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We consider steady solutions of the Stokes equations for the flow of a film of fluid
on the outer or inner surface of a cylinder that rotates with its axis perpendicular
to the direction of gravity. We find that previously unobserved stable and unstable
steady solutions coexist over an intermediate range of rotation rates for sufficiently
high values of the Bond number (ratio of gravitational forces relative to surface
tension). Furthermore, we compare the results of the Stokes calculations to the
classic lubrication models of Pukhnachev (J. Appl. Mech. Tech. Phys., vol 18, 1977,
pp. 344–351) and Reisfeld & Bankoff (J. Fluid Mech., vol. 236, 1992, pp. 167–196);
an extended lubrication model of Benilov & O’Brien (Phys. Fluids, vol. 17, 2005,
052106) and Evans et al. (Phys. Fluids, vol. 16, 2004, pp. 2742–2756); and a new
lubrication approximation formulated using gradient dynamics. We quantify the range
of validity of each model and confirm that the gradient-dynamics model is most
accurate over the widest range of parameters, but that the new steady solutions are
not captured using any of the simplified models because they contain features that
can only be described by the full Stokes equations.

Key words: interfacial flows (free surface), lubrication theory, thin films

1. Introduction

The use of rotation to coat a solid body with a liquid film has numerous industrial
applications, exemplified by spin coating in microfabrication as well as spin casting
and rotational moulding at larger scales. The behaviour of a liquid film on the outer
or inner surface of a rotating solid body is also of fundamental fluid mechanical
interest being a seemingly simple free-surface flow problem. The liquid’s behaviour
is governed by the interplay between inertia, viscosity, surface tension, gravity
and rotation, which can lead to phenomena occurring on many different spatial and
temporal scales, including shock-like structures (Johnson 1988), waves and instabilities

† Email address for correspondence: Andrew.Hazel@manchester.ac.uk
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(Phillips 1960) and multiple steady and unsteady solutions (Benjamin, Pritchard &
Tavener 1993). For these reasons, the system has attracted a great deal of theoretical
and experimental interest and a comprehensive recent review on the inner flow
configuration (known as rimming flow) is given by Seiden & Thomas (2011) as part
of a more general review of rotating-drum flows.

Following the work of Moffatt (1977) and Pukhnachev (1977) on the outer flow
configuration (known as coating flow), the majority of previous theoretical research
has focused on the case when the rotating body is a circular cylinder in the limit
when the fluid film is relatively thin so that a long-wavelength analysis (lubrication
theory) can be used. At leading order, the governing Navier–Stokes equations reduce
to a single nonlinear partial differential equation for the film height as a function of
the axial and azimuthal positions only. Many different extensions to the leading-order
theory have been proposed to include the effects of surface tension (e.g. Benjamin
et al. 1993; Ashmore, Hosoi & Stone 2003), hydrostatic pressure (e.g. Tirumkudulu
& Acrivos 2001), inertia (e.g. Kelmanson 2009; Pougatch & Frigaard 2011) and
wettability (e.g. Lin et al. 2016). However, as described in detail by Kelmanson
(2009) in the context of inertial effects, any asymptotic analysis is valid only in
a limited region and different authors have chosen different dominant balances,
preventing direct comparison of their results and leading to confusion and apparently
contradictory results in the literature. Indeed, the classic mathematically convenient
rescaling of the leading-order equations by Pukhnachev (1977) actually corresponds to
non-physical parameter variations because the mass of fluid is not conserved. Thiele
(2011) resolved this particular problem by adopting a scaling based on gravitational
drainage flow (Evans, Schwartz & Roy 2004).

Early studies of coating flow were motivated by the determination of the maximum
supportable weight of liquid (Moffatt 1977; Hansen & Kelmanson 1994; Kelmanson
1995), and the predictions have been confirmed experimentally by Preziosi & Joseph
(1988). More recently, however, in both rimming and coating flows attention has
been focused on detailed asymptotic and numerical descriptions of the behaviour,
existence and stability of solutions to the plethora of different lubrication equations
(Seiden & Thomas 2011). However, natural questions to ask are whether this complex
behaviour is reproduced by the governing Navier–Stokes equations or ever observed
in experiments.

In the classic (leading-order) lubrication model linearisation of the curvature means
that the governing equation is identical for rimming and coating flow and yet,
physically speaking, the systems are quite different. As the cylinder slows down, the
rimming flow will always approach a steady solution in which the fluid forms a
puddle at the base of the cross-section; however, a corresponding steady solution for
the coating flow does not always exist, depending on the balance between surface
tension, gravity and volume of fluid. Thus, the solution structure must change between
these two cases, but it cannot do so within the classic model assumptions. Hence,
another natural question is to ask how such a change in solution structure occurs.

In this paper, we begin to address these questions in the absence of inertia by
computing steady solutions of the free-surface Stokes equations using a moving-mesh,
finite-element method combined with a novel spatially adaptive pseudo-arclength
continuation method. This approach allows us to examine the multiple steady
solutions that can arise. To the best of our knowledge, previous numerical solutions
to the Stokes equations (Peterson, Jimack & Kelmanson 2001; Tirumkudulu &
Acrivos 2001; Benilov, Lapin & O’Brien 2012) have always used time-stepping to
approach steady states, which precludes examination of the complete steady solution
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structure because the unstable steady states are not accessible. We compare our
results to different lubrication approximations and determine the regions of validity of
each approximation. We revisit leading and first-order composite lubrication models
used by previous authors and also derive a new lubrication approximation based
on a gradient-dynamics approach to thin-film equations. Such a formulation was
initially proposed by Mitlin (1993) for a simple lubrication model of dewetting (see
also Thiele 2010), and was recently extended to drops and films of mixtures and
suspensions on horizontal substrates in relaxational settings (Thiele, Archer & Plapp
2012; Thiele, Todorova & Lopez 2013; Thiele, Archer & Pismen 2016); as well as
in coating processes like dip coating and Langmuir–Blodgett transfer (see review by
Wilczek et al. 2015). Here we reformulate the simple lubrication model for films
on a rotating cylinder as gradient dynamics with the energy computed from the
lubrication approximation and then obtain a notably better model by using the exact
energy instead. This model is found to exhibit good agreement with the full Stokes
calculations for the widest range of parameters.

In § 2, we formulate the Stokes, § 2.1, and lubrication, § 2.2, models and then
describe our numerical methods for their solution in § 3. We present the general
behaviour of the Stokes system in the coating (§ 4.1) and rimming (§ 4.2) flow
configurations and then discuss comparison with the simplified models in § 4.3.
Finally, we draw our conclusions in § 5.

2. Mathematical model
We consider the two-dimensional flow of an incompressible Newtonian liquid film

on the outside (coating) or inside (rimming) surface of a rotating cylinder. We shall
assume that the effects of liquid inertia are negligible, but the effects of gravity
and surface tension are not. In what follows, R is the radius of the cylinder, ω
is the constant angular speed of rotation about its axis, ρ is the density of the
liquid, µ is its dynamic viscosity, γ is the surface tension of the air–liquid interface
and g is the acceleration due to gravity. The two configurations are sketched in
figure 1. We non-dimensionalise by choosing R, ρgR2/µ, µ/(ρgR) and ρgR as
length, velocity, time and pressure scales, respectively, which leads to parameter-free
bulk (Stokes) equations, with the dimensionless parameters occurring only in the
boundary conditions.

2.1. Stokes model
The flow of the liquid is governed by the dimensionless Stokes equations

∇p=∇2u− j, (2.1)
∇ · u= 0, (2.2)

where u is the dimensionless velocity of the liquid, p is the dimensionless liquid
pressure and j is a unit vector in the vertical direction. The boundary condition at
the cylinder wall is the no-slip condition,

u=Ωt (2.3)

where t is a tangent vector to the cylinder surface in the direction of rotation and

Ω =
µω

ρgR
, (2.4)
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(a) (b)

Coating flow Rimming flow

g

j

i

FIGURE 1. (Colour online) Sketches of the two flow configurations: a film of viscous
liquid on the (a) outside; or (b) inside of a rotating cylinder. A gravitational field g acts
normal to the axis of rotation and the cylinder rotates with an angular frequency ω. The
direction of rotation as well as the polar coordinate system adopted in the lubrication
models are shown in the sketches.

is the rotation number which is the ratio between the rotational speed (ωR) and
the chosen velocity scale (ρgR2/µ). At the free surface, we impose the kinematic
boundary condition

u · n= ∂t x · n, (2.5)

where x is a dimensionless position vector to a point on the free surface, n is the
outward unit vector to the free surface and t is the dimensionless time; and the
dynamic condition

σ · n= Bo−1κn, (2.6)

where the surrounding gas is assumed to be inviscid and at a constant reference
pressure, which we set to zero. In the dynamic boundary condition (2.6) Bo is the
Bond number,

Bo=
ρgR2

γ
, (2.7)

which measures the importance of gravitational forces relative to surface tension
forces, κ is the dimensionless curvature of the free surface and σ , the stress tensor,
is defined by

σ =−pI+
[
∇u+ (∇u)T

]
. (2.8)

In addition, for unsteady solutions we must also specify an initial condition

h(x, 0)= h0(x), (2.9)

where h= h(x, t) is the dimensionless film thickness and h0 is a given initial profile.
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For steady solutions, there is no initial condition and instead the mass of liquid is
prescribed, which is enforced through the integral condition

1
2

∮
x · n ds= 2πλ

(
1±
λ

2

)
, (2.10)

where the line integral is taken along the free-surface boundary, λ is the aspect ratio,

λ=
D
R
, (2.11)

and D is the nominal average dimensional film thickness. Note that 2πλ(1± λ/2) is
the dimensionless volume per unit length of a uniform film of thickness D on the
outer (positive sign) or inner (negative sign) wall of the cylinder.

2.2. Lubrication model
We adopt a dimensionless polar coordinate system (r, θ) with origin at the centre of
the cylinder and θ measured upward from the horizontal, see figure 1. The free surface
is then given by r = 1± h, where h= h(θ, t) is, as stated before, the dimensionless
film thickness and the upper and lower signs correspond, in that order, to the coating
and rimming problems. After Evans et al. (2004), we rescale the system via

u= λ3u∗, v = λ2v∗, t= t∗/λ2,

p= p∗, h= λh∗, r= 1± λy∗, κ = λκ∗,

}
(2.12)

where u and v are the radial and azimuthal components of the velocity and the
variables marked by the asterisks are the scaled variables. Assuming λ� 1, lubrication
theory can be employed to reduce the governing equations (2.1)–(2.6) to the following
nonlinear evolution equation for the film height (asterisks omitted)

∂th+ ∂θ

[
Ωλh−

h3

3
cos θ + Boλ−1 h3

3

(
∂3
θ h+ ∂θh

)]
= 0 (2.13)

(Pukhnachev 1977; Reisfeld & Bankoff 1992), where Ωλ is a modified rotation
number,

Ωλ =
Ω

λ2
=
µωR
ρgD2

, (2.14)

and Boλ is a modified Bond number,

Boλ =
Bo
λ
=
ρgR3

γD
. (2.15)

The rescalings have specifically been chosen so that the rotation and gravitational
terms occur at leading order in λ in the governing equations. Note that O(λΩλ,
λBo−1

λ , λ) terms have been omitted. In the steady case, ∂th = 0 and thus equation
(2.13) can be immediately integrated to give the flux equation

q=Ωλh−
h3

3
cos θ + Boλ−1 h3

3
(∂3
θ h+ ∂θh), (2.16)

where the constant of integration, q, represents the unknown (dimensionless) flux
required to satisfy the mass conservation condition which, to leading order in λ, is
given by ∫ 2π

0
h dθ = 2π. (2.17)
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The first, second and third terms in the right-hand side of equation (2.16) represent,
respectively, the rotational viscous drag, gravity and surface tension leading-order
effects. Note that equations (2.16) and (2.17) are identical for rimming and coating
flows and we shall term this the standard lubrication model (SLM). The SLM has
been widely studied and it is the most commonly used lubrication model to describe
the motion of a viscous film on the surface of a rotating cylinder (e.g. Pukhnachev
1977; Reisfeld & Bankoff 1992; Hinch & Kelmanson 2003; Karabut 2007; Benilov,
Benilov & Kopteva 2008; Badali et al. 2011; Thiele 2011).

More recently Evans et al. (2004) and Benilov & O’Brien (2005) derived the
following flux equation

q = Ωλh−
h3

3
cos θ + Boλ−1 h3

3

(
∂3
θ h+ ∂θh

)
± λ

(
Ωλ

h2

2
−

h4

2
cos θ −

h3

3
∂θh sin θ

)
, (2.18)

or, written alternatively,

q = Ωλh
(

1± λ
h
2

)
+ Boλ−1 h3

3

(
∂3
θ h+ ∂θh

)
−

h3

3

[(
1± λ

h
2

)
cos θ ± λ∂θ(h sin θ)

]
, (2.19)

where now O(λ2Ωλ, λBo−1
λ , λ

2) terms have been omitted. Note that the hydrostatic
pressure is represented by the final two terms at O(λ) in (2.18). Also, it is worth
mentioning that in the asymptotic derivation of this flux equation, both works assumed
that Boλ is O(λ), in contrast to Pukhnachev (1977), Reisfeld & Bankoff (1992), who
assumed that Boλ is O(1) in their derivations. Equation (2.18) does distinguish the
rimming- and coating-flow cases and, moreover, including terms of O(λ) ensures exact
mass conservation via the integral constraint∫ 2π

0

(
h± λ

h2

2

)
dθ = 2π

(
1±
λ

2

)
, (2.20)

unlike (2.17). We shall term equations (2.18) and (2.20) the extended lubrication
model (ELM). The ELM has been mostly used to investigate the stability of rimming
flows on rotating cylinders when inertial effects (which here are neglected) are taken
into account (e.g. Benilov & O’Brien 2005; Pougatch & Frigaard 2011).

In appendix B, we use a variational approach to derive the following model, which
we believe has not been studied before,

q=Ωλh−
h3

3
∂θ
[
−Bo−1

λ κ + (1± λh) sin θ
]
. (2.21)

Note that to leading order, equation (2.21) is equivalent to equation (2.13). The
previous equation can be cast into gradient-dynamics form (in the frame moving with
the cylinder surface) as

q=Ωλh−Q∂θ

[
(1± λh)−1 δF

δh

]
, (2.22)
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where Q = Q(h) = h3/3 is known as the mobility factor and δF/δh represents the
variational derivative of the dimensionless free energy F = F[h] =

∫
Bo−1
λ ds +∫ ∫

r sin θ dA, consisting of surface energy (surface tension) and potential energy
(gravitational) terms.

In this model, unlike in the previous two, we do not use any approximation for the
curvature but use the full expression

κ =
∓λ−1(1± λh)2 ∓ 2λ (∂θh)2 + (1± λh)∂2

θ h[
(1± λh)2 + λ2(∂θh)2

]3/2 . (2.23)

Consequently, the full expression for the free energy F[h] is also retained. We shall
term equations (2.22) and (2.20) the variational lubrication model (VLM). Using the
exact curvature has been found to improve the accuracy of lubrication models in a
number of applications, including liquid-film breakup (Gauglitz & Radke 1988) and
models of airway closure (Heil & White 2002). The gradient dynamics viewpoint
allows us to reinterpret this well-known ‘exact-curvature trick’ as being a means
to ensure that the free energy is exact, with only the mobility being approximate.
In other words, static equilibria will be correctly represented, but dynamic effects
are approximated. Note that this approach is not ‘rational’ in a strict asymptotic
sense because the neglected terms are not all of the same order in λ. Nonetheless,
the resulting equations require only a modest increase in computational effort and
can yield significantly improved results. We remark that, of course, when working
at a finite value of the small parameter, the fact that an approximation is formally
asymptotic is in itself no guarantee of a good approximation. In systems where the
results are sensitive to energy and mass conservation then the approach advocated
here may also prove to be more accurate at finite values than a formal asymptotic
analysis.

We note that the lubrication models presented in this section are based not only on
the assumption that λ� 1, but also on the more restrictive assumption that the Stokes
approximation is valid. As shown by Evans et al. (2004), neglect of the inertial terms
in the lubrication approximation corresponds to neglect of terms of O(λ2Re), where

Re=
ρ2gD2R
µ2

(2.24)

is the Reynolds number. Thus, inertial effects will not enter the SLM or ELM,
provided that Re� 1, consistent with the assumption that the Stokes equations are
valid. Evans et al. (2004) also confirmed the validity of the Stokes approximation for
the experimental results obtained by Yih & Kingman (1960) and also for the simple
qualitative experiment reported by Moffatt (1977), for which O(λ2Re)∼ 10−3.

3. Numerical methods
3.1. Stokes model

We solve the governing equations (2.1)–(2.9) using a finite-element method (FEM)
implemented within the open-source software oomph-lib (Heil & Hazel 2006)
and previously described in Hazel et al. (2012). Briefly, we employ a standard
two-dimensional Cartesian coordinate system (x, y) and the a priori unknown
liquid domain is discretised using P2P1 (Taylor–Hood) triangular elements (see e.g.
Gresho & Sani 1998). These LBB (Ladyzhenskaya–Babuska–Brezzi) stable elements
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(a) (b)

FIGURE 2. Examples of triangular meshes generated in the rimming-flow configuration at
λ= 0.2, Ωλ = 1 and Boλ = 100: (b) was generated by refining (a).

employ a continuous piecewise quadratic approximation for the velocity components
and a continuous piecewise linear approximation for the pressure field. An initial
mesh is created using Triangle (Shewchuk 1996) and during the computations,
the nodal positions are updated by treating the mesh as a pseudo-elastic solid
body. The unknown nodal positions are determined by solving the equations of
large-displacement elasticity, subject to the kinematic boundary condition (2.5),
imposed using Lagrange-multiplier-like variables to apply a normal force on the
pseudo-solid along the interface. The dynamic boundary condition (2.6) is directly
incorporated into the weak form of the Navier–Stokes equations, and we simplify the
curvature term by the surface divergence theorem. The flow is enclosed, which means
that a reference pressure must be specified and we choose the external pressure to
be zero and use the mass conservation constraint (2.9) to determine a single selected
pressure value within the liquid domain. The system is linearised using a global
Newton method and solved using a direct solver.

During parameter variations, the liquid domain can change morphology significantly
and the domain is remeshed to avoid the elemental distortion and maintain accuracy
of the solution; figure 2 shows the same solution for two different mesh resolutions.
The previous solution is projected onto the new mesh and used as the initial guess
to the Newton method. Elemental sizes in the new mesh are based on error estimates
obtained from the ZZ flux-recovery error estimator (Zienkiewicz & Zhu 1992). We
use pseudo-arclength continuation (Kuznetsov 2010; Dijkstra et al. 2014) to follow
the solution branches round limit points that can develop. The combination of spatial
adaptivity and continuation in free-surface problems is a novel numerical technique
and requires projection of auxiliary variables, specifically an estimate of the tangent
vector and previous converged solution, onto the new mesh. Typically between 2000
and 6000 elements are used and we have confirmed that repeating computations with
smaller error tolerances, and therefore increasing the numbers of elements does not
affect the results to graphical accuracy, as shown by calculations at two different mesh
resolutions for Boλ = 2000 in figure 7. In addition, we have also confirmed that the
results of our Stokes calculations agree with those of previous authors (Peterson et al.
2001; Tirumkudulu & Acrivos 2001).
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3.2. Lubrication model
We use a similar finite-element approach to solve the lubrication models developed
in § 2.2 also implemented within oomph-lib. All three models can be written in the
form

∂θ

[
AΩλh+

h3

3
(Boλ∂θB− C)

]
= 0, (3.1)

where

A=A(h)=

1, in the SLM and VLM,

1+ α
h
2
, in the ELM,

(3.2)

with

α =

{
λ, in the coating case,
−λ, in the rimming case,

(3.3)

B=B(h, ∂θh, ∂2
θ h)=

{
−α−1

+ ∂2
θ h+ h, in the SLM and ELM,

κ, in the VLM,
(3.4)

C = C(h, ∂θh, θ)=
{

cos θ, in the SLM,
A cos θ + α∂θ(h sin θ), in the ELM and VLM.

(3.5)

We then use the substitutions v1 = h and v2 = B to transform the equation (3.1) into
a system of two coupled second-order ordinary differential equations:

∂θ

[
AΩλv1 +

v3
1

3
(Boλ∂θv2 − C)

]
= 0,

B− v2 = 0.

 (3.6)

These equations are converted into weak form and discretised by standard Lagrange
finite elements with quadratic approximation for both variables v1 and v2. The
equations are solved under the periodic boundary conditions v1(θ)= v1(2π+ θ) and
v2(θ)= v2(2π+ θ) and we use the mass conservation constraint, i.e. equation (2.17)
in the SLM or equation (2.20) in the ELM and in the VLM, to determine a single
selected height value within the domain. The domain is simply θ ∈ [0, 2π] which
is initially divided into a uniform mesh and we use spatial adaptivity guided by a
Z2 error estimator to refine the solution in regions of rapid variation. We again use
pseudo-arclength continuation to follow the solution around limit points. The system
of equations is linearised using Newton’s method and solved by a direct linear solver.
Typically 300 elements are required and solutions were validated by comparison with
the Stokes flow solutions in the expected region of validity; and by recomputing
selected cases with finer error tolerances.

4. Results
The system is governed by the three control parameters Ω , Bo and λ, which can

be interpreted as the rotation rate of the cylinder; strength of gravity relative to
surface tension; and mass of liquid respectively. Note that other authors have used
different combinations of variables as their control parameters, but there are always
three parameters if surface tension effects are included in the model. Our choice of
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0.001
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(a) (b) (c) (d )

(e)

FIGURE 3. (Colour online) Example of coating-flow profiles obtained from the numerical
solution of the Stokes equations for λ= 0.1 and Boλ = 20 for: (a) Ωλ = 3; (b) Ωλ = 1.5;
(c) Ωλ= 0.5; (d) Ωλ= 0.001. The upper panels illustrate the film profiles on the cylinder
while the lower panel shows the same profiles as functions h(θ).

parameters is motivated from physical experiments: for a given experimental set-up,
Bo is likely to remain fixed, but the rotation rate Ω and the mass of fluid λ can
be adjusted easily. In the following sections we present all results in terms of the
parameters in the lubrication theory scaling, but, unless stated otherwise, we keep the
nominal film thickness fixed at λ= 0.1, so that Bo= 0.1Boλ and Ω = 0.01Ωλ maintain
the same proportions of the unscaled values. We present parameter studies in which
the Bond number is fixed, but the rotation parameter is varied, corresponding to
experiments in which the physical rotation rate is varied, but the physical properties
of the liquid remain constant. We first examine the general behaviour of the coating
and rimming systems under Stokes flow, before turning our attention to the validity
and quality of the various lubrication approximations.

4.1. Coating flow
Figure 3 presents film profiles at different rotation rates for Boλ= 20. At high rotation
rates (Ωλ = 3, figure 3a) the film is approximately symmetric about the horizontal
midplane of the cylinder with a maximum thickness at θ ≈ 0 (where gravitational
drainage acts against rotation) and minimum at θ ≈ π (where gravitational drainage
acts with the rotation). As Ω increases further these extrema decrease in amplitude
and the uniform-film limit is approached. Conversely, as the rotation rate decreases
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60
100
200

s

FIGURE 4. (Colour online) Fluid perimeter s for coating flow as a function of the rotation
number Ωλ for different Bond numbers Boλ, as obtained from the numerical solution of
the Stokes equations for λ = 0.1. The lower panel is an expanded view of the region
marked by the box in the upper panel for the case Boλ= 200 only. The multiple solutions
at Ωλ = 1.9 (marked by circles on the vertical dotted line) are shown in figure 5.

gravitational drainage increases and the maximum film thickness also increases and
moves against the direction of rotation towards the base of the cylinder, θ = 3π/2.
As Ω→ 0, the fluid adopts a pendant-drop configuration. We have not computed the
case where the cylinder is static (Ω = 0), because our numerical simulations assume
continuous coating and must therefore mesh the vanishingly thin films on the upper
surface of the cylinder, which becomes prohibitively expensive. At Ω=0.001, the film
thickness is less than 1.6× 10−2R outside the drop region.

Rather than including a large number of film profiles, we summarise the steady
solutions for coating flow in figure 4 by plotting length of the liquid’s outer perimeter
as a function of rotation rate Ωλ for different values of Boλ. The perimeter is a global
measure of the solution that has the advantage, compared to the L2 norm of h(θ)
used by Thiele (2011) and others that it remains well defined in cases when the
surface becomes multivalued at fixed θ . When the Bond number is small (Boλ = 20),
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(e)

(a) (b) (c) (d )

FIGURE 5. (Colour online) Example of a coating flow with multiple steady states as
obtained from the numerical solution of the Stokes equations for λ = 0.1, Boλ = 200
and Ωλ = 1.9: (a) s ≈ 6.91; (b) s ≈ 6.93; (c) s ≈ 6.96; (d) s ≈ 7.82. The upper panels
illustrate the film profiles on the cylinder while the lower panel shows the same profiles
as functions h(θ).

the surface tension effects are dominant and only one solution exists for each value
of Ωλ. As the Bond number increases, gravitational forces become more important
relative to the capillary forces and a limit point develops for the coating flow, which
corresponds to the loss of the static pendant-drop solution. Therefore, this effect is not
expected to be captured by the classic lubrication theory. Solutions on the (unstable)
upper branch are characterised by the presence of a local neck region, see figure 5(d).
This neck becomes thinner as the solution evolves and, consequently, it becomes
hard to investigate subsequent limit points that may occur at large rotation numbers.
We note that with increasing Boλ, the limit point moves to larger values of Ωλ and
that, in addition, further limit points can be observed. For instance, for Boλ = 200,
figure 4 shows that within a small range of rotation numbers (1.85.Ω . 1.92) there
are at least four steady-state solutions for λ= 0.1. Figure 5 shows the four possible
solutions and we conjecture that an increasing number of such solutions exist as Boλ
increases. The stability of these steady-state solutions was investigated using time
dependent simulations. We concluded that the profiles shown in figure 5(a,c) are
stable to small perturbations, whereas the profiles shown in figure 5(a,d) are unstable
to small perturbations. Thus, the three limit points are caused by the same eigenvalue
crossing the imaginary axis three times. The system is bistable in this region and the
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FIGURE 6. (Colour online) Example of rimming-flow profiles obtained from the numerical
solution of the Stokes equations for λ= 0.1 and Boλ= 200 for: (a) Ωλ= 3; (b) Ωλ= 1.5;
(c) Ωλ = 1.0; (d) Ωλ = 0.01. The upper panels illustrate the film profiles on the cylinder
while the lower panel shows the same profiles as functions h(θ).

final solution reached will depend on the initial conditions. We have not explored the
boundaries of the basins of attraction of each solution.

4.2. Rimming flow
Figure 6 shows film profiles at different rotation rates for Boλ = 20 and is analogous
to figure 3. The general evolution is similar in that at high rotation rates the film
is approximately uniform and then develops a thicker region near θ = 0 and a
concomitant thinner region near θ = π as the rotation rate decreases. As Ωλ → 0,
the film thickness increases and the thickest region moves against the direction of
rotation to the base of the cylinder where it forms a puddle, rather than a pendant
drop.

Once again we present a global picture of the steady solutions for rimming flow
in figure 7, which shows the liquid perimeter s as a function of the rotation number
Ωλ for different Bond numbers. On comparison to figure 4, one observes significant
differences in behaviour between rimming and coating flows. Firstly, figure 7 suggests
that for every value of Ωλ, we have at least one steady solution, regardless of the
value of Boλ, as argued in the introduction. Secondly, we can see that although
multiple solutions do occur for rimming flows, they do so at greater values of the
Bond number and only over a limited range of Ωλ. Indeed the behaviour in rimming

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 L

ou
gh

bo
ro

ug
h 

U
ni

ve
rs

ity
, o

n 
28

 N
ov

 2
01

7 
at

 2
1:

58
:0

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

75
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.756


On the multiple solutions of coating and rimming flows on rotating cylinders 553
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5.67

5.68

5.69

5.64

5.69

5.74

5.79

5.84

120
500
2000 (497-3978 elements)
2000 (2371-6061 elements)

5.89

10 2 3

s

FIGURE 7. (Colour online) Fluid perimeter s for rimming flow as a function of the
rotation number Ωλ for different Bond numbers Boλ, as obtained from the numerical
solution of the Stokes equations for λ = 0.1. The results for Boλ = 2000 are presented
for two different mesh resolutions, demonstrating agreement to graphical accuracy. The
lower panel is an expanded view of the region marked by the box in the upper panel for
the case Boλ = 2000 only. The multiple solutions at Ωλ = 1.55 (marked by circles on the
vertical dotted line) are shown in figure 8.

flows is similar to that observed in coating flows at Bond numbers reduced by a
factor of approximately 10. This increase in Bond number in rimming flows is in
part a consequence of the change in sign of the interface curvature, meaning that,
as recognized by Moffatt (1977), the surface tension acts as a stabilising force in
rimming flow in the sense that a local perturbation that increases (decreases) the fluid
height leads to a local increase (decrease) in curvature and hence a local increase
(decrease) in fluid pressure, which will drive fluid out of (into) the perturbed region
restoring the fluid to its original configuration. In coating flow, however, the altered
sign of the curvature means that surface tension is destabilising. The increase in
Bond number described above is also due to the fact that for the same rigid cylinder,
the magnitude of the curvature (and hence surface-tension-induced normal stress
difference) is always greater in rimming flow compared to coating flow. Moreover,
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FIGURE 8. (Colour online) Example of a rimming flow with multiple steady states as
obtained from the numerical solution of the Stokes equations for λ= 0.1, Boλ= 2000 and
Ωλ= 1.55: (a) s≈ 5.656; (b) s≈ 5.665; (c) s≈ 5.671. The upper panels illustrate the film
profiles on the cylinder while the lower panel shows the same profiles as functions h(θ).

gravity also acts to stabilise perturbations in film thickness on the lower half of
the cylinder in rimming flow, but will destabilise equivalent perturbations in coating
flow. Figure 8 shows the multiple solutions that can occur and although they are
superficially similar to the shock-like solutions observed by Benilov et al. (2008) in
a lubrication model, these new solutions occur only in the Stokes flow simulations
because they feature small scale non-parallel motions that are not captured by the
lubrication models, see § 4.3 and § A.1 for further details. We again conducted time
dependent numerical investigations to determine the stability of the profiles shown
in figure 8. The profiles in figure 8(a,c) are stable to small perturbations, while
the profile in figure 8(b) is unstable to small perturbations. Thus, we again have
a bistable region albeit over a relatively small region of parameter space. We have
also confirmed our simulations are not within the region in which Benilov et al.
(2012) claim there are no stable, steady solutions. In § A.2, however, we show that
this ‘forbidden’ region does, in fact, contain stable, steady solutions, but that the
solutions all have a local region in which the interface overturns and so its position
can no longer be represented by a single-valued function of the polar coordinate θ .
The numerical method adopted by Benilov et al. (2012) assumed that the interface
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FIGURE 9. (Colour online) Fluid perimeter s for coating flow as a function of the rotation
number Ωλ for λ= 0.1: (a) Boλ = 20; (b) Boλ = 60; (c) Boλ = 100; (d) Boλ = 200. The
solid line shows the numerical solution of the Stokes equations; the uniform dashed line
shows the numerical solution of the standard lubrication model (SLM); the non-uniform
dashed line shows the numerical solution of the extended lubrication model (ELM); the
dotted line shows the numerical solution of the variational lubrication model (VLM).

position was a single-valued function of θ and so could not capture these solutions.
We present a more detailed comparison between our results and those of Benilov
et al. (2008) and Benilov et al. (2012) in appendix A.

4.3. Lubrication theory versus Stokes
We now examine how well the various lubrication theories presented in § 2.2
reproduce the results of the Stokes flow simulations. Figures 9 and 11 show the
same data as in figures 4 and 7 respectively, but with the addition of the results from
the three lubrication models. For clarity, the results for the four different values of
Boλ are shown in separate panels. Figures 10 and 12 show the flux q as obtained via
the Stokes flow simulations and the lubrication models under investigation.

For the coating flow (figures 9 and 10) at high rotation rates Ωλ & 2 all models
agree well (to within graphical accuracy), for the Bond number presented. As the
rotation rate decreases the SLM and ELM begin to underpredict the true (Stokes
flow) perimeter and to overpredict the true flux. As might be expected, the ELM
is in closer agreement, but both models are noticeably in error. The underprediction
(perimeter) and overprediction (flux) are a consequence of the approximation of the
curvature term, which causes the interface to deform less in response to changes in
fluid pressure. Importantly, neither SLM nor ELM can capture the limit point that
develops when the pendant-drop solution ceases to exist. This is again a consequence
of the approximated curvature, which leads to inaccuracies in the hydrostatic balance
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FIGURE 10. (Colour online) Flux q for coating flow as a function of the rotation number
Ωλ for λ= 0.1: (a) Boλ= 20; (b) Boλ= 60; (c) Boλ= 100; (d) Boλ= 200. The graph style
is the same as in figure 9.

of the pendant drop at large values of Boλ. In contrast, the VLM is in good agreement
(to graphical accuracy) with the Stokes flow calculations for a much larger range of
Bond numbers and can even capture the limit point associated with the loss of the
pendant-drop solution. For the highest values of Boλ, the VLM solutions differ from
the Stokes simulations at lower rotation rates. The gross qualitative behaviour is
correct, but the multiple solutions near the limit point (cf. lower panel of figure 4)
are not reproduced by the VLM suggesting that they involve (small) Stokes regions
in which the velocity field differs from the approximate parabolic profile in the
lubrication models.

For rimming flow, the ELM and VLM are in reasonable agreement with the
Stokes solutions for the majority of cases, which is because the curvature variations
as the static puddle solution is approached are relatively small and the linearised
curvature approximation remains good. We note, however, that the SLM is always
in significant error both quantitatively and qualitatively: the SLM predicts regions of
multiple solutions, identified by Benilov et al. (2008), that are not present in the full
field equations for our chosen film thickness. Here, we have confirmed by numerical
experiment that it is the lack of the hydrostatic pressure term in the SLM that leads to
the presence of these multiple solutions because in its absence there is no penalty for
changing the interface height. Although the hydrostatic term is a small perturbation
relative to the initial film thickness, the multiple solutions in the SLM occur in
the region where a sufficiently thick film has formed that the hydrostatic term is
significant. We should remark that the presence of a hydrostatic term at leading order
in thin-film equations does not preclude the existence of multiple solutions in other
flow configurations, e.g. on an inclined plate (Benilov et al. 2010).

Finally, we summarise our results by identifying regions of validity of each model
within the Boλ–Ωλ phase space. In figure 13(a), the respective regions above the
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FIGURE 11. (Colour online) Fluid perimeter s for rimming flow as a function of the
rotation number Ωλ for λ= 0.1: (a) Boλ = 20; (b) Boλ = 120; (c) Boλ = 500; (d) Boλ =
2000. The solid line shows the numerical solution of the Stokes equations; the uniform
dashed line shows the numerical solution of the standard lubrication model (SLM); the
non-uniform dashed line shows the numerical solution of the extended lubrication model
(ELM); the dotted line shows the numerical solution of the variational lubrication model
(VLM).

curves in solid, dashed and dot-dashed lines represent the areas in which the coating
perimeter obtained by the SLM, ELM and VLM are within 1 % of the coating
perimeter obtained by solving the full Stokes equations for λ = 0.1. We can see
that in the coating case the SLM and ELM have a very similar performance, but
that the VLM is in better agreement with the Stokes equations for a wider range of
parameters. Note that if limit points were present only the lower branch of solutions
was used in the construction of this Figure. In figure 13(b), the markers represent
the location of the limit points in the Boλ−Ωλ plane for the Stokes equations (black
circles) and the VLM (violet crosses). No limit points are found using the SLM
or ELM. In the VLM, where the full expression of curvature is maintained, the
agreement is not only better but it is also the only considered model that captures
the limit point obtained with the full Stokes equations.

To measure the importance of using the full curvature expression (κ), given in
(2.23), rather than its linearised version κ0 = −α

−1
+ ∂2

θ h + h in the VLM, we
introduce the following relative integral error measure

ε=

√∫ 2π

0
(κ − κ0)

2 dθ√∫ 2π

0
κ2 dθ

. (4.1)
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FIGURE 12. (Colour online) Flux q for rimming flow as a function of the rotation number
Ωλ for λ= 0.1: (a) Boλ = 20; (b) Boλ = 120; (c) Boλ = 500; (d) Boλ = 2000. The graph
style is the same as in figure 11.
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FIGURE 13. (Colour online) Assessment of the regions of validity of the different models
for coating flow for λ = 0.1. (a) Regions above each curve are those for which the
perimeter obtained by each different model is within 1 % of the perimeter obtained from
the full Stokes equations: SLM (solid red curve); ELM (dashed green curve); VLM
(dot-dashed blue curve). As expected for sufficiently large Boλ and sufficiently small Ωλ,
all the lubrication models become inaccurate. (b) Location of the limit point in the Stokes
equations (black circles) and VLM (violet crosses). No limit point is predicted in the SLM
or ELM.

Figure 14 shows ε as a function of the rotation number (Ωλ) for λ= 0.1 and Boλ= 20,
60 and 100. Clearly for Boλ = 20, we can see that when the surface tension effects
are dominant (relatively small Bond number), retaining the full curvature expression
does not represent a significant difference neither quantitatively nor qualitatively. For
Boλ = 60 and 100, there is an excellent agreement between κ and κ0 in the regions
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FIGURE 14. (Colour online) The relative integral error measure ε as a function of the
rotation number Ωλ for λ = 0.1 and different Bond numbers Boλ as obtained via the
numerical solution of the VLM. The green and the blue circular dots represent the location
of limit point for Boλ = 60 and 100, respectively.

where the free surface is essentially a weakly deformed circle. However, when we
decrease the rotation rate of the cylinder (decrease Ωλ) it becomes evident that the
use of κ0 causes major changes in the coating profiles. We have verified that when
one uses κ0 rather than κ in any of our lubrication models, there is always exactly
one steady-state solution for every rotation number, but if we use simply κ instead,
this is not necessarily true as we can see by the existence of limit points for Boλ> 60.

In the case of rimming flow the regions of validity of the models are shown in
figure 15(a). We note that for 0 6 Boλ 6 1000 both perimeters obtained via the
ELM and VLM are always within 1 % of the perimeter obtained via the full Stokes
equations for λ = 0.1. Thus, the region above the solid line represents the area in
which the rimming perimeter obtained by the SLM is within 1 % of the rimming
perimeter obtained by solving the full Stokes equations for λ = 0.1. In figure 15(b),
the limit points for the SLM are plotted in the Boλ–Ωλ plane, which means that
the area inside the path of limit points represents zones in which there are multiple
steady solutions in the SLM. Although this plot is shown for λ = 0.1, this region
does not depend on the choice of the aspect ratio λ, because the governing equations
in the SLM are independent of λ. For λ = 0.1, there is no multiple solution zone
for 0 6 Boλ 6 1000 in the ELM, nor in the VLM. Although we do not show the
results for different film thicknesses, we have investigated the case λ = 0.05 when
both these models predict the existence of such a zone, auguring for Boλ & 800.
Nonetheless, these multiple solutions are not reflected in the full Stokes equations,
for which bistability can occur at even higher values of Boλ & 1000. In addition,
we also observe that the multiple-solution zones predicted in the ELM and in the
VLM for λ= 0.05 are roughly the same, which means that the inclusion of the full
curvature expression in the rimming problem, does not qualitatively affect the solution
structure as it does in the coating case.
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FIGURE 15. (Colour online) Assessment of the regions of validity of the different models
for rimming flow. (a) For the parameter range given the perimeter obtained from the VLM
and ELM is always within 1 % of that obtained from the Stokes equations for λ6 0.1. For
the SLM, the perimeter is within 1 % of the Stokes solution above the solid red curve.
(b) Location of the limit points in the lubrication models SLM (blue crosses) for λ= 0.1.
The ELM and VLM do no exhibit limit points when λ = 0.1 in the parameter regime
shown. The Stokes solutions do not exhibit limit points in this regime.

5. Conclusions
In this paper, we have considered the steady solutions of a film of viscous,

incompressible Newtonian fluid on the inside (rimming) or outside (coating) of a
cylinder rotating with its axis perpendicular to the direction of gravity. In particular,
we have assessed the ranges of validity of lower-dimensional lubrication models and
how the qualitative difference between rimming and coating flows can be incorporated
into such a model framework. We have used a novel spatially adaptive arclength
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continuation method combined with finite-element discretisations to solve both the
two-dimensional, free-surface Stokes equations and three different lubrication models.
Two of the lubrication models have been developed by other authors, but we present
a new gradient-dynamics model in which the full expressions of surface and potential
energy are taken into account and only the mobility is approximated. This new
variational lubrication model is found to exhibit good (less than 1 % relative error in
total fluid perimeter) agreement with the Stokes solutions over the widest range of
parameters.

We find that using the correct surface energy, i.e. including the exact curvature and
the hydrostatic pressure gradient, is required to predict the existence of a limit point
that occurs in the coating-flow configuration at low rotation rates. The appearance
of the limit point corresponds to the loss of the static pendant-drop solution for
sufficiently weak surface tension. In the rimming-flow configuration, no such limit
point exists because a static solution, in which fluid accumulates at the base of the
cross-section, is always possible. The curvature of the interface for this static solution
is relatively small and the behaviour can be well approximated by a linear model,
provided that the hydrostatic pressure variation through the thickness of the fluid
layer is included. Hence the lubrication models provide more accurate predictions
for rimming flow compared to coating-flow configurations with one important
exception: the standard (leading-order) lubrication model predicts the existence of
multiple solutions, first reported by Benilov et al. (2008) that are not present in the
two-dimensional Stokes model for the film thicknesses studied (λ > 0.05). For the
thicker films (λ= 0.1), inclusion of the hydrostatic pressure variation through the film
thickness is sufficient to suppress these multiple solutions.

Our simulations also demonstrate that the Stokes equations possess previously
unobserved multiple, stable and unstable, solutions in both rimming and coating
configurations for sufficiently large Bond numbers and intermediate rotation rates.
For rimming and coating flows, the system exhibits bistability for these parameters
and the final equilibrium state depends on the initial conditions. The alternative
solutions feature local regions of increased curvature in which the fluid velocity is
relatively low, corresponding to regions in which there is dominant (quasi-static)
balance between the hydrostatic pressure gradient and surface tension. This balance
would not be expected to occur until the capillary length is sufficiently small, at least
comparable to the greatest value of the local film thickness. The average film thickness
is comparable to the capillary length when D∼R/

√
Bo, or Boλ∼ λ−3

≈ 1000, for our
nominal film thickness of λ = 0.1. The multiple solutions are seen at lower values
of Boλ in the coating flow configuration because both gravity and surface tension act
to increase the local film thickness, compared to the rimming flow where they act
to decrease it. These new solutions cannot be found by using any of the simplified
lubrication models because they contain regions in which the velocity field is not
well approximated by a parallel flow assumption. It is also worth mentioning that
the parameter space being examined is realisable experimentally. For example, in the
experiment described by Moffatt (1977), in which a layer of approximately 2.5 mm
of golden syrup (diluted with a small amount of water) with µ = 80 g cm−1 s−1

at 25 ◦C coated the outside of a Perspex roller of radius R = 2.04 cm that rotated
about its axis with angular speed ω ranging from 21.1 rpm to 48.8 rpm, we obtain
the following estimates for the dimensionless groups (estimated with ρ = 1 g cm−3

and γ = 50 dyn cm−1 as in Evans et al. (2004)): O(λ) ∼ 10−1, O(Boλ) ∼ 103 and
O(Ωλ)∼ 10.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 L

ou
gh

bo
ro

ug
h 

U
ni

ve
rs

ity
, o

n 
28

 N
ov

 2
01

7 
at

 2
1:

58
:0

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

75
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.756


562 A. v. B. Lopes, U. Thiele and A. L. Hazel

Thus, we conclude that the newly developed variational model is the most
appropriate lower-dimensional representation of the system, but it still does not capture
the full qualitative behaviour of the Stokes equations. Extensions of these ideas to
time-periodic solutions, partially wetting fluids, finite inertia and three-dimensions all
for liquid films on a rotating cylinder are the subject of ongoing research. However,
it should now also be tested, whether our basic idea of improving lubrication models
by bringing them first into gradient-dynamics form and then introducing a more
exact form of the underlying energy without changing the mobility function also
shows good results in other lubrication-type systems such as those reviewed by
Oron, Davis & Bankoff (1997), Craster & Matar (2009), Wilczek et al. (2015). For
instance, a lubrication model with full curvature was also proposed by Snoeijer
(2006) for situations involving moving contact lines (e.g. a contact line advancing
down a vertical wall due to gravity) and results in an improvement over the standard
lubrication model. The inclusion of modified curvature terms in lubrication models,
first suggested by Gauglitz & Radke (1988), is known to give improved results in a
variety of thin-film systems. The gradient-dynamics viewpoint advocated above would
suggest that the success of this approximation is due to the better representation
of the free energy, which seems to be more important for capturing the qualitative
behaviour than correctly resolving the fine details of the flow.
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Appendix A. Comparison to earlier work
In this appendix, we shall revisit some of the results obtained in Benilov et al.

(2008) and Benilov et al. (2012).

A.1. The paper by Benilov et al. (2008)
In the work by Benilov et al. (2008), the steady flow of a thin liquid film on the inner
surface of a rotating cylinder was investigated using the following flux equation:

q= h−
h3

3
cos θ + ε

h3

3

(
∂3
θ h+ ∂θh

)
, (A 1)

where h is the film thickness made dimensionless with αR with α given by

α =

√
µω

ρgR
. (A 2)

and

ε =
γ

ρgR2

√
µω

ρgR
(A 3)

represents a dimensionless surface tension parameter. The flux equation (A 1) must be
solved together with the integral condition

M =
∫ 2π

0
h dθ, (A 4)
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FIGURE 16. (Colour online) Flux q for rimming flow as a function of the net mass M
for ε = 10−3 and α = 0.1. The solid line shows the numerical solution of the Stokes
equations (A 6) and (A 7); the dashed line shows the numerical solution of the standard
lubrication model (SLM), equation (A 1); the dotted line shows the numerical solution of
the variational lubrication model (VLM), equation (A 13). The lower panel is an expanded
view of the region marked by the box in the upper panel. The solutions at M = 10.5
(marked by circles on the vertical dotted line) are shown in figure 17.

where M is a (dimensionless) parameter characterising the net mass of fluid inside the
cylinder, and the periodicity condition

h(θ)= h(θ + 2π). (A 5)

Equations (A 1) and (A 4) are, essentially, the SLM equations (2.16) and (2.17) written
in a different parametrisation and we note that they also can be derived using standard
lubrication theory by assuming that α � 1. Using a combination of numerics and
asymptotics, Benilov et al. (2008) found that for some small surface tension values,
there are certain values of mass M that present up to three steady-state solutions.
Figure 16 shows an example of such a situation, as obtained from the numerical
solution of (A 1) for ε= 10−3. Figure 17 shows the three solutions found at M= 10.5,
each with a different value of q. Although the solutions look rather similar, there are
clear distinctions in their peak and tail regions.
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1 2 3 4 5 6

FIGURE 17. (Colour online) Film profiles h(θ) obtained from numerical solution of
the Stokes equations (solid line), the standard lubrication model (dashed line) and the
variational lubrication model (dashed line) for the rimming-flow problem studied by
Benilov et al. (2008) for α = 0.1, ε = 0.001 and M = 10.5.

We shall revisit this result by solving the two-dimensional steady Stokes equations

∇p= α3
∇

2u− αj, (A 6)
∇ · u= 0, (A 7)

where R, ωR and ρgR/α were taken as length, velocity and pressure scales,
respectively. We require the solutions of the above equations to satisfy the following
boundary conditions

u= t (no-slip condition) (A 8)

at the surface of the cylinder,{
−pI+

1
α3

[
∇u+ (∇u)T

]}
· n= εκn (dynamic condition) (A 9)

u · n= 0 (kinematic condition) (A 10)

at the free surface and we also require that∮
x · n ds= αM (integral condition), (A 11)

where the line integral is taken along the free-surface boundary. In addition, we also
solve the corresponding variational lubrication model (VLM)

q= h−
h3

3
[−εκ + (1− αh) sin θ ] , (A 12)

M =
∫ 2π

0

(
h− α

h2

2

)
dθ. (A 13)
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A comparison of the fluxes obtained from the numerical solution of the Stokes
equations as well as from the SLM and the VLM as a function of the net mass M is
shown in figure 16 for α = 0.1 and ε = 10−3. The multiple solutions loop found by
Benilov et al. (2008) is an artefact of the SLM, because it is neither found in the full
model nor in the VLM at these parameter values. Moreover, we note from figure 17
that the film profiles h(θ) obtained with the VLM and with the Stokes equations
agree really well (shown for M= 10.5). The solution loop is also absent in the ELM.
If one continuously transforms SLM into ELM by means of a homotopy parameter
that multiplies the additional terms, one finds that the loop of solutions vanishes in a
cusp bifurcation where the limit points merge. We attribute this significant qualitative
difference between the solutions obtained from the SLM and those from the ELM,
VLM and Stokes equations to the fact that for these solutions a large ‘pool’ of fluid
forms. In the ‘pool’ zone the film height peaks and large slopes in the free-surface
height can be observed, which means that locally the hydrostatic pressure terms
are no longer O(α) (a small perturbation), but actually O(1) and therefore should
be promoted to leading order. As the film thickness reduces the magnitude of the
hydrostatic terms will decrease unless the slopes in the ‘pool’ region increase further
to compensate. Hence, the multiple solutions found in the SLM would be expected to
occur in the Stokes equations for sufficiently thin films. We have found no evidence
that multiple solutions occur at these parameter values in the Stokes equations for
film thicknesses down to α = 0.05, although the distinction between the solutions
shown in figure 17 becomes very difficult to detect for such small absolute values of
film thickness.

A.2. The paper by Benilov et al. (2012)
This paper examined two distinct regimes of rimming flows on a rotating cylinder:
one where surface tension effects are taken into account and one where they are not.
In the present work, we shall focus on the former where the authors showed, by
solving the Stokes equations numerically, that if a dimensionless capillary coefficient,
γ /(µωR), exceeds a threshold value of 0.23, then a smoothed-shock steady solution
always exists. However, the authors claim that if the surface tension is not sufficiently
strong (i.e. the capillary coefficient does not exceed the given threshold value) there
is a certain ‘forbidden’ region in the parameter space for which the problem does not
have stable steady solutions.

In order to verify whether or not the solutions found in the present work are in
agreement with the results found in Benilov et al. (2012) it is necessary first to
rescale our variables (they chose R, ωR, µω and ω−1 as length, velocity, pressure and
time scales) so that we can interpret our results in terms of the same dimensionless
parameters. This can be achieved by introducing the following mappings which
transform our dimensionless variables to those used by Benilov et al. (2012):

x→ x, u→Ωu, p→Ωp, t→Ω−1t,
σ→Ωσ , κ→ κ.

}
(A 14)

In terms of (A 14), the Stokes equations (2.1) take the form

∇p=∇2u−
1
α2

j, (A 15)

∇ · u= 0, (A 16)
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where the dimensionless parameter α is given by

α =
√
Ω =

√
µω

ρgR
. (A 17)

The no-slip condition (2.3) now corresponds to

u= t (A 18)

at the surface of the rotating cylinder. Moreover, the kinematic condition (2.5) retains
its original form

u · n= ∂tx · n (A 19)
at the free surface. On the other hand, the dynamic condition (2.6) becomes

σ · n=Ca−1κn, (A 20)

where
Ca−1

=Ω−1Bo−1
=

γ

µωR
(A 21)

is the inverse capillary number (note that Ca−1 is the aforementioned ‘capillary
coefficient’). To introduce the last parameter, it is convenient to note that if we scale
the dimensionless film thickness h with α, then the mass conservation condition
(2.20) requires that ∫ 2π

0

(
h− α

h2

2

)
dθ =

2π

α

(
λ−
λ2

2

)
≡ V, (A 22)

where V is the volume of liquid within the cylinder. Moreover, it is possible to show
(see, e.g. Benjamin et al. (1993) and O’Brien & Gath (1998)), in the lubrication limit
that a shock solution can only exist if

V1 6 V < V2, (A 23)

where V1 ≈ 4.44 and V2 ≈ 6.93. We note that if V < V1 Moffatt (1977) demonstrated
that the film coats the inside of the rotating cylinder in a nearly uniform fashion. On
the other hand, if V >V2 then a pool starts to form at the bottom of the cylinder. For
λ= 0.1, equations (A 22)–(A 23) give

0.086 . α . 0.134 (A 24)

and therefore, on noting that Ω = λ2Ωλ, and using (A 17), the relevant range for Ωλ
is

0.740 .Ωλ . 1.796. (A 25)
In the present work, we investigated the following Bond numbers:

(i) Boλ = 20,
(ii) Boλ = 120,

(iii) Boλ = 500,
(iv) Boλ = 2000,

which corresponds, in view of (A 25) and given that Boλ = λ−1Bo, to

(i) 27.84 . Ca−1 . 67.57,
(ii) 4.64 . Ca−1 . 11.26,

(iii) 1.11 . Ca−1 . 2.70,
(iv) 0.28 . Ca−1 . 0.68.
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(a) (b)

FIGURE 18. (Colour online) Example of a rimming flow with a shock-like region as
obtained from the numerical solution of the Stokes equations for λ = 0.1, Ωλ = 1 and
Boλ = 7800. The panel (b) is an expanded view of the shock-like region marked by the
box in the panel (a).

Note that in all cases, Ca−1 is larger than 0.23 (the threshold value) and therefore
the existence of steady solutions in these intervals is in accordance with the findings
in Benilov et al. (2012).

Furthermore, we decided to investigate the so-called ‘forbidden’ region by solving
the Stokes equations for λ= 0.1, Ωλ = 1 and Boλ = 7800, which yields Ca−1

≈ 0.13
and α= 0.1. As can be seen in figure 18, although Ca−1 is below the threshold value,
a stable shock-like (corner) steady-state solution is found for this set of parameters.
We note that the numerical scheme used by Benilov et al. (2012) assumes that the
interface position is given by a function h(θ), which cannot represent shock-like
regions where h(θ) becomes multi-valued. Moreover, Benilov et al. (2012) used a
time-dependent solver to approach steady solutions which does not allow unstable
solutions to be found. In addition, the restriction on interface shapes prevents
computation of stable solutions that are reached via transient regions of interface
overturning. We conclude that the results in Benilov et al. (2012) when surface
tension is taken into account should be reviewed using a formulation that allows the
computation of overturning free surfaces.

Appendix B. Variational approach

This appendix is divided in two parts. In the first part, we briefly introduce
Onsager’s variational principle (Onsager 1931a,b), and in the second part we apply it
to our problem. Note that a conceptually similar application of Onsager’s variational
principle to the modelling of the hydrodynamics of a thin film of a mixture can be
found in Xu, Thiele & Qian (2015).

B.1. Onsager’s variational principle
Let a1, a2, . . . , an denote the fluctuations from equilibrium of a set of macroscopic
thermodynamic quantities of a closed system, in the following called ‘state variables’.
Also, let F = F(a1, a2, . . . , an) be the free energy, and let Fe = F(0, 0, . . . , 0)
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be its minimum at equilibrium. Then, 1F≡F−Fe >0 can be expressed as a quadratic
form

1F=
1
2

n∑
i=1

n∑
j=1

βijaiaj, (B 1)

where β is a real positive-definite symmetric matrix.
The thermodynamic conjugate to ai are the thermodynamic forces defined as

Xi =−
∂1F
∂ai

. (B 2)

For small fluctuations, they can be expressed as linear combinations of the state
variables, that is

Xi =−

n∑
j=1

βijaj. (B 3)

Assuming that the system is not far from equilibrium, the state variables a1, a2, . . . , an
evolve according to the linear relation to the forces

ȧi ≡
d
dt

ai(t)=
n∑

j=1

LijXj(t), (B 4)

where the Lij are called kinetic coefficients. The Onsager principle (Landau & Lifshitz
1980), also known as principle of symmetry of kinetic coefficients, states that Lij =

Lji, that is, L is a symmetric matrix. Based on this principle, Onsager formulated a
variational principle applicable to some irreversible transport processes such as heat
conduction, electrical conduction and diffusion.

For isothermal systems, Onsager’s variational principle states that the state evolution
equation can be obtained by minimising the so-called Rayleighian (Doi 2013)

R=
n∑

i=1

∂F
∂ai

ȧi +
1
2

n∑
i=1

n∑
j=1

ζijȧiȧj (B 5)

with respect to ȧ1, ȧ2, . . . , ȧn, that is the rates of change of the macroscopic variables
a1, a2, . . . , an. The two terms on the right-hand side are physically distinct. The first
term is Ḟ ≡ dF/dt, which is the rate of change of the free energy of the system
F = F(a1, . . . , an). The second term is the energy dissipation function Φ, which is
a quadratic form with the friction coefficient matrix ζ forming a positive definite and
symmetric matrix.

Minimisation of R with respect to the rates ȧi leads to the kinetic equations

−
∂F
∂ai
=

n∑
j=1

ζijȧj, (B 6)

which expresses a balance between two forces: the reversible force −∂F/∂ai and the
friction force

∑n
j=1 ζijȧj. Inverting (B 6), one obtains (B 4), i.e. ζ−1

ij = Lij. Also note,
that substitution of (B 6) into (B 5) shows that

Ḟ=−2Φ. (B 7)

The Onsager variational principle can be then summarised as follows.

(i) Choose appropriate state variables a1, a2, . . . , an.
(ii) Construct the free energy function F= F(a1, . . . , an).
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On the multiple solutions of coating and rimming flows on rotating cylinders 569

(iii) Construct the energy dissipation function Φ.
(iv) Construct the Rayleighian R= Ḟ+Φ.
(v) Obtain the time evolution of the state (kinetic equations) by minimising R with

respect to the rates ȧi.

B.2. Application of Onsager’s variational principle to our problem
We note that all the following physical variables and quantities are, unless otherwise
stated, dimensional.

The free energy (per unit length) function F= F[h] is defined as

F= γ

∮
ds︸ ︷︷ ︸

surface energy (per unit length)

+ ρg
∫∫

r sin θ dA︸ ︷︷ ︸
potential energy (per unit length)

, (B 8)

where the line integral is taken over the fluid perimeter and the area integral is taken
over the fluid domain. Alternatively, we can write the previous equation as

F=
∫ 2π

0
(γ ξ + f ) dθ, (B 9)

where ξ dθ ≡
√
(R± h)2 + (∂θh)2 dθ corresponds to the line element ds in polar

coordinates and f = f (h) is given by

f =±ρg
∫ R±h

R
r2 sin θ dr=±

ρg
3
[(R± h)3 − R3

] sin θ. (B 10)

The rate of change of F is given by

Ḟ=
∫ 2π

0
dθ∂th

δF
δh
=

∫ 2π

0
dθ∂th

δ

δh

∫ 2π

0
dθ ′(γ ξ + f ), (B 11)

and by using the linearity property of the functional derivative, this can be simplified
to

Ḟ=
∫ 2π

0
dθ∂th

δ

δh

(
γ

∫ 2π

0
dθ ′ξ +

∫ 2π

0
dθ ′f

)
. (B 12)

We note that

δ

δh

∫ 2π

0
dθ ′ξ =

δ

δh

∫ 2π

0
dθ ′
[√

(R± h)2 + (∂θh)2
]

= ±
(R± h)

√
(R± h)2 + (∂θh)2

− ∂θ

[
∂θh

√
(R± h)2 + (∂θh)2

]
=
±(R± h)− ∂2

θ h
√
(R± h)2 + (∂θh)2

+
(∂θh)2

[
±(R± h)+ ∂2

θ h
][

(R± h)2 + (∂θh)2
]3/2

= (R± h)

{
±(R± h)2 ± 2(∂θh)2 − (R± h)∂2

θ h[
(R± h)2 + (∂θh)2

]3/2

}
= −(R± h)κ, (B 13)
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where the last equality follows from (2.23), and that

δ

δh

∫ 2π

0
dθ ′f =

df
dh
= ρg(R± h)2 sin(θ). (B 14)

The variation of the free energy with respect to the rate ∂th is then given by

δḞ=
∫ 2π

0
[−γ (R± h)κ + f ′]δ(∂th) dθ, (B 15)

where f ′ = f ′(h) = df /dh. The (viscous) dissipation function Φ, which is the rate at
which (mechanical) work is converted into internal thermal energy, is given by

Φ =
1
2

∫∫
(T : ∇u) dA. (B 16)

Note that, in polar coordinates, the double dot product T : ∇u for an incompressible
Newtonian liquid can be written as (Bird, Stewart & Lightfoot 2002):

T : ∇u= 2µ

[
(∂ru)2 +

(
∂θv

r
+
v

r

)2
]
+µ

[
∂rv −

v

r
+
∂θu
r

]2

. (B 17)

In the thin-film limit, T : ∇u is represented simply by µ(∂rv)
2 and, consequently,

Φ =
µ

2

∫∫
(∂rv)

2 dA. (B 18)

The variation of Φ with respect to v is then given from the definition of variational
derivative,

δΦ =
µ

2

∫∫
lim
ε→0

{
[∂r(v + εδv)]2

− (∂rv)
2

ε

}
dA

=
µ

2

∫∫
lim
ε→0

{
2∂rv∂r(δv)+ ε [∂r(δv)]2} dA

= µ

∫∫
∂rv∂r (δv) dA

= ±µ

∫ 2π

0

∫ R±h

R
(r∂rv)∂r(δv) dr dθ. (B 19)

A single integration by parts in the previous integral yields

δΦ = ∓µ

∫ 2π

0

∫ R±h

R
∂r(r∂rv)δv dr dθ ±µ

∫ 2π

0
r∂rvδv

∣∣∣∣r=R±h

r=R

dθ

= ∓µ

∫ 2π

0

∫ R±h

R
r
(
∂2

r v +
∂rv

r

)
δv dr dθ ±µ

∫ 2π

0
r∂rvδv

∣∣∣∣r=R±h

r=R

dθ. (B 20)

In the thin-film limit, the previous equation reduces to

δΦ =∓µR
∫ 2π

0

∫ R±h

R
∂2

r vδv dr dθ ±µ
∫ 2π

0
r∂rvδv

∣∣∣∣r=R±h

r=R

dθ. (B 21)
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Next, we use the pressure p(r, θ) as a Lagrange multiplier to impose the incompressi-
bility constraint, ∇ · u= 0, by adding the following term C to the Rayleighian R:

C=
∫∫
[−p(∇ · u)] dA, (B 22)

which can be integrated by parts using the well-known Gauss’s divergence theorem to
give

C=
∫∫
∇p · u dA−

∮
pvn ds (B 23)

=±

∫ 2π

0

∫ R±h

R

(
u∂rp+

v

r
∂θp
)

r dr dθ ∓
∫ 2π

0
pvnξ dθ, (B 24)

where vn = u · n is the outward normal velocity at the free surface. The variation of
C with respect to the rates u and v is then found to be

δC=±
∫ 2π

0

∫ R±h

R

(
δu∂rp+

δv

r
∂θp
)

r dr dθ ∓
∫ 2π

0
pδvnξ dθ. (B 25)

Using the kinematic condition

vn = (R± h)ξ−1∂th at r= R± h, (B 26)

we can write δC as

δC=±
∫ 2π

0

∫ R±h

R

(
δu∂rp+

δv

r
∂θp
)

r dr dθ ∓
∫ 2π

0
p(R± h)δ (∂th) dθ. (B 27)

Hence, from the expressions obtained above we can write δR= δḞ + δΦ + δC as a
linear combination of δu, δv and δ(∂th). Minimising R with respect to ∂th gives the
pressure at the free surface:

p=∓γ κ + ρg(R± h) sin θ at r= R± h. (B 28)

Minimising R with respect to u gives

∂rp= 0, (B 29)

i.e. the pressure varies uniformly in the radial direction. Minimising R with respect
to v leads to

∂θp−µR∂2
r v = 0. (B 30)

Lastly, minimising R with respect to v evaluated at the free surface gives

∂rv = 0 at r= R± h, (B 31)

which is the tangential stress boundary condition at the free surface. In the
dimensionless scaled form (see § 2), the governing equations are given by

∂ηp= 0, (B 32)
∂θp− ∂2

ηv = 0, (B 33)
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where the asterisks have been omitted, and they are to be solved together with the
boundary conditions

p=−Bo−1
λ κ + (1+ αh) sin θ at η= h, (B 34)
v =Ωλ at η= 0, (B 35)
∂ηv = 0 at η= h. (B 36)

Solving (B 32) subject to the boundary condition (B 34), we obtain the following
expression for the fluid pressure

p=−Bo−1
λ κ + (1+ αh) sin θ, (B 37)

which contains the contributions of both Laplace pressure −Bo−1κ and hydrostatic
pressures (1+αh) sin θ . Substituting it in (B 33), and applying the boundary conditions
(B 35) and (B 36), we find that

v =Ωλ +

(
η2

2
− ηh

)
∂θ [−Bo−1κ + (1+ αh) sin θ ]. (B 38)

Hence, the expression for the dimensionless flux q=
∫ h

0 v dη is of the form

q=Ωλh+
h3

3
∂θ
[
Bo−1
λ κ − (1+ αh) sin θ

]
. (B 39)

Then, using the conservation law for h given by (1+ αh)∂th=−∂θq (for derivation,
see Benilov & O’Brien 2005), we arrive at the following fourth-order thin-film
evolution equation

(1+ αh)∂th+ ∂θ

{
Ωλh+

h3

3
∂θ
[
Bo−1
λ κ − (1+ αh) sin θ

]}
= 0. (B 40)

Observe that to the leading order the previous equation yields, after some algebra,

∂th+ ∂θ

[
Ωλh−

h3

3
cos θ + Bo−1 h3

3
(∂3
θ h+ ∂θh)

]
= 0, (B 41)

where the O(α, αΩ, αBo−1) terms have been omitted, which is in agreement with the
SLM (2.13) presented in the § 2.

Finally, we highlight that the (B 40) can be presented in the gradient-dynamics form
for the conserved field h as

(1+ αh)∂th=−∂θ

{
M −Q∂θ

[
(1+ αh)−1 δF

δh

]}
, (B 42)

where the no-slip boundary condition at the surface of the rotating cylinder introduces
the term M =M(h)=Ωh and Q=Q(h)= h3/3 is the mobility factor.
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