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Time Integration and Steady-State Continuation for 2d Lubrication Equations∗
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Abstract. Lubrication equations describe many structuring processes of thin liquid films. We develop and
apply a numerical framework suitable for their analysis employing a dynamical systems approach.
In particular, we present a time integration algorithm based on exponential propagation and an
algorithm for steady-state continuation. Both algorithms employ a Cayley transform to overcome
numerical problems resulting from scale separation in space and time. An adaptive time-step allows
one to study the dynamics close to hetero- or homoclinic connections. The developed framework
is employed, on the one hand, to analyze different phases of the dewetting of a liquid film on a
horizontal homogeneous substrate. On the other hand, we consider the depinning of drops pinned
by a wettability defect. Time-stepping and path-following are used in both cases to analyze steady-
state solutions and their bifurcations as well as dynamic processes on short and long time-scales.
Both examples are treated for two- and three-dimensional (2d and 3d) physical settings and prove
that the developed algorithms are reliable and efficient for 1d and 2d lubrication equations.
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1. Introduction. The dynamics of structuring processes of thin liquid films, ridges, and
drops on solid substrates is often described by thin film or lubrication equations. These are
obtained employing a long-wave approximation [62]. The description “thin” means that the
thickness of the film/drop is small as compared to all typical length scales parallel to the
substrate. Thin film equations model, for instance, dewetting due to van der Waals forces
[72, 57, 78, 95, 3], the long-wave Marangoni instability of a film heated from below [63, 11, 90],
and the evolution of a film of dielectric liquid in a capacitor [52, 100, 56, 43]. Including driving
forces parallel to the substrate allows one to describe, e.g., droplets that slide down an incline
under gravity under isothermal [66, 96] and nonisothermal [11, 90] conditions, the evolution of
transverse front instabilities [81, 6, 29, 44, 89], and the evolution of shocks in films driven by
a surface tension gradient against gravity [9, 82]. Extensions describe, for instance, two-layer
films, films with soluble or nonsoluble surfactants, films of colloidal suspensions, and effects of
evaporation, complex rheology, or slip at the substrate. For reviews see, e.g., [62, 45, 93, 12].
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NUMERICAL METHODS FOR LUBRICATION EQUATIONS 485

Thin film equations are related to other “standard” equations employed in studies of
pattern formation out of equilibrium [22]. For instance, the (convective) Cahn–Hilliard and
the Kuramoto–Sivashinsky equations may be obtained from a thin film equation for sliding
drops and flowing films as limiting cases for small and large lateral driving, respectively [90].

Due to its strong nonlinearity, a typical thin film equation is difficult to handle numerically,
particularly when describing three-dimensional (3d) physical situations resulting in a partial
differential equation (PDE) with two spatial dimensions. We develop and apply a numerical
framework to study the time evolution and to follow steady-state solutions in parameter space
for 1d and 2d equations. For viscous fluids (small Reynolds number flows), for a surface tension
that dominates over viscosity (small capillary number), and a small lateral driving force the
long-wave approximation results in the following evolution equation for the film thickness or
drop profile h(x, y, t) [62, 45]:

(1.1) ∂th = −∇ · [m(h)∇p̃(h) + "µ(h)] ,

where m(h) is a mobility function, "µ(h) represents the lateral driving force, and the pressure
p̃(h) may contain several terms. A curvature or Laplace pressure results from capillary action
and stabilizes a flat film. Its contribution results in a bi-Laplacian of the height h. That
is the highest order derivative in the equation. Therefore it constitutes one of the main
numerical difficulties. Pressure contributions that destabilize the flat film can result from
various physical mechanisms [62]. Examples include an electrostatic pressure for dielectric
liquids in a capacitor [52, 56, 100]; a disjoining or conjoining pressure for very thin films below
100 nanometers thickness, resulting from effective molecular interactions between the substrate
and the free surface (wettability effects) [24, 26, 40]; a “thermal pressure” for a thin film on
a heated plate (when the long-wave Marangoni mode is dominant) [60, 11]; and a hydrostatic
pressure due to gravity, e.g., for a fluid film under a ceiling [30, 25, 14]. All the mentioned
destabilizing effects result in a long-wave instability, i.e., an instability with wavenumber zero
at onset. Here we use two variants of a disjoining pressure as examples for a destabilizing
mechanism, because their particular thickness dependencies are numerically demanding and
extensive literature results allow for detailed comparison. However, the developed algorithms
can be readily applied to any other combination of stabilizing and destabilizing pressure terms.

In the absence of a lateral driving force (µ = 0), a film that is linearly unstable evolves
during a short-time evolution into a structure of holes, drops, or mazes with a typical structure
length determined by film thickness and other control parameters that reflect the character of
the destabilizing phenomenon [70, 78, 60, 48, 10, 11, 75]. This process is often called “spinodal
dewetting” [57]. However, the resulting short-time structure is unstable (representing a saddle
in function space) with respect to coarsening, and on a large time-scale the structures coarsen
until the system eventually approaches the global energetic minimum, i.e., a single drop or hole
[7, 33, 86]. Indeed without a lateral driving force the system follows a relaxation dynamics, and
the evolution equation can be written using the variation of an underlying energy functional
[63, 57, 85]. The variational form of the (then coupled) evolution equations can also be derived
for multilayer films in similar settings [67, 68]. However, even in the one-layer case, details of
the different phases of the process are still under investigation. Examples include the initial
structuring process that might occur via nucleation or a surface instability [95, 3], and the
mechanisms of the transverse instability of dewetting fronts [79, 71].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

486 PHILIPPE BELTRAME AND UWE THIELE

A detailed understanding of dewetting films and the other processes listed above is pos-
sible only if the pathways of time evolution and the steady states described by (1.1) can be
determined in the 1d and 2d cases using fast and versatile algorithms. As the steady drop
solutions in one dimension can be seen as periodic trajectories in a conservative dynamical
system, one can use available continuation packages for ODEs [28] to map different solution
families and their linear stability (see, e.g., [97, 90, 94]). Careful interpretation allows one, e.g.,
to predict for dewetting films the dominance of different rupture mechanisms within the linear
unstable parameter range [95, 97, 83]. No such continuation tools are, however, available in
the 2d case.

The situation is more involved when lateral driving forces are present, i.e., gravity on an
incline [66] or temperature gradients along the substrate [17, 46, 8]. There, new phenomena
appear like transverse instabilities of sliding liquid ridges, and advancing and receding fronts
[81, 6, 29, 96, 89]. Another fascinating finding is related to sliding drops: Beyond a critical
driving force the drop forms a cusp at the back end and “emits” smaller satellite drops
[66, 5, 50]. For a driven contact line, heterogeneities of the substrate can cause a stick-
slip motion [24]. In the setting of a sliding drop this leads at a critical driving force to the
depinning of drops from such localized heterogeneities. In the vicinity of the responsible sniper
bifurcation the resulting motion resembles stick-slip motion: The drop sticks a long time at a
wettability defect and then suddenly slips to the next defect. This was studied in the 1d case
in [92, 91]. Differences in time-scales for the stick- and the slip-phases may be many orders of
magnitude. On the homogeneous substrate one can, in the 1d case, regard stationary periodic
drop and surface wave solutions as periodic trajectories of a dissipative dynamical system.
They emerge from the trivial flat film state via a Hopf bifurcation [90]. This allows one to
employ standard continuation packages [28] to obtain solution families and to track the various
occurring bifurcations [96, 42, 94, 87]. The same applies for fronts (shocks) and drops that
correspond to heteroclinic and homoclinic orbits, respectively [9, 58, 20]. Note, however, that
at present little is known about the solution and bifurcation structure in the 2d case.

In the previous decade many publications were devoted to the numerical study of thin
film dynamics. Studies focus, e.g., on drop spreading for wetting liquids [103, 36, 27, 102],
heated films [60, 36, 11], pendent drops [36, 35], and the dewetting of partially wetting films
[78, 61, 10, 102]. The analysis of different numerical approaches [103, 36, 27, 102, 35] leads
to the conclusion that the positivity (h ≥ 0) and the convergence of discrete solutions as
well as the performance of the algorithm depend on the way the mobility m(h) is discretized.
However, here, the preservation of positivity is less of a problem because there exists the
precursor film. Moreover, such a positivity preserving scheme [103] applied to our partial
wetting model may lead to stability problems (spatial oscillations) when the drop height is
much larger than the precursor film. Indeed, as pointed out by Grün [35], the stability results
apply only if the disjoining pressure Π(h) remains bounded from below (when h → 0). Most
of the disjoining pressures employed in the literature are unbounded, as are the ones that we
will use. Therefore, here the preservation of positivity is not a crucial stability criterion. The
classical way to overcome stability problems is to employ a semi-implicit scheme (see, e.g.,
[11]). The implicit part corresponds to the bi-Laplacian, i.e., the linear operator of highest
order which should be related to the eigenvalues of large modulus [99]. The approach normally
works well if the ratio of drop height and precursor film thickness is small. However, for larger
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drops simulations often display spatial numerical oscillations.
We conclude that reliable algorithms for time integration and path-following for steady-

state solutions that are applicable equally well in most of the above introduced examples
are not readily available. Here, we develop and apply a time integration scheme with an
adaptive time-step and tools for bifurcation analysis that are applicable in the 1d and (most
importantly) 2d cases.

Our starting point is the understanding that not only the mobility m(h) is crucial for
the numerical stability but also the disjoining pressure. Thus, in a semi-implicit scheme,
a good choice of the linear part should contain contributions from these terms (see below
section 2.4). A natural candidate is the Jacobian matrix at each time-step. Another efficient
time integrator which involves the Jacobian matrix is the exponential propagation scheme.
In general, it is more stable and converges better than semi-implicit methods [98]. The
exponential propagation scheme is based on the exact solution of the linearized equation at
each time-step requiring the computation of the exponential of the Jacobian matrix. This
operator is not directly computed: As commonly practiced for large and sparse matrices, only
its action on vectors is estimated using projections on small Krylov subspaces of dimension
K % N [73]. The standard algorithm to perform this task is the Arnoldi procedure, possibly
incorporating improvements as proposed in [98]. The exponentiation can be performed at a
negligible cost as long as K is not too large.

The application of such a scheme to lubrication equations proves to be reliable. However,
the approximation in Krylov subspaces converges rather slowly. We show that the necessary
dimensionK is about one hundred, while in [31, 73, 38, 98], K ≈ 10 is sufficient. The difference
results from the presence of the fourth order bi-Laplacian in lubrication equations. Its effect
is more disadvantageous than that of a second order operator because the magnitude of the
large negative eigenvalues increases with the order of the differentiation operator [51]. To our
knowledge, no literature study analyzes the efficiency of the Krylov subspace approximation
to a matrix exponential operator that contains a fourth order operator. We improve this
step by coupling existing methods for the determination of the rightmost spectrum with the
classical Arnoldi procedure [55]. In particular, the application of a Cayley transform proves
to be most powerful. The resulting scheme is well suited to efficiently adapt the time-step to
a changing time-scale of the dynamics. This allows for very large time-steps in, for instance,
problems involving coarsening and stick-slip drop motion.

The outlined scheme can be used not only for time-stepping. We show that the Krylov
reduction associated with the Cayley transform can also be applied to track steady states in
parameter space, employing a continuation scheme that consists of the determination of a tan-
gent predictor, the application of Newton’s algorithm along the secant direction, the detection
of bifurcation points, and finally the determination of the direction of bifurcating branches
of steady solutions [76]. Note that, in both algorithms, time-stepping and continuation, the
Cayley transform is used, to our knowledge, in a novel way.

The paper is structured as follows. Section 2 presents the lubrication equation and its
spatial discretization. Then we describe in section 3 the exponential propagation method and
discuss different ways to exponentiate the Jacobian. In section 4 we adapt the developed
algorithms to employ them for the continuation of steady states. Two appendices give details
for the Krylov reductions (Appendix A) and convergence of the algorithms (Appendix B). In
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Figure 1. Sketch of the (a) 2d and (b) 3d physical settings of the problem: A free-surface liquid film rests
or flows on a possibly heterogeneous substrate. Thereby the heterogeneous wettability is assumed to depend on
the location in the x-direction only. A driving force P might act along the x-direction. Note that the resulting
film evolution equations have one (a) and two (b) spatial dimensions and are referred to as the 1d and 2d
cases, respectively.

the remaining part, we apply the algorithms to two typical situations. First (section 5) is
the dewetting process of a thin film on a horizontal substrate. The slow coarsening process
that follows the initial fast patterning provides an excellent test for the adaption of the time-
step. We also study steady-state solutions in two dimensions; in particular, we discuss several
solution branches corresponding to quadratic and hexagonal arrays of drops. Second, in sec-
tion 6 we study the pinning/depinning of drops on an inclined heterogeneous substrate. The
path-following algorithm is applied to determine branches of steady-state solutions and, in
consequence, the onset of depinning in the 2d case. The stick-slip motion of drops beyond de-
pinning is investigated using our time-stepping algorithm. For comparison with the literature
we also provide selected results for the 1d case. Our conclusions are found in section 7.

2. Modeling and spatial discretization.

2.1. Lubrication equation. Consider a liquid layer on an (inhomogeneous) 1d or 2d solid
substrate (Figure 1). The liquid partially wets the substrate and might be subject to a constant
lateral force P . Using the long-wave approximation, the dimensionless evolution equation for
the film thickness profile h(x, y, t) derived from the Navier–Stokes equations, continuity, and
boundary conditions is [62, 45]

(2.1) ∂th = F (h, x) = −∇ · {m(h) [∇ (∆h+Π(h, x)) + Pex]} ,

where ∇ = (∂x, ∂y) is the planar gradient operator and ∆ = ∂2
xx+∂2

yy is the planar Laplacian.
Note that (2.1) has one and two spatial dimensions for 2d and 3d physical settings, respectively.
In the following they are referred to as the 1d and 2d cases, respectively. The mobility
function m(h) = h3 corresponds to Poiseuille flow without slip at the substrate. The term
∆h represents the Laplace pressure. Wettability is modeled by the disjoining pressure Π(h, x)
that for a striped heterogeneous substrate depends on film thickness and on the position x.
Here, the lateral force acts as well in the x-direction (Figure 1). Many particular forms of
the disjoining pressure are known [24, 45, 12]. The most common ones allow for the presence
of an ultrathin wetting layer (a so-called precursor film) of about 1–10 nm thickness. The
short-time dewetting dynamics of an unstable film results in large amplitude structures, either
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drops or holes. It is often called initial “film rupture” even if a stable precursor film remains
present—a convention that we follow.

To facilitate comparison to the literature we employ the disjoining pressures

(2.2) Π(h) = −2e−h(1− e−h)−Gh

(as used in [96, 97]) and

(2.3) Π(h) = − b

h3
+ e−h

(as used in [77, 95]). We call them (I) and (II), respectively. For case (II) we incorporate
varying wettability properties due to a heterogeneous coating as

(2.4) Π(h, x) =
b

h3
− [1 + εξ(x)] e−h,

where ξ(x) is the heterogeneity profile and ε the amplitude of the heterogeneity (as in [92, 91]).

2.2. Functional space. The considered domain is D = [0;L] (1d case) or D = [0;Lx] ×
[0;Ly] (2d case). Equation (2.1) defines a PDE in H4(D):

(2.5) ∂th = F (h, x), h ∈ H4(D).

To obtain a well-posed PDE system, we introduce periodic boundary conditions. In the
studied case of nonvolatile liquids the mass M =

∫
D h(x, y)dxdy is conserved. If SD denotes

the surface of the domain D, the measure H = M/SD represents the mean height, and
u = h−H is the perturbation (sometimes denoted δh). The PDE (2.5) defined in the space

E0 =

{
u ∈ H4(D) :

∫

D
u(x, y)dxdy = 0

and periodicity of ∂i
xu and ∂j

yu, 0 ≤ i, j ≤ 3

}
(2.6)

is well defined: (i) F operates on the Euclidean space {H + E0}, and (ii) linear operators
operate on the linear space E0. In this space, we define the L2 norm (denoted ||.||) of u:

(2.7) ||u|| = ||δh|| = 1

SD

(∫

D
|u(x, y)|2dxdy

)1/2

,

where |u(x, y)| is the Euclidean. The notation ||δh|| is used for the presentation of the numer-
ical results, while ||u|| is reserved for the description of the algorithm.

2.3. Spatial discretization. Here, we devote much effort to the time integration but
choose the spatial discretization as simple and generic as possible. A finite difference scheme is
used associated with a regular meshing of the domain. We use in x and y directions, (Nx+1)
and (Ny+1) mesh points at distances δx = Lx/Nx and δy = Ly/Ny, respectively. The number
of discretization points is N = (Nx + 1) × (Ny + 1) in the 2d case and N = Nx + 1 in the
1d case. The differentiation operators are approximated by a centered five-point stencil; i.e.,
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for the bi-Laplacian ∆2 and the third order operator ∇∆ it is a second order approximation,
while for the gradient or divergence operator ∇ and the Laplacian ∆ it is a fourth order ap-
proximation. Thus, these operators are sparse band matrices with maximally 5 (1d) or 25 (2d)
nonzero elements in each row. The map F (h, x) defined in (2.5) is discretized according to
(2.1), i.e., in the mass conserving form. The Jacobian of the map F is discretized using (2.9)
below, resulting in a second order approximation. The discretized Jacobian matrix is not in
a mass conserving form to avoid a further increase of the number of nonzero elements. Mass
conservation is, however, imposed during the Krylov projection (see Appendix A).

2.4. Jacobian matrix. Next, we justify our choice to compute the Jacobian matrix at each
time-step. First, we explicitly determine the Jacobian matrix as linearization of the function
F (h, x) at h = h0,

(2.8) J = DhF (h0, x),

where Dh denotes the differentiation operator with respect to h. The Jacobian matrix is a
sum of differentiation operators up to fourth order:

Ju = v0(h0, x)u+ v1(h0, x) ·∇u(2.9)

+m0Π
′
0∆u−∇m0 ·∇∆u−m0∆

2u

with

v0(h0, x) = −m′
0∆

2h0 − P∂xm
′
0(2.10)

+m′
0∆Π0 +∇m′

0 ·∇Π0 +∇m ·∇Π′
0 +m∆Π′

0,

v1(h0, x) = −m′
0∇∆h0 +m′

0∇Π0 + 2m0∇Π′ +∇m0Π
′ + Pex(2.11)

and
m0 = m(h0), m′

0 =
dm
dh (h0),

Π0 = Π(h0, x), Π′
0 = dΠ

dh (h0, x).

The Jacobian matrix J has eigenvalues with large negative real parts. They correspond to the
fastest time-scales related to the differentiation operators. As these eigenvalues are situated in
the left half of the complex plane, they are called “leftmost eigenvalues.” Their presence is the
main cause of spatial numerical oscillations in explicit time integration methods. The resulting
stability restriction on the time-step is overcome by treating the linear term implicitly. The
leftmost eigenvalues are due to the differentiation operator of the highest degree. Therefore,
one can filter them out by treating only this operator implicitly. The implicit linear term
normally corresponds to the Laplacian for second order equations, e.g., reaction-diffusion
or Navier–Stokes equations, and to the bi-Laplacian for fourth order equations, e.g., the
Kuramoto–Sivashinsky equation [32]. Here, a natural candidate is the bi-Laplacian. However,
it is multiplied by the Poiseuille flow mobility m0 = h30. This implies that, e.g., for a height
variation by a factor 10 like for a drop solution, a factor 103 appears in the linear operator.
The resulting spatial scale separation complicates the situation as compared to, e.g., the
Kuramoto–Sivashinsky equation.
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Furthermore, here the lower order operators may contribute to the leftmost eigenvalues
because the vectorial factor in front of them can have very large elements. For example,
the Laplacian is scaled by m0Π′

0, related to the disjoining pressure, which can be very large
close to the contact region of drops. Then the Laplacian gives a nonnegligible contribution
to the leftmost spectrum of J. This strongly localized prefactor is reminiscent of a point
force at the contact line related to wettability, as discussed, e.g., in [24]. Thus the specific
numerical problems of the thin film equation for partially wetting liquids are due not only to
the Poiseuille flow mobility but also to phenomena related to wettability and contact angle.

In conclusion, it is not advisable to filter the leftmost eigenvalues employing a constant
linear operator since flow maxima and front positions are time dependent. It is preferable to
compute the Jacobian through a linearization at each time-step. The Jacobian matrix is then
employed in the exponential propagation method, as it is best suited to our purpose (cf. the
introduction and Appendix B).

3. Time integration.

3.1. Exponential propagation. Starting from the known profile h0 at t0, the exponential
propagation scheme consists of solving the autonomous evolution problem

dh

dt
= F (h, x),(3.1)

h(t0) = h0,(3.2)

at each time-step. This is done by expanding the operator F (h, x) near the state h0 in a
Taylor series

(3.3) F (h0 + u, x) = F (h0, x) +DhF (h0, x)u+R(u),

where DhF (h0, x) is the Jacobian matrix at h0 and R(u) = O(||u||2) contains the quadratic
and higher order terms. To simplify the notation we let

J = DhF (h0, x),(3.4)

b = F (h0, x).(3.5)

The height variation u(τ) = h(t0 + τ)− h0 then solves the evolution problem

du

dτ
= b+ Ju+R(u),(3.6)

u(0) = 0,

which admits as solution

(3.7) u(τ) = G(Jτ)bτ +

∫ τ

0
exp((τ − τ ′)J)R(u(τ ′))dτ ′,

with

(3.8) G(Jτ) =
exp(Jτ)− I

Jτ
.
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Equation (3.8) is formally correct even if J is not invertible, since the operator G can be
expressed as the series G(x) =

∑+∞
n=0 x

n/(n + 1)!. Since the functions G and exp tend to
zero at −∞, they filter the leftmost spectrum of the operator J. For a semi-implicit scheme
a rational function of J plays the role of the filter. Yet, a rational function tends to zero
more slowly than G and exp when approaching −∞. Therefore, we expect the exponential
propagation scheme to better filter the leftmost eigenvalues; see also Appendix B.

3.2. Order of the scheme and error estimator. If we consider only linear variations of
F (h, x), i.e., R(u) ≡ 0 in (3.3), the first term of (3.7) is the exact solution of the evolution
problem (3.6):

(3.9) u(1)(τ) = G(Jτ)bτ.

The solution h(1)(τ) = u(1)(τ) + h0 is then an approximation of second order with respect
to time. To employ exponential schemes of higher order one has to take into account the
nonlinear term R(u) in (3.7). Then the perturbation u cannot be obtained explicitly from
(3.7) but can be estimated by successive approximations of the nonlinear terms through the
series u(") [31]. The resulting scheme of order '+ 1 is

(3.10) u(")(τ) = u(1)(τ) +
"∑

k=2

∫ τ

0
exp((τ − τ ′)J)c"k

(
τ ′

τ

)k

dτ ′,

where the computation of the vectors c"k is detailed in [31].
Note that relation (3.10) can be differentiated analytically with respect to τ . Moreover,

the approximation u(") is close to the exact solution of the evolution problem (3.6) if du"/dτ ,
F (u" + h0, x) and the difference

uerr = τ

[
du"

dτ
− F (h0 + u", x)

]

represents an error vector of the time-step. Thus, a natural candidate for a relative error is
the ratio of the L2 norms of uerr and u+ h,

(3.11) εr =
‖uerr‖
‖u+ h‖ .

This may be used to efficiently control the numerical error.

3.3. Krylov projection. Since [31] was published, a plethora of high order approximations
have been developed [73, 38, 39, 98]. However, the accuracy of the exponential scheme depends
not only on the nonlinear approximation of R(u) but also on the approximation of the vectors
vg = G(Jτ)b and ve = exp(Jτ)c.

The computation of these vectors is commonly performed using a projection onto a small
Krylov subspace of dimension m computed by the classical Arnoldi algorithm. In the litera-
ture, this step does not constitute a difficulty, as a good approximation of the action of their
highest order operators is already obtained with a small Krylov subspace of about m = 10.
In contrast, here we need m = 100 (see Appendix A). The literature examples are normally
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second order equations (reaction-diffusion equation, Schrödinger equation), whereas the thin
film equation contains a fourth order operator. This indicates that the bad convergence of
the Krylov–Arnoldi algorithm results mainly from the presence of the bi-Laplacian, as it has
a worse conditioning than the Laplacian. The large values that may be taken by the mobility
function and the disjoining pressure also play an important role.

In consequence, one has to improve the Krylov projection step to be able to apply the
exponential propagation method efficiently to thin film equations. As our improvement can
be applied to schemes of any order, in the following we focus on a second order exponential
scheme.

Appendix A gives a detailed description of the two methods used to estimate G(Jτ)b and
exp(Jτ)c—the classical Krylov–Arnoldi projection and our variations of that method. The
key idea of our improvement is to transform the spectrum of the operator J in order to accel-
erate the convergence of the Krylov approximation. It is well known that the Krylov–Arnoldi
algorithm first tends to the part of the spectrum that has the largest modulus. However, the
rightmost eigenvalues of J are the ones of primary interest for the time-stepping. To reach fast
convergence we need to apply a transformation that allows these “wanted” eigenvalues to be-
come the ones of largest modulus. Such transformations are commonly used when estimating
the rightmost spectrum (see, e.g., [101]). One can distinguish two main methods: Chebyshev
acceleration and Cayley transform [55]. Here, only the latter is efficient. However, it requires
an incomplete-LU (ILU) factorization which needs O(N3/2) steps. It is laid out in Appendix A
that a Cayley–Krylov method is most efficient for system sizes below N ≈ O(105).

To summarize, the time integration of (2.1) is performed using an exponential propagation
scheme that employs Krylov projection. The scheme is stable independent of the particular
Krylov approximation used. For moderate system sizes of N = O(105) the Cayley–Krylov
projection furthermore allows one to employ adaptive time-stepping. As it also provides the
leading modes at each time-step, it is a valuable tool for studies of film and drop dynamics.

4. Continuation of steady-state solutions.

4.1. Introduction. Next, we develop an algorithm to follow branches of steady-state so-
lutions when varying a parameter p; i.e., we seek the branch (h, p) such that

(4.1) ∀(x, y) ∈ [0;Lx]× [0;Ly] : F (h(x, y), x, p) = 0.

Note that the continuation parameter p may be any parameter of the problem, e.g., the
lateral force P or the heterogeneity strength ε. We adopt the tangent predictor–secant cor-
rector scheme [76]. For both steps the Jacobian has to be inverted. Although this operation
is different from the exponentiation required in the time-stepping algorithm, the employed
Krylov reduction using the Cayley transform is relevant for the inversion that needs only a
few eigendirections associated with small eigenvalues. Eigenvalues of large modulus—namely,
the leftmost eigenvalues—are of negligible influence; their presence can even lead to numerical
oscillations. Furthermore, the knowledge of the leading eigenvalues facilitates the stability
analysis and allows one to detect bifurcation points.

4.2. Tangent predictor–secant corrector method. First, we describe a continuation step
as sketched in Figure 2. One starts at point (h0, p0) representing a steady state h0 at parameter
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Figure 2. Scheme of a continuation step using the tangent predictor–secant corrector method.

value p0. Differentiating (4.1), one obtains the tangent direction (δut, δpt) of the continuing
branch at the point (h0, p0) as solution of the system

(4.2) J0δut = −DpF (h0, x, p0)δpt,

where J0 = DhF (h0, x, p0) is the Jacobian. The (δut, δpt) solution is entirely determined by
fixing the amplitude of δpt. This is done by finding the maximal amplitude of pt such that

(4.3) ||F (h0 + δut, x, p0 + δpt)|| < εt||h0||

to stay close to the steady-state branch. Typically we take 10−3 < εt < 10−1. We denote this
intermediate point by (h1, p1) with

h1 = h0 + δut,(4.4)

p1 = p0 + δpt.(4.5)

The sign of δpt remains to be chosen. It only changes at saddle-node bifurcations. In the
(p, f(p)) plane the passing of a saddle-node bifurcation is characterized by a sign change of
f ′(p) and an increase of |f ′(p)| before reaching the bifurcation. If both conditions are fulfilled,
the sign of δpt has to be changed.

Next, one uses Newton’s method to solve (4.1) close to (h1, p1). The secant is taken
orthogonal to the tangent (δut, δpt) to be able to follow the branch even in the neighborhood
of a turning point. For the Newton iteration step that starts from (hk, pk) the condition reads

Jkδuk = −F (hk, x, pk)−DpF (hk, x, pk)δpk,(4.6)

〈δut, δuk〉 = 0,(4.7)

hk+1 = hk + δuk,(4.8)

pk+1 = pk + δpk,(4.9)
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where Jk = DhF (hk, x, pk) and δuk, δpk are the unknowns at step k + 1. Equation (4.6) and
the orthogonality condition (4.7) written as matrix equation are

[
Jk DpF (uk, x, pk)
δut 0

] [
δuk
δpk

]
=

[
−F (uk, x, pk)

0

]
,

N

[
δuk
δpk

]
=

[
−F (uk, x, pk)

0

]
.(4.10)

One clearly sees that the continuation step requires inversions of the Jacobian matrix J
(tangent predictor) and of the matrix N (Newton corrector steps). Except at bifurcation
points, systems are invertible in the space E0. As above, the restriction to E0 is ensured
during the Krylov reduction (see Appendix A).

4.3. Computation of the tangent predictor. The Cayley–Krylov reduction of (4.2) leads
to

(4.11) VmJmV t
mδut = −bδpt = −DpF (h0, x, p0)δpt,

where Vm is the Krylov basis consisting of m vectors in E0. The basis is constructed by
letting the operator C = (J − cI)−1 act on the vector b = DpF (u0, p0). The choice of the
scalar c follows the same rules as in the time-stepping (Appendix A). Using the QR-method,
the spectrum of the reduced m×m Jacobian is obtained:

(4.12) Jm = PmDmP−1
m .

For the inversion we distinguish two cases: (i) if the kernel contains a nonzero eigenvector v0,
then the pair (v0, 0) is the solution of the problem; (ii) otherwise we perform the inversion,
and the solution is given by

(4.13) δut = −VmPmDm
−1P−1

m V t
mbδpt.

In this way one is able to detect bifurcation points and ensures that the continuation works
well at turning points.

4.4. Computation of the secant corrector. To perform one Newton step (4.10), the
same method as in the previous section is applied to the matrix N instead of Jm. Note that,
because of the secant direction requirement (4.7), the matrix N is invertible in E0 even close
to a bifurcation point.

As both the tangent predictor and secant corrector step need an ILU-factorization, it is
the most important numerical task in the continuation algorithm (as for the time-stepping
algorithm).

4.5. Bifurcation analysis and stability analysis. Because the rightmost spectrum of the
Jacobian is known, we are also able to assess the stability of solutions. Furthermore, during
the tangent predictor step one is able to detect the presence of bifurcations. The direction of
the bifurcating branch may be deduced from the eigendirections of the kernel. Although the
rightmost spectrum is normally well evaluated, it may occur that the rightmost eigenvalue
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λmax is not in the Krylov space (see Appendix A). Furthermore, the accuracy of the estimation
of the rightmost eigenvalues is only about 10−3. To determine the bifurcation point more
accurately one has to apply a different algorithm, e.g., a block Arnoldi method [74] adapted
to the Cayley–Arnoldi algorithm. In the following the developed algorithms are used to study
important questions related to the dewetting of a thin film (section 5) and the depinning of a
drop (section 6).

5. Short-time dynamics and coarsening for dewetting thin films. The dewetting of a
thin film can be initiated by two different mechanisms: either via a surface instability (spinodal
dewetting) or by heterogeneous nucleation at finite size defects [24, 83, 75, 84]. Dewetting of
metastable films can only be initiated by nucleation, i.e., by finite disturbances larger than a
critical threshold given by an unstable steady state. For linearly unstable films, there exists a
critical wavelength λc = 2π/kc. Any disturbance associated with a wavelength λ > λc grows
exponentially in time with a growth rate β = −m(h0)k2(k2 − k2c ). The resulting short-time
dewetting structure consists of a drop, hole, or labyrinthine pattern. Its characteristic scale
corresponds to the wavelength λm =

√
2λc of the fastest growing linear mode. However,

whether this linear instability is the dominant mechanism depends on the character of the
primary bifurcation: Deep inside the linearly unstable regime it is supercritical, and the
film necessarily develops the surface instability; however, closer to the metastable region the
primary bifurcation is subcritical, and then threshold solutions are present. They offer as a
second pathway of evolution a nucleation process as in the metastable regime [95, 97, 83, 3].
The latter normally dominates if the growth rate of the threshold solution is much larger than
the largest growth rate of the linear instability βm. Details of the dewetting process then
strongly depend on experimental conditions (number of defects, amount of roughness, noise).
When nucleation dominates, one expects larger drops or holes that are randomly distributed.
Here we investigate (i) the dominance of either instability- or nucleation-triggered dewetting
in the linear unstable thickness region in the 2d case; and (ii) quadratic and hexagonal steady-
state solutions in the 2d case and the character of their primary bifurcations. The short-time
dewetting dynamics is followed by a very slow coarsening process resulting eventually in a
single drop coexisting with the precursor film. The coarsening advances via a cascade of two-
(and three-)drop mergers based on two mechanisms related to a volume and a translation
mode, respectively [33, 45]. In the volume mode all liquid flows through the precursor film, and
the centers of mass of the drops do not move. In the translation mode the entire drops approach
each other and merge. The stabilization of the two modes by a substrate heterogeneity is
discussed in [86]. It implies that during coarsening the major part of the dynamics occurs in
the contact line regions. Because the motion is related to the Goldstone mode of translational
invariance for a single liquid front [45] the corresponding eigenvalues are close to zero. Note
that a coarsening step can be interpreted as a heteroclinic connection between unstable steady
states.

5.1. The 1d case. We use the 1d case with disjoining pressure (I) to compare our results
to the literature [97]. The initial profile is a flat film with a small localized defect at the
center. The Cayley transform is used with a regular mesh with N = 1600 for a domain size
' = 16λm.

Figure 3(a) and (b) gives space-time plots of the long-time evolution in the cases of dom-
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(a) (b)

Figure 3. Space-time contour plots for the time evolution of the film thickness profile h during dewetting
in (a) the surface-instability-dominated regime (H = 2.4) and (b) the nucleation-dominated regime (H = 3.2).
The initial film is linearly unstable in both cases. We consider the disjoining pressure (I) with G = 0.05 and
the mobility function m(h) = (h3 − ln(0.1))3 (for details, see [97]). The domain size is 16λm, and the initial
profile is a flat film with a single defect: h0 = H(1−0.1 cosh(5x/λm)−2). The parameters agree with those used
in Figure 14 of [97].

inating surface instability (H = 2.4) and nucleation (H = 3.2), respectively. In Figure 3(a)
the initial growth (t ≤ 15τm) results in a regular array of 16 drops of distance λm. The
profile and the evolution of the norm and the relative energy (Figure 4) do agree well with
[97, Figures 14(a) and 16(a)]. In Figure 3(b) the growth of the hole resulting from the finite
disturbance is faster than the surface instability. Further holes are subsequently nucleated
by secondary nucleation events close to the primary hole. The resulting short-time structure
consists of fewer larger drops than in the surface instability regime. The initial “rupture”
phase in Figure 4(b) is in good agreement with Figure 16(b) of [97].

Our method allows us to study the long-time coarsening far beyond the results of, e.g.,
[96, 86]. In Figure 3 one can identify both coarsening modes in agreement with [33, 45].
The merging of drops does not occur continuously slowly but starts extremely slowly and
culminates very fast. In consequence, the evolution of the energy (Figure 4) shows long
plateaus connected by “jumps.” Our adaptive time-step method copes very well with this
combination of slow and fast dynamics.

The coarsening process in the nucleation case (Figure 3(b)) is slower than in the surface
instability case and proceeds mainly via the mass transfer mode. Finally, two (five) drops
remain in the surface instability (nucleation) case. In principle, coarsening should continue,
but the evolution becomes so slow that we reach the limit of numerical accuracy; i.e., the
eigenvalues related to the coarsening modes become smaller than the numerical accuracy. In
particular, for leading eigenvalues smaller than 10−7, the numerical noise is not negligible,
and we are not able to observe the next coarsening step.
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(a)

(b)

Figure 4. Change of the energy E with time for dewetting at (a) H = 2.4 and (b) H = 3.2, corresponding
to time evolutions given in Figure 3. The energy E is defined as in [97]: E = (1/L)

∫
[(∂xh)2/2+ f(h)]dx with

the local energy f(h) = −
∫
Π(h)dh.

We conclude that the developed algorithm is well suited to study the short- and long-
time behavior in the 1d case. In particular, the short-time evolution agrees well with results
obtained using a semi-implicit scheme with a constant time-step [97]. In contrast, here the
time-step varies by six orders of magnitude, allowing us to study the long-time coarsening.

5.2. The 2d case. After having shown the reliability of our algorithm for 1d dewetting,
we next employ it to study the 2d case. The above discussion of the linear stability still
applies. In particular, the fastest growing wavelength λm and corresponding growth rate βm
remain the same. However, in contrast to the 1d case, 2d patterns involve two wave vectors k1

and k2 that can lead to a variety of periodic steady-state patterns [19]. Here, we track square
and hexagonal patterns by imposing a periodic 30 × 30 square and a 30 × 30

√
3 rectangular

domain, respectively. Choosing the mean film thickness H as control parameter, we obtain
the bifurcation diagrams in Figures 5(a) and 6, respectively. Note that the finite domain size
results in critical film thicknesses different from that for an infinite domain. In particular, one
findsHu = 2.79 for the upper limit instead ofH∞

u = Hc = 3.63 expected for an infinite domain.
Figure 5(a) shows that for the square pattern atHu an (unstable) subcritical branch bifurcates
from the trivial one. It stabilizes and turns toward smaller H at a saddle-node bifurcation at
Hsn = 3.65. In consequence, for Hu < H < Hsn the flat film is metastable and can only dewet
via nucleation that allows it to pass the unstable threshold solution. In a similar way, the
lower critical thickness Hl = 0.825 differs from that for an infinite domain (H∞

l = 0.747, not
shown in the bifurcation diagrams). All steady-state profiles above H ≈ 2.2 correspond to hole
patterns (see Figure 5(b)). Further decreasing H, a morphological transition occurs (related
to the steep variation in the norm at H , 2.2) via a state of a rotated (by π/4; see states S2



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICAL METHODS FOR LUBRICATION EQUATIONS 499

(a) (b)

Figure 5. (a) Bifurcation diagram for a 2d square array of drops/holes on a horizontal homogeneous
substrate. The domain size is 30 × 30. Shown is the L2 norm ||δh|| as a function of the mean height of
liquid H. The steady state solutions may be linearly stable (solid line) or unstable (dashed line). (b) Contour
plots of steady-state solutions indicated by circles in the bifurcation diagram. With the exception of the control
parameter H, all parameters are as given in section 5.2.

in Figure 5(b)) checkerboard pattern to drop patterns that always prevail at smaller H. At
another saddle-node, the branch turns and becomes unstable again before subcritically joining
the flat film state at Hl.

Figure 6 shows branches of hexagonal symmetry that bifurcate from the trivial solution. It
also gives the secondary bifurcations. Note, however, that here we do not show the secondary
branches, although they are discussed in passing in the following. In contrast to the square
patterns in Figure 5, the branches of hexagonal patterns do not display a transition between
drops and holes at finite amplitude. However, at each of the two bifurcation points (Hl

and Hu) the hexagonal branch crosses the trivial flat film solution branch in a transcritical
bifurcation. In the representation of Figure 6 this corresponds to two families of hexagons that
seem to emerge at each bifurcation point. One of them consists of a hexagonal array of drops
(see states S4 and S5 in Figure 7) and is equivalent to the H+ branch discussed in [21]. The
other one represents a hexagonal array of holes (states S1 to S3 in Figure 7) and corresponds
to the H− branch [21].

Each of these branches connects the two bifurcation points Hl and Hu. In addition to the
branches of hexagons, a branch of stripe solutions S appears through a supercritical pitchfork
bifurcation at Hl and ends at a subcritical pitchfork bifurcation at Hu. All these branches are
unstable near the primary bifurcation, as expected for the generic case of bifurcations with
hexagonal symmetry [21].

The branches gain and lose stability through a number of secondary bifurcations in a
scenario that is similar to one described in [15]: The branch H+ that emerges at Hl first
continues toward smaller H, then turns and gains stability at a saddle-node bifurcation. It
continues toward larger H and loses its stability again at a transcritical bifurcation (point R+

in Figure 6). Note that it undergoes another two saddle-node bifurcations before approaching
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Figure 6. Bifurcation diagram for a 2d hexagonal array of drops/holes on a horizontal homogeneous
substrate. The domain size is 30 × 30

√
3. Shown is the L2 norm ||δh|| as a function of the mean height of

liquid H. Black lines correspond to the branches of hexagons (H+ and H−), whereas the blue line corresponds
to the branch of stripes (S). The steady-state solutions may be linearly stable (solid line) or unstable (dashed
line). The dots, squares, and triangles represent secondary bifurcations, as explained in the main text. The
hollow circles indicate solutions that are displayed in Figure 7. The remaining parameters are as given in
section 5.2.

Figure 7. Contour plots of steady-state solutions indicated by hollow circles in the bifurcation diagram of
Figure 6. In particular, the upper row gives three hole solutions from the H− branch (S1 to S3), whereas the
lower row gives two drop solutions from the H− branch (S4 and S5) and a typical stripe solution (S6). Of the
shown solutions only S3, S4, and S6 are linearly stable.
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(a) 5.57 15.4 122 259 467

(b) 5.60 14.5 54.4 140 326

Figure 8. Snapshots from the evolution of dewetting thin films. The initial condition corresponds to a flat
film with a central defect: h0 = H(1 − 0.1 cosh(5r/λm)−2) in the (a) surface-instability-dominated regime at
H = 2.4 and (b) nucleation-dominated regime at H = 3.2. The domain size is 16λm × 16λm, and we use
periodic boundary conditions. The time is indicated below the individual panels in units of τm. The remaining
conditions are as in Figure 3.

Hu. The branch that crosses at R+ has rectangular symmetry; one side connects to the
bifurcation point S+ on the branch of stripe solutions (S); the other one crosses the H− branch
transcritically at R− before ending at S− on the branch of stripe solutions.

A similar scenario occurs for the branch H− when starting at the transcritical bifurcation
at Hu: It continues toward larger H, then turns and gains stability at a saddle-node bifurca-
tion. It continues toward smaller H and loses its stability at R−. Finally, the branch of stripe
solutions S that emerges at Hl gains stability at S+ and loses it again at S−. The saddle-node
bifurcation at larger H does not change its stability.

This introduces all bifurcations necessary to understand the stability of the primary
branches. Note, however, that there exist further secondary bifurcations (T+ and T− in
Figure 6) involving a branch of triangular solutions. As discussed in [15], this branch connects
the two hexagonal branches H+ and H−.

Although the bifurcation analysis is very instructive for a small domain, it does not allow
one to directly predict which mechanism dominates 2d dewetting for larger system sizes.
To study this question we employ our time-stepping algorithm. The use of different initial
disturbances allows one to discuss the prevalence of dewetting either by nucleation or by
surface instability for linearly unstable films: We choose a radially symmetric defect of profile
h(r) (identical to the h(x) in the 1d case) that shall compete with the surface instability that
emerges from an initial film roughness. Without initial roughness one finds that the short-time
evolution conserves the radial symmetry until the boundaries of the square box are felt. In
the instability-dominated case (H = 2.4, Figure 8(a)) the distance between rings corresponds
as expected to λm, whereas in the nucleation-dominated regime (H = 3.2, Figure 8(b)) it
is roughly 2λm and the boundary is felt earlier. After the rings form during the short-time
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(a) 4.92 6.19 15.7 · 10 118 3.25 · 104

(b) 4.29 5.69 10.4 120 1.14 · 103

Figure 9. Snapshots from the evolution of dewetting thin films in the (a) surface-instability-dominated
regime at H = 2.4 and (b) nucleation-dominated regime at H = 3.2. The initial condition is as in Figure 8
with an added roughness of 0.1% of H. The domain size is 10λm × 10λm, and all other settings are as in
Figure 8.

evolution, the rings break and coarsening sets in. In the radially symmetric part coarsening
starts at the center and proceeds through a cascade of ring contractions.

The result shows that the numerical noise is sufficiently small to not break the radial
symmetry during the time integration. Adding, however, an initial roughness, the symmetry
is rapidly destroyed (see below). This explains why normally in dewetting experiments with
very thin films that are affected by thermal noise and other tiny perturbations no such regular
structures are observed. However, recent experiments with electrically destabilized thicker
films (less prone to noise) show regular ring structures when an inhomogeneous electrical field
is applied in such a way that it plays the role of our initial radially symmetric defect (see
Figures 2 and 4 of [18]).

To determine the influence of noise on the relative importance of nucleation and surface
instability we perform several simulations using different initial film roughnesses ζ. In par-
ticular, we add a roughness of ζ = 0.1% (Figure 9) and ζ = 1% (Figure 10) of the mean
film thickness. The larger ζ becomes, the less time the radial structure has to evolve because
the roughness “accelerates” the isotropic surface instability. For small ζ = 0.1% the radial
symmetry is appreciable even quite some time into coarsening (Figure 9). However, coars-
ening eventually “washes out” any memory of the initial defects. In particular, for H = 2.4
the second ring is still complete (at t = 4.92), but already the next depression is not radially
symmetric but resembles a ring-like assembly of holes (at t = 6.19). For H = 3.2, already the
depression outside the first ring emerges as a circular hole pattern, i.e., as a typical secondary
nucleation pattern (cf. [3]). In both cases the initial defect has no further influence on the
structure. The remaining area is covered by typical spinodal structures. For the stronger
initial roughness (ζ = 1%, Figure 10) the initial defect is of minor influence; i.e., the cen-
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(a) 3.42 4.84 6.51 12.5 34.1

(b) 3.03 4.09 5.21 10.7 32.0

Figure 10. Snapshots from the evolution of dewetting thin films for (a) H = 2.4 and (b) H = 3.2. The
initial condition corresponds to the one in Figure 8 with an added roughness of of 1.0% of H. The domain size
is 16λm × 16λm, and all other settings are as in Figure 8.

(a) (b)

Figure 11. Selected steady drop profiles on a heterogeneous substrate for different driving forces P as given
in the legend. Shown are (a) the hydrophobic case with defect strength ε = 0.5, and (b) the hydrophilic case
with ε = −0.5. The respective solid lines represent the profile at depinning. The lower parts of the panels give
the profile ξ(x) of the heterogeneity.

tral radial structure dominates only during a very short time (till about t = 4) and is later
homogenized through coarsening. Everywhere else the surface instability dominates.

6. Depinning of a drop on a heterogeneous substrate. The second problem we focus
on is the depinning of drops. If a lateral force is applied to films/drops on a homogeneous
substrate (P 2= 0 in (2.1)), one finds only traveling surface waves or sliding drops [96, 89]. No
steady-state solutions exist, except for the flat film. On a heterogeneous substrate, however,
the heterogeneity (e.g., chemical or topographical defect) can pin a drop. Here, we consider
wettability defects in the form of stripes; i.e., we use disjoining pressure (II) that is modulated
in the x-direction (cf. (2.4)). The used wettability profile ξ(x) is presented in the lower parts
of the panels of Figure 11. The parameter ε represents the amplitude of the heterogeneity,
i.e., the wettability contrast. If ε > 0 (ε < 0) the defect is less (more) wettable than the
surrounding substrate; i.e., the defect is hydrophobic (hydrophilic).
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Figure 12. Bifurcation diagram for 1d steady drop solutions on a horizontal heterogeneous substrate
(P = 0). Shown is the L2 norm ||δh|| versus the defect strength ε. The disjoining pressure used, (II), is
given by (2.4) with b = 0.1, and the domain size is L = 50.

When the lateral driving is increased the pinned drops are deformed, and their center of
mass slightly shifts until at a critical driving Pc the drop depins. The analysis of the steady
states and the depinning bifurcation is tackled using the continuation approach developed
above in section 4. In the 1d case, results are already available: In [92, 91] the continuation
package AUTO [28] and an explicit time-stepping algorithm with adaptive time-step were
used. We employ this case in section 6.1 to validate our continuation code. As the results
for identical parameters are identical to those of [92, 91], we here present results for larger
drops. In section 6.2 we explore the 2d case, which cannot be treated using AUTO because
the governing equations are not equivalent to an ODE system.

6.1. The 1d case. For a homogeneous substrate without lateral driving (ε = 0 and
P = 0), the critical wavelength for a film of thickness H = 1.5 is λc , 15; i.e., for a domain
size of L = 50 there exist at least steady states containing one, two, or three drops. They
bifurcate from the flat film at nλc with n = 1, 2, 3, respectively. If the primary bifurcation is
subcritical, there might be more solutions (cf. [90]).

To determine the various steady-state solutions for a heterogeneous substrate without lat-
eral driving we use continuation when varying the heterogeneity strength ε for a heterogeneity
period equal to the domain size (Figure 12). Branches of steady-state solutions cross the axis
ε = 0 three times, corresponding to the one-, two-, and three-drop solutions for a homoge-
neous substrate. For a strong heterogeneity (|ε| large) only the single drop solution remains,
which is the most interesting solution for a study of depinning. However, for smaller |ε| up
to seven steady states can exist corresponding to various stable and unstable one-, two-, and
three-drop equilibria. As [92] studies a smaller domain (L = 25), their Figure 6 shows only one
crossing of the axis ε = 0. Studying the stability of the equilibria, one finds that only the up-
permost branch corresponds to stable solutions. All other branches terminate in saddle-node
bifurcations.
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(a) (b)

Figure 13. Bifurcation diagrams for families of pinned 1d steady solutions representing one-, two-, and
three-drop states for (a) hydrophobic and (b) hydrophilic defects of various strength ε as given in the legend.
Shown is the L2 norm ||δh||, dependent on the lateral driving force P The remaining parameters are as in
Figure 12.

Next, all steady-state branches are tracked when increasing the lateral driving force P
from zero for various fixed ε. Bifurcation diagrams and selected profiles of pinned drops are
given in Figures 13 and 11, respectively. The various branches found for P = 0 continue
to exist for small driving as “pinned solutions.” However, at critical values of the driving
most “annihilate” pairwise. Physically speaking, the heterogeneity cannot retain the drops
any more, and they start to slide; i.e., they depin. Beyond a critical value Pc no steady drop
exists, as even the stable single drop depins (Figure 13). The bifurcation at Pc is a sniper
(saddle node infinite PERiod) bifurcation. At Pc a branch of space- and time-periodic solutions
emerges (not shown) that corresponds to drops sliding on the heterogeneous substrate. The
temporal period diverges as one approaches Pc from above, and the drop motion resembles
stick-slip behavior (cf. [92, 91]. The obtained results indicate that our continuation algorithm
is well capable of following stable and unstable steady states in the 1d case. The saddle-node
bifurcation has been well detected, and as expected no numerical stability problems have
been encountered near the bifurcation. Next, the continuation algorithm has to prove its
capabilities in the 2d case.

6.2. The 2d case. In the 2d case we consider stripe-like wettability defects. In particular,
we employ an x-dependent heterogeneity profile and choose the lateral driving force P also in
the x-direction. In this way a hydrophobic stripe (ε > 0) blocks a drop at its front end, whereas
a hydrophilic one (ε < 0) holds it at the back end. Figure 14 presents the bifurcation diagram
for ε = 0.3 obtained when continuing the steady single stable drop solution for increasing P .
Stable (unstable) states are given as solid (dashed) lines. The stable blocked drop increases
its norm with increasing driving as it is “pressed” against the defect. The drop finally depins
at a saddle-node bifurcation (Pc ≈ 0.003) where the stable branch turns and loses stability.
Time simulations beyond depinning show a typical stick-slip motion of drops with a period
that diverges when the bifurcation is approached from above. The time-averaged norm for
selected values of P is given by triangles in Figure 14. The results indicate that depinning
occurs via a sniper bifurcation.
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Figure 14. Bifurcation diagram for the depinning of 2d drops from a hydrophobic line defect given by (2.4)
with ε = 0.3. Shown is the L2 norm ||δh||, dependent on the driving force P for steady-state solutions (solid
line). For depinned sliding drops the time-averaged norm is given (symbols ∆). The domain size is 40 × 40.
The circles indicate the steady states represented in Figure 15. All other parameters are as in section 6.1.

y y
(a) (b)

Figure 15. Shown are contours of the pinned (a) stable and (b) unstable steady drop solutions at P =
5.68 · 10−3 (circles in Figure 14). The thin horizontal line marks the maximum of the heterogeneity. The
remaining parameters are as in Figure 14.

Examples of steady stable and unstable drop profiles are given in Figure 15(a) and (b),
respectively. The stable drop sits behind the line of minimal wettability. As it is squeezed
against the defect by the driving force, it has an oval shape. In contrast, the unstable drop has
a “forward protrusion” that crosses over the minimum of wettability. This solution represents
a depinning threshold for P < Pc; i.e., adding a small perturbation will either let the drop
retract its advancing protrusion to again settle behind the defect or trigger a depinning event
that sends the drop sliding down to the next defect where it is pinned again. For a more
detailed analysis of the depinning process in two dimensions, see [4].

Finally, let us come back to the computational scheme. Apart from the increase in the
system size N , in the 2d case one encounters a new difficulty related to the translation sym-
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metry in y-direction. This translation invariance implies that for each solution there exists a
continuum of solutions obtained by translation in y-direction that has to be avoided by the
continuation algorithm. Neglecting numerical noise, the solutions possess a left-right reflection
symmetry y → −y (Figure 15). Therefore, the Jacobian is an equivariant operator for this
left-right reflection. Thus, the action of the Jacobian on left-right symmetric vectors results in
vectors with the same symmetry. This effectively excludes any translation in the y-direction.
However, when the solution is close to the trivial flat film state even small numerical noise
becomes relevant, and the leading eigenvalues are very small as well. In the above numerical
example we observe related problems for large driving at P > 0.1 when the steady solution
corresponds to a very shallow rivulet. The continuation algorithm might then stay on the
orbit of solutions related by translation. The problem can be easily overcome by fixing the
maximum at a particular point, although this might cause problems in situations where vari-
ous maxima coexist. To avoid any ambiguity, we use a technique similar to that used for the
problem of mass conservation: in the Krylov step we project the basis vectors orthogonally
to the translation mode ∂yh0. This does not change the structure of the algorithm and is
performed at negligible cost (see Appendix A).

7. Conclusion. We have presented (i) a time integration scheme based on exponential
propagation and (ii) a continuation algorithm employing the Cayley transform for the highly
nonlinear thin film equations. These equations contain differential operators till fourth order.
To avoid severe stability restrictions on the time-step, a linear term may be treated implic-
itly. However, for the thin film equation it is difficult to find a relevant linear operator. In
consequence we use the Jacobian matrix at each time-step. In this framework, an exponential
propagation scheme is more efficient than a semi-implicit scheme [39, 98]. The method is
based on an exact solution of the linear problem for each time-step and involves the determi-
nation of the exponential of a matrix. To do this in an economic way, the linear operators
may be reduced to small Krylov subspaces. However, for the thin film equation we need a
dimension of the Krylov subspaces of about 100—much larger than necessary for problems
involving only a second order operator [31]. For better convergence of the Krylov reduction,
we have coupled the Arnoldi algorithm with the Cayley transform that is performed using
an ILU-factorization. In consequence, this Cayley–Arnoldi method allows us to take larger
time-steps and, furthermore, estimates the leading eigenvalue well. This facilitates an effective
adaption of the time-step to the changing characteristic time-scale of the dynamics. This has
led to a major improvement in simulations of one- and two-dimensional thin film dynamics
that involve multiple time-scales, e.g., coarsening dynamics for dewetting films or the stick-slip
motion close to depinning transitions.

We have also developed an algorithm for the continuation (or path-following) of steady
states that is based on the tangent predictor–secant corrector scheme. Both tasks—time-
stepping and continuation—can be performed using the same Cayley–Arnoldi algorithm. The
advantage of this approach is the possibility of performing all tasks arising in a bifurcation
analysis simultaneously. This includes the computation of the kernel of the Jacobian to detect
bifurcations and the stability analysis of the steady states. The developed algorithms have
been used to study the bifurcation structure and time evolution of (i) dewetting thin films
and (ii) depinning drops for physically 2d and 3d settings, that correspond to 1d and 2d thin
film equations, respectively.
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For the dewetting film we have investigated different pathways for the initial “rupture,”
i.e., the short-time evolution. Our focus has been on the competition of the surface instability
and the nucleation at defects. The long-time coarsening dynamics has also been studied. For
the 1d case, we could follow the coarsening process till 106τm, where τm is the characteristic
time of the surface instability. In the 2d case, we found that the short-time dewetting process
induced by a radially symmetric finite defect conserves the radial symmetry until disturbed
by the boundaries of the square domain. This indicates the very small influence of round-off
errors in our algorithm. The coarsening then proceeds via a cascade of ring contractions.
However, due to the importance of thermal fluctuations, such regular structures are normally
not observed in dewetting experiments with very thin films. However, they are observed for
thicker dielectric films in a capacitor when an inhomogeneous electrical field plays the role of
the finite defect [18]. Adding noise to the initial conditions, we recover the “classical” dewet-
ting structures. Using the Cayley–Arnoldi method for a system size of about 10λm × 10λm,
one is able to simulate the coarsening dynamics till reaching a single drop, i.e., the globally
stable solution (Figure 9). In addition to the time evolution we have employed continuation
to study 2d steady-state solutions corresponding to square and hexagonal arrangements of
drops or holes.

Second, we have studied the depinning of ridges (1d case) and drops (2d case) from
substrate heterogeneities. Pinned steady solutions have been followed using our path-following
algorithm. In particular, we have used as continuation parameters the wettability contrast
and the lateral driving force. In the 1d case we have successfully reproduced results obtained
in [92, 91] using the package AUTO [28]. We have also tracked 2d stable and unstable steady
drop solutions. This has been supplemented by a study of the evolution of time-dependent
solutions beyond depinning. This has led us to the conclusion that in the 2d case depinning
occurs as in the 1d case via a sniper bifurcation, and that beyond (but close to) the bifurcation
the sliding drops show stick-slip behavior.

Although our approach improves time integration and path-following for thin film equa-
tions, the employed constant equidistant finite difference spatial discretization remains very
basic. The weakness of such a regular discretization appears, for instance, when tracking large
drops pinned at hydrophobic defects. For increasing driving force the stable drop becomes
strongly localized at the defect. The unstable solution for the same driving force is very close
to the stable one, as already observed in the 1d case for large drops (Figure 29 of [92]). To
clearly distinguish the two solutions numerically a higher accuracy is required. This can be
achieved using an adaptive mesh. In our particular system, for instance, the continuation
procedure applied to a drop on a 50 × 50 square domain breaks down near the depinning bi-
furcation. This accuracy problem is similar to that encountered in the last stages of coarsening
in section 5.1, where a mesh refinement near the drop edges would be beneficial.

We have restricted our study to thin film equations that describe films and drops on
partially wettable homogeneous and heterogeneous substrates. Beside the curvature pressure,
the disjoining pressure has been the only term resulting from the underlying free energy.
However, the method can be applied to various thin film systems involving other contributions
to the free energy. This includes, for instance, thin films of dielectric liquid in a capacitor
[56, 100, 2], heated thin films [64, 11, 90], films with an effective thickness-dependent surface
tension caused by high-frequency vibration [49, 94], and film flows in a time-dependent ratchet
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potential [43]. The algorithms can also be applied to multilayer problems in the long-wave
framework, for instance, in bilayer dewetting [68, 1, 69], or to systems involving a single thin
film equation coupled to a (reaction-)diffusion equation for a reactive [23, 65] or nonreactive
[41, 54] surfactant or adsorbate at the substrate [88, 42]. For those problems the overall
structure of the equations does not change. Only the system size N is multiplied by the
number of equations. The time-stepping and continuation code can be applied without major
change.

In general, we also expect the method to be relevant for closely related evolution equations
such as the (driven) Cahn–Hilliard equation [16, 34] or the Kuramoto–Sivashinsky equation
[47, 13], which both contain the bi-Laplacian operator. However, in contrast to the lubrication
equation for those equations, the mobility function m(h) multiplying the bi-Laplacian is often
a constant. As the presence of the nonconstant mobility function has been one reason for our
choice of the Jacobian matrix as linear operator at each time-step, for the constant-mobility
Cahn–Hilliard and Kuramoto–Sivashinsky equations, this choice is not crucial, and a classical
semi-implicit scheme with L = ∆2 as linear operator might result in a viable scheme. The
efficiency of both time integration schemes has to be compared to decide which is the most
powerful method.

The presented continuation algorithm for steady-state solutions can be improved in a
straightforward manner by adapting it for stationary states, i.e., for traveling waves or sliding
drops. These can be seen as steady-state solutions in a comoving frame. For the case of
a driving force in the x-direction, solutions are also invariant w.r.t. translation in the x-
direction. The resulting problems can be overcome using the same technique as above for the
translational invariance in the y-direction. Thus, the Cayley–Arnoldi method can be applied
without major change. The extended algorithm would be applicable, e.g., to the study of
the morphological transitions observed for sliding drops on inclined homogeneous substrates
[66, 80].

Appendix A. Krylov reductions.

A.1. Arnoldi–Krylov. The approximation of vg = G(Jτ)b and ve = exp(Jτ)c is a crucial
step of the time integration algorithm (section 3). We propose to use a Krylov reduction as
usually employed for sparse operators. The aim is to obtain an accurate approximation such
that the time-step is limited only by the order of the scheme. As the technique works similarly
for vg and ve, we focus only on vg (corresponding to the second order linear scheme (3.9)).
The Krylov reduction employs that the series of subspaces

(A.1) Km = span
{
b,Jb,J2b, . . . ,Jm−1b

}

converges to a finite-dimensional Krylov subspace KM which contains vg. The method is only
efficient if Km is a good approximation of vg for m % N . The Arnoldi method is used to
construct an orthonormal basis Vm of the subspace Km. The resulting approximated Jacobian
matrix Jm is an m×m upper Hessenberg matrix,

(A.2) Jm = V t
mJVm,

that in this form can be used to approximate

(A.3) vg = G(Jτ )b , VmG(Jmτ)V t
mb.
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Since the dimension m is small, the classical QR-algorithm is a reliable and efficient method
to diagonalize Jm, to obtain the matrix Dm, and to compute G(Jmτ). The resulting approx-
imation of the vector vg is

(A.4) vg , VmPmG(Dmτ)P−1
m V t

mb,

where Pm is the matrix of the eigenvectors of Jm. The columns of the rectangular matrix
(VmPm) are the Ritz vectors, i.e., the approximated eigenvectors of J. Since the dynamics
is dominated by the rightmost eigenvalues of J a good Krylov approximation results in Ritz
vectors that are close to the rightmost eigendirections. We call them the “wanted” eigendirec-
tions. However, the Krylov–Arnoldi algorithm first converges to the “unwanted” eigenvalues
of largest modulus that are situated in the leftmost spectrum and are the main reason for
stability problems. To improve the Krylov–Arnoldi method we adapt algorithms normally
used to estimate the rightmost spectrum: We transform the spectrum of J in such a way
that the wanted eigendirections are associated with the eigenvalues of largest modulus. By
applying the Krylov–Arnoldi method to the transformed operator, the wanted eigendirections
are selected after a few steps. For asymmetric sparse systems two transformations can be
used: Chebyshev acceleration and shift-invert Cayley transform. We discuss their efficiency
in the next section.

Note that the Krylov reduction allows us to introduce supplementary requirements on the
discretized space in a simple way. For instance, to preserve the volume one suppresses the
direction corresponding to a variation of volume in the Arnoldi step. Thereby, one ensures that
the height h remains in the Euclidean space {H +E0} (section 2.2) during the time-stepping.
In a similar manner, the directions related to translation invariance may be suppressed during
the continuation algorithm to avoid the problem mentioned in section 6.2.

A.2. Chebyshev acceleration. Equation (A.3) can be interpreted as a polynomial ap-
proximation since the basis Vm is a sum of elements of Km (see (A.1)) [73]:

(A.5) vG , pm(Jτ)b,

where pm is a polynomial of degree m−1. Chebyshev acceleration determines an optimal poly-
nomial to accelerate the convergence. In [53] it is shown that scaled and translated Chebyshev
polynomials have certain optimal convergence properties. The main reason of the success of
the Chebyshev polynomial is the possibility of decreasing some unwanted eigendirections con-
tained in an ellipse. This property is employed to compute the rightmost eigenvalues of large
sparse nonsymmetric matrices [37, 74]. However, in our case the application of the algorithms
presented in [55] does not significantly improve the convergence of the Krylov approximation.
Indeed, according to [74] the rapidity of the convergence is directly affected by the accumu-
lation of the rightmost eigenvalues. In consequence, a polynomial approximation does not
result in the improvement of the Krylov reduction.

A.3. Cayley transform. Unlike the Chebyshev method, the Cayley transform is not poly-
nomial but rational. Let us introduce the transformed operator C:

(A.6) C = J−1
c = (J− cI)−1,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICAL METHODS FOR LUBRICATION EQUATIONS 511

where c is an arbitrary real constant. The matrix C contains the eigenvectors of J but has a
different spectrum. If the chosen c is larger than the leading eigenvalue λmax of J, the spectrum
of C falls into the band [(Re(λmax) − c)−1; 0[. In consequence, the wanted eigendirections of
J correspond to the eigenvalues of C with the largest modulus. Therefore, the orthonormal
basis Vm constructed using the Arnoldi procedure within C should converge after a few steps
to the wanted eigendirections. One introduces the approximate operator Cm,

(A.7) Cm = V t
mCVm,

and diagonalizes Cm using the QR-method (similar to the Arnoldi–Krylov reduction):

(A.8) Cm = PmDcayleyP
−1
m .

Finally according to the definition (A.6) and the Krylov reduction (A.7) we obtain the ap-
proximation of vg:

(A.9) vg = G(Jτ)b , VmPmG(D−1
cayley + cI)P−1

m V t
mb.

The efficiency of the algorithm depends strongly on the choice of c. Indeed if c 3 Re(λmax),
then the Cayley transform is not relevant any more since C , −c−1I. In addition, if c is
close to an eigenvalue of J, the operator J − cI becomes singular and the method diverges.
Numerical calculations show that for moderately large values of c (as compared to Re(λmax))
the accuracy decreases notably. However, a choice of c close to Re(λmax) leads to very accurate
results even if c < Re(λmax). In consequence, a good choice is to take a constant ck at time-
step k that is slightly larger than Re(λk−1

max) as estimated in the previous time-step k− 1. The
constant ck could then be smaller or larger than Re(λk

max); in rare cases it might be very close
to an eigenvalue of the Jacobian matrix J. However, such a degeneracy would be detected
automatically by the presence of huge rightmost eigenvalues of the matrix C. So, in that
singular case the time-step is performed again with a larger value of c.

The difficulty of the method remains the evaluation of the action of C, defined as the
inverse of Jc, on the vector b. It is obtained using an ILU factorization on Jc, which is a
powerful method for sparse band-matrices. The cost of this factorization is about O(N3/2). As
all other operations are O(N), we expect that the ILU factorization slows down the algorithm
for large systems.

A.4. Comparison. We next compare the Krylov–Arnoldi and Cayley–Arnoldi methods
for the estimation of the vector vg. Even though the Krylov reduction does not depend on
the chosen time-step τ , we expect that the approximation of vg does. We aim at a Krylov
reduction that is accurate enough to not add a restriction on the time-step τ . For a second
order linear scheme (3.9) the relevant time-scale τλ is the inverse of the leading eigenvalue.
This value is employed in the different numerical convergence tests.

In the 1d case, vg may be computed by a direct method, for instance, a QR-diagonalization.
The latter is taken as reference value vref for the relative error. Unfortunately, for the 2d case,
the system may be large, i.e., N = O(105), and a QR-diagonalization dramatically increases
the CPU cost and memory requirements (being proportional to N3). Thus, in this case, the
reference solution vref is computed using the Cayley–Arnoldi method for a Krylov subspace
dimension m large enough to obtain convergence.
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(a) (b)

Figure 16. Convergence of the time-stepping algorithm dependent on (a) dimension K of Krylov subspaces
and (b) CPU time needed to determine the profile variation u for one time-step. The example used is the 1d
dewetting problem (section 5.1) with parameters as in Figure 3(b). Results are given for two sets of compu-
tational parameters—set 1 has time-step τ1/τm = 0.08 and initial profile h1 at time t1 = 10τm; set 2 has
time-step τ2 = 100τm and initial profile h2 at time t2 = 2 · 103τm $ τλ. Convergence is shown for the simple
Arnoldi method (symbols “×” for set 1, “o” for set 2) and the Cayley–Arnoldi method (symbols “∇” for set 1,
“+” for set 2).

(a) (b)

Figure 17. Convergence of the time-stepping algorithm dependent on (a) dimension K of Krylov subspaces
and (b) CPU time needed to determine the profile variation u for one time-step. The example used is the 2d
dewetting problem (section 5.2) with parameters as in Figure 9(b). Results are given for two sets of compu-
tational parameters—set 1 has time-step τ1 = 0.05τm $ τλ and initial profile h0 at time t = 22τm; set 2 has
time-step τ2 = 0.15τm $ τλ and h0 as set 1. Convergence is shown for the simple Arnoldi method (symbols
“×” for set 1, “o” for set 2) and the Cayley–Arnoldi method (symbols “∇” for set 1, “+” for set 2).

Figures 16 and 17 present selected results for the convergence of the time-stepping scheme
for the dewetting problem in the 1d and 2d cases, respectively. Both panels (a) show an
extremely slow convergence of the classical Krylov method. Krylov subspaces with dimensions
m ≈ 100 have still a relative error of 10−4. An accuracy of about 10−6 is obtained by an 800-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICAL METHODS FOR LUBRICATION EQUATIONS 513

dimensional Krylov subspace (Figure 17(a)). In contrast, with the Cayley method, the same
accuracy is obtained with Krylov subspaces of much smaller dimensions m ≈ 10, . . . , 30. For a
time-step τ smaller than the characteristic time τλ, the convergence is notably improved for the
classical Krylov algorithm only. This indicates that for this Krylov reduction the eigenvalues
are badly approximated, in constrast to a Krylov algorithm using the Cayley transform. We
find that the efficiency of the two methods is equivalent for N , 105. By “efficiency” we mean
the ratio between the time-step τ and the CPU time cost for a relative error of 10−6.

In conclusion, the Cayley transform emerges as a powerful method for performing an
accurate Krylov reduction. However, its efficiency is limited by the ILU factorization, which
considerably slows down the time-step for large systems N > 105. In this case the simple
Arnoldi procedure is preferable, and the accuracy of the time integration scheme is determined
by the Krylov approximation. Finally, the Cayley–Arnoldi reduction may be applied to higher
order schemes such as those presented in [39, 98]. Since it is not required to use another ILU
factorization this can be done at negligible cost.

Note that the estimate of the leading eigenvalue λm in the Cayley–Arnoldi reduction allows
one to evaluate the time-step τ . One assumes that the relative error εr depends on the relative
profile variation defined by εvar = ||u(1)||/||h|| and approximated using (3.9) with the Jacobian
matrix J replaced by the scalar λm. This gives the time-step

(A.10) τ =
1

λm
ln

(
1 + λmεvar

||h||
||F (h)||

)
.

Here we fix the typical value of εvar at a few percent. The relative error εr resulting from the
estimate (A.10) is rarely larger than a 10−6.

Appendix B. Comparison to classical algorithm. The emphasis of both algorithms lies
on the Cayley-transformation of J using the ILU factorization. As the complexity of this task
is O(N3/2) the CPU cost is a more important issue than in other schemes.

If one implemented a classical implicit time integrator, one would need to solve a linear
system involving the matrix J. For instance, a backward Euler scheme leads to the system
(I + Jτ)u = bτ , where b is a known vector. A typical choice for the latter is the use of an
iterative Krylov method, e.g., the GEMRES method, which is a good candidate for asymmetric
matrices. The efficiency of this method does strongly depend on the knowledge of an effective
preconditioner. Without a preconditioner, the inversion for a simple semi-implicit scheme
(backward Euler) converges very slowly and almost fails to obtain the wanted tolerance. Since
no general preconditioner exists for the asymmetric matrix J, its ILU factorization appears
to be the only systematic way to construct an effective preconditioner. Therefore, a clear
analogy exists between the exponential scheme and a semi-implicit scheme. On the one hand,
use of the Arnoldi algorithm to compute G(Jτ) is equivalent to the use of an iterative method
without preconditioner to solve the linear system in an implicit scheme. On the other hand,
use of the Cayley–Arnoldi algorithm to compute G(Jτ) is equivalent to the use of an iterative
method with LU preconditioner to solve the linear system in an implicit scheme. Judging the
complexity of the algorithm, a classical implicit and an exponential propagation algorithm are
roughly equivalent schemes at the same order. However, exponential schemes seem to have
two advantages:
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• The G and exp functions have a better leftmost spectrum filtering property than do
rational functions.

• Krylov techniques converge faster when employed for the evaluation of G(Jτ)b and
exp(Jτ) than when employed for the solution of a linear system [39].

Furthermore, the Cayley–Arnoldi exponential propagation method has the ability to give an
estimate of the leading eigenvalues, which the implicit method has not. This information
allows for an adaptive time-step that constitutes a major advantage when studying dynamics
characterized by several time-scales. In addition, it allows one to perform nonstandard stabil-
ity analysis, e.g., that employed by Münch [59] to detect a fingering instability in dewetting.

Although the shift Cayley transform is a standard method to find the rightmost eigenvalues
of an operator [101], its application in a continuation algorithm is less common. However,
when solving a linear system within the Newton algorithm one faces problems similar to
those discussed for time-stepping. Thus, an effective solution method requires the use of
the LU preconditioner. However, our algorithm does not use the ILU factorization for a
direct inversion, but rather to find the rightmost eigenvalues. The advantage of this approach
is the ability to determine the tangent direction even close to a saddle-node bifurcation.
Furthermore, at a bifurcation point, the directions of (different) bifurcating branches can be
found as set of tangent directions.

We emphasize that the numerical difficulties encountered in the time-stepping and the
continuation task are both resolved using the Cayley transform. This recalls [99], where
it is pointed out that algorithms overcoming the numerical difficulties encountered during
a time-stepping scheme can be adapted to perform the bifurcation tasks. The developed
algorithms overcome two main problems: (i) the operator has no “simple” relevant linear part
(different spatial scaling), and (ii) the “very bad” conditioning of the Jacobian. With current
computers, the Cayley–Arnoldi method is the most efficient method for a moderate system
size of N = O(105). In consequence, the scheme is difficult to adapt for 3d PDEs.
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