it to be § ~ 0.21.

Finally, we present a parameter pair directly on the
critical line of Figure 5. As expected, the decision between
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Fig. 9. The solid lines show the typical scaling of the mean
modulus of the wave vector in the temporal evolution for pa-
rameters as in Figures 7 and 8. The scaling exponent for both
series is the same, B ~ 0.21 as indicated by the dashed lines.
For this computation, we used twice the system size of Fig-
ures 7 and 8, and a numerical resolution of 512 x 512 points.

¥ ®.q "
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200 Bhaeol

+ = 2000010

t = 200010
Fig. 10. Time series in the maze regime at the codimension-
one line of Figure 5 (¢ = 0.1, a = 0.28).

drops and holes is not clear and a kind of maze structure
remains for long times (Fig. 10). But also these mazes
show the typical dynamics to longer and longer horizon-
tal scales with the same exponent 5 ~ 0.21 as shown in
Figure 11.

In Section 3.2 we discussed the possibility of a sec-
ondary instability of holes with respect to drops if € is
increased and the codimension-one line of Figure 5 is
crossed. To examine this situation further we compute a
temporal evolution of a randomly distributed initial pat-
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Fig. 11. Dynamical scaling of the maze pattern for parameters
as in Figure 10. The scaling exponent is again 8 ~ 0.21 (dashed
line).

[
t = 443370

t = 451090

t= 469670

Fig. 12. Small drops inside big holes are formed if the heating
is suddenly increased and e crosses the phase line of Figure 5.
The series was started with € = 0.01 and a = 0.3, After t =
443,370 we increased € to € = 0.15.

tern with ¢ = 0.01 and @ = 0.3 in the hole region. Fig-
ure 12, first frame, shows the formation of holes. After
switching € to a larger value in the drop region small drops
are formed rather quickly inside the holes. In this way,
drops with a super-structure left from the holes emerge.

4.4 The inclined layer

In this section, we study the influence of a constant exter-
nal force in a certain horizontal direction. This can be due
either to an inclination of the layer by an angle ¢, or to
an additional horizontal temperature gradient. Here, we
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Fig. 13. Pattern formation in the inclined film. Parameters
are those of Figure 7 but the fluid is very slightly inclined
in vertical direction. After the linear stage, the pattern gets
anisotropic and finally a periodic structure of parallel fluid
pipes with a certain wavelength is stabilized.

—
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t = 200010

t = 2000010

shall concentrate on the first case. A constant body force
gives an additional term of the form (small ¢ = sin ¢) [5]

Bogn -V (h?)

on the right hand side of (2.1). Here, n is the direction of
inclination. For the simulation periodic boundary condi-
tions are kept in all directions.

The inclination even by a very small angle ¢ com-
pletely changes the pattern morphology in the long time
limit. This is shown in Figure 13 where all parameters are
equal to that of Figure 7 but the plane was inclined by an
angle of order 0.1° (for a silicone film of thickness 1 mm).
At the beginning both evolutions seem to be similar but
after ¢ =~ 30, 000 in the inclined film coarsening is retarded
orthogonally to the inclination and finally a certain wave-
length is stabilized. The stripes orientate more and more
along the direction of inclination, forming a structure of
more or less equally spaced pipes or rivulets where the
fluid flows down inside. The effect of inclination on the
dynamical scaling law (4.8) can be seen from Figure 14.

Finally we study the influence of a constant force per-
pendicular to a channel of depressed liquid. To this end we
start the numerical integration with the initial condition

o J-0r7for 0<y<L/8
u(z, y,t =0) = { 0.11for L/8S<y <L
where L is the total length of the layer. Both heights,
the elevated as well as the depressed lay outside the spin-
odal region, i.e. the flat film in these parts is stable. To
avoid the unphysical homogeneity in z-direction of the

log(<k>)

=
o
o

inclined
0=0.35, e=0.1

not inclined

-1.15

4,75 .00 3.2 3,50 log(t)

Fig. 14. Comparison of the dynamical scaling of inclined and
plane case. After ¢ ~ 100,000 the stabilization of the wave-
length in the inclined case can be clearly seen.

I
t= 10260 t = 48820
t= 93860 t= 141740

Fig. 15. Evolution of a channel on an inclined plane. Param-
eters are those of Figure 8 in the hole regime. Both edges of
the channel get unstable on different time scales. The trailing
edge is disturbed faster with a larger wavelength. Finally the
two edges meet on several points and the channel separates.

initial condition we add small fluctuations of about 1 per
cent. The layer in this numerical experiment is inclined
by about 1° (if the fluid is a silicone oil film with depth
1mm). Then the channel moves with the average velocity
of ~ 1mm/sec. After about ¢ = 10,000 (corresponding
to about 300sec) a phase instability of the back front of
the channel (or the leading front of the elevated part) can
be clearly observed (Fig. 15). Later on, the opposite front
gets unstable with a smaller wavelength as studied for a
liquid ridge on an inclined plate in [32]. At this stage,
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both fronts are well separated and can be considered as
being independent from each other. This changes if the
front instabilities evolve further. The channel gets more
and more restricted by the respective advancing and re-
ceding fingers and finally breaks in several isolated holes.
The final situation after a rather long evolution resembles
that of Figure 13.

5 Conclusion

In the present paper we studied a thin liquid layer with
a free surface heated from below. We considered the case
where the fluid is unstable due to the Marangoni effect
against large scale surface deformation but small scale
convection cannot occur. To describe pattern formation
under these circumstances, we used the lubrication ap-
proximation and concentrated on the properties and solu-
tions of the thin film equation, derived from the basic set
of hydrodynamic equations. In addition to previous work
[5,6,8] our description includes a repelling van der Waals
term as disjoining pressure which accounts for stabiliza-
tion of extremely thin fluid layers of 10 to 100 nm height.
Rupture obtained earlier as a singularity of the thin film
equations without disjoining pressure is now avoided in
this way and the spatio-temporal evolution of surface pat-
terns can be studied in the long time domain. Instead
of forming completely dry regions, the substrate remains
now always covered with such a thin fluid layer or precur-
sor film.

The linearized problem and the energy method allows
for computation of the stability regions of (circular) drops,
holes, or fronts with respect to the vertically applied tem-
perature gradient and the mean film thickness. We showed
that on very thin films drops should always evolve at on-
set. For thicker films, we predict the formation of holes at
onset which then, for higher values of the Marangoni num-
bers, should give way to drops. We note that drops, or at
least one big drop on a rather thick film was found in the
experiment by Van Hook et al. for an air layer, instead
of holes for an helium gas layer above a silicone film [9].
The thermal properties of the gas layer influence the Biot
number and also the Marangoni number. It seems possi-
ble that the Helium experiment was performed closer to
threshold than the one with the air layer. According to our
stability analysis this would explain the patterns observed
in this experiment.

In the last section we studied the film behavior in three
spatial dimensions, solving the two-dimensional film equa-
tion numerically. We found holes, drops and mazes for sev-
eral parameter settings. An exponential scaling law of the
wavelength could be extracted from the numerical runs.
We found an independent scaling factor with respect to
the Hamaker constant close to threshold. The scaling law
k ~t=% with 8 = 0.21£0.01 indicates that the coarsening
is slower than in spinodal decomposition, where 5 = 1/3
as given by the Lifshitz-Slyozov-Wagner theory (see for
example [33]). The inclusion of hydrodynamic effects in
the description of spinodal decomposition give even larger
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exponents for the long time limit (in 2D: 8 = 1/2 viscosity
controlled, 8 = 2/3 inertia controlled [34]).

However, the exponent found here is similar to § =
0.22 found in numerical simulations for spinodal decom-
position with a mobility that depends strongly on concen-
tration implying the prevalence of surface diffusion over
bulk diffusion [35]. A scaling argument for this case yields
B = 1/4 [35]. To our knowledge for spinodal dewetting
there exist no analytic or numeric results for the scaling
exponent in two dimensions (for one dimension see [36]).

Finally we turned to the case of a slightly inclined
layer under gravitation. Here we demonstrated the influ-
ence of inclination on the dynamical scaling as well as on
the formation of front instabilities and fingers. The found
transversal instabilities of leading and trailing edges of
elevated regions or liquid ridges show behavior reminis-
cent of the front and back instabilities of liquid ridges on
an inclined plane studied in [32,37]. Especially, it should
be noted that the instabilities at trailing and leading edge
are seemingly independent corresponding to the decoupled
regime in [32]. The wavenumber at the back is also nearly
twice as large as the one at the front. The studied sys-
tem could be especially suited to investigate the fingering
at the back experimentally, because following the analogy
with the results of [32] the destabilizing influence for the
transversal instability is given by the heating. The heating
can be exactly controlled and changed experimentally and
so its influence on the characteristics of the instability can
be investigated directly. On the contrary the destabilizing
influence in [32] is the long-range part of the disjoining
pressure that is difficult to control.

Finally we mention that to our knowledge there ex-
ists no theory for the mechanism of nonlinear wavelength
selection and stabilization of a periodic structure in the in-
clined case, which can be clearly seen from our numerical
simulations.
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