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Abstract. We present 2D steady concentration profiles of confined lay-
ers of off-critical polymer blends. The layer rests on a solid substrate
and has a flat free surface due to very high surface tension. The profiles
correspond to non-linear steady solutions of the Cahn-Hilliard equation
in a rectangular domain. The free polymer-gas interface is considered
to be sharp, while the internal interfaces are diffuse. We explore the rich
solution structure (including laterally structured layers, stratified lay-
ers, checkerboard structures, oblique states and droplets) as a function
of mean concentration.

1 Introduction

Binary fluid mixtures are fluids that consist of two chemical species. Polymer blends
are an example that is often investigated due to their industrial interest and typical
slow evolution times suitable for experimental analysis [1]. The blends appear either
in a mixed homogeneous state, or in various phase separated states with interfaces
separating the phases, depending on the average composition and temperature. At
large scales the interface between two phases can be modeled with great success by a
sharp interface, however at the micro- and nanoscale the width of the interface can
be comparable to the dimensions of a possible external confinement or film thick-
ness of the mixture. Therefore an appropriate modelling of the diffuse interface is
important. The Cahn-Hilliard equation [2,3] represents a phase field model based on
thermodynamic principles that gives the diffusive evolution of the composition field
as divergence of a flux that itself results as the gradient of the chemical potential for
binary mixtures with diffuse interfaces. Coupling this equation to a transport equa-
tion for momentum (Navier-Stokes with stress tensor that contains Korteweg stresses)
the so-called model-H results that allows for a study of transport processes by dif-
fusion and convection (see [4] and references therein). For confined layers of binary
blends, such models have been used to study the stability of homogeneous blends
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with respect to purely diffusive [5,6] and coupled diffusive and convective modes [7]
predicting, e.g., the occurrence of surface modes of spinodal decomposition [5].
Previously we re-derived model-H, compared and consolidated several versions

existing in the literature, and supplemented it by coupled boundary conditions for
momentum and concentration at the free surface of a film on a solid substrate [8].
A study of steady homogeneous and layered films [8] and of their linear stability [9]
at critical composition (identical mean concentration for both components) followed
that showed qualitative differences between purely diffusive and coupled diffusive
and convective instability modes. However, laterally structured films and more com-
plicated states, e.g., with oblique diffuse interfaces, are possible and are for critical
composition studied in Ref. [10] by determining steady solutions of the Cahn Hilliard
equation in rectangular domains and also with a deformable free surface. Further-
more we distinguished the cases without and with energetic bias at the free surface.
Refs. [8–10] set our study in the context of the experimental literature, the literature
on model-H, and on some one-dimensional mathematical results for the Cahn-Hilliard
equation [11,12]. However, regrettably we missed to point out connections to later
relevant mathematical work on solutions of the Cahn Hilliard equation, in particular,
for two-dimensional square domains. In particular, [13] studies the stability of linear
modes on the plane for the Cahn-Hilliard equation at critical concentration and the
geometry of the nodal domains of doubly periodic states, Refs. [14,15] investigate
critical points of the energy underlying the Cahn-Hilliard equation on a square do-
main in dependence of the mean concentration, their Figs. 6.1 sketch some solution
branches in dependence of mean concentration that are similar to primary branches
discussed below for a rectangular domain; one-dimensional solutions are discussed
in [16]. Finally, Refs. [17,18] analyses the fine structure of the global attractor of the
Cahn-Hilliard equation on the square analytically and numerically. For instance, they
discuss bifurcation diagrams with the system size [17] and mean concentration [18]
as control parameter, similar to our analysis of rectangular domains in the non-biased
flat free surface critical [10] and off-critical (present work) case. Because of the differ-
ent domain geometry we are not able to compare bifurcation diagrams directly. We
also note that to our knowledge no results exist in the mathematical literature for the
cases of energetic bias at the free surface, a modulated free surface, or a combination
of both. Such states are discussed at length in Ref. [10] in the critical case (mean
concentration zero). The present consideration of a rectangular geometry without en-
ergetic bias and flat free surface in the off-critical case will serve as a reference case
for a future study of the off-critical case with energetic bias at the free surface and
with modulated free surface.
Here we extend the results Ref. [10] gave for flat films at critical concentration

towards off-critical compositions, a case very relevant in experiments since there a
balanced overall composition of the two species is actually an exception. In particu-
lar, we study steady nonlinear solutions of the Cahn-Hilliard equation (as the steady
limit of model-H) for layers of fixed rectangular geometry. This represents a prelimi-
nary step for a study of the off-critical case for a deformable free surface. We analyse
layered films, laterally structured states, oblique structures, and checkerboard states.

2 Model equations

We study steady solutions of the Cahn-Hilliard equation [2,3] for films on bounded
domains. In particular, we obtain nonlinear solutions by numerically minimising the
Lyapunov functional

F (h, c) =
1

L

∫ L

0

{

γ
√
1 + (∂xh)2 +

∫ h(x)

0

[
1

2
(∇c)2 + f(c)

]
dz

}

dx (1)
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where L is the lateral length of the film, H is the mean film thickness, and h(x) is the
local film height. A cartesian frame is used with origin at the left bottom corner of the
film. Here, the free surface and substrate are considered to be energetically neutral
and flat. For results with energetic surface bias and/or a modulated free surface in
the critical case see Ref. [10]. We use f = 1

4 (1− c
2)2 for the local free energy, where

c = c1− c2 with c1,2 the volume fractions of each component of the mixture. To char-
acterise the non linear solutions we use the L2-norm of the concentration field, defined

as ||δc|| =
√
1/(LH)

∫ L
0

∫ h(x)
0

(
c(x, z)− c̄

)2
dzdx, where c̄ is the mean concentration.

The value of the surface tension γ determines the deformability of the free sur-
face. For small γ the surface can undergo strong surface deflections [10]. Here we
employ a very high value (γ = 1000) to guarantee a flat film of constant height
h(x) = H.
The energy functional is minimised using a Newton gradient method and a spatial

discretization based on finite elements. In particular, the domain has been discretised
with linear triangular elements using a natural isoparametric coordinate system and
an adaptive grid [19]. No flux boundary conditions are used at all boundaries. The
resulting variational problem is numerically solved allowing us to obtain the concen-
tration profile inside the film. For details see Ref. [10].

3 Linear stability

To determine the linear stability of homogeneous layers c(x, z) = c̄ we impose infin-
itesimal fluctuations of the form ∼ exp(ikxx + ikzz + βt). Considering only modes
that fit the rectangular domain results in discrete lateral and vertical wave numbers
kx = 2π s/L with mode number s = 0, 1/2, 1, . . . and kz = 2π n/H with mode num-
ber n = 0, 1/2, 1, . . ., respectively. Linearizing the Cahn-Hilliard equation about c̄
one obtains the dispersion relation β = −(k2x + k2z)

[
k2x + k

2
z + 3 c̄

2 − 1
]
. The film is

unstable (β > 0) for modes with k2x + k
2
z < 1 − 3 c̄2. The various modes result in

different concentration thresholds of instability (at β = 0). For mode numbers (s, n)
one has

c̄s,n =
1√
3

√
1−
(2πs
L

)2
−
(2πn
H

)2
(2)

Note that an infinite system becomes linearly unstable to a long wave mode kx =
ky = 0 at c̄sp = 1/

√
3 (spinodal line).

Note that all critical concentrations c̄s,n (Eq. (2)) also correspond to loci of pitch-
fork bifurcations where branches of structured solutions bifurcate from the trivial
homogeneous solution. For instance, for H = 5 and L = 12 when decreasing c̄ one
finds that the first laterally structured, layered and checkerboard solutions emerge at
c̄1/2,0 = 0.56, c̄0,1/2 = 0.45, and c̄1/2,1/2 = 0.42, respectively.
Even if the binary mixtures are linearly stable they might be unstable with re-

spect to finite size perturbations in a metastable region outside the spinodal line. The
threshold for the infinite system (binodal line) also provides the coexisting concen-
trations and is derived from a Maxwell construction to be cbi = ±1.

4 Steady solutions in 2D

Next we study the 2D non linear solutions for films of polymer blends of thickness
H = 5 and lateral extension L = 12. The free surface is imposed to be flat.
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Fig. 1. (colour online) Shown are for confined films of height H = 5 and lateral domain size
L = 12 as a function of mean concentration c̄ (a) the L2-norm of the concentration field and
(b) the energy E = F − γ, where we subtracted the constant offset γ. We indicate laterally
stratified films as heavy solid lines (cf. Sect. 4.1); checkerboard films as dash-dotted lines
(cf. Sect. 4.3); layered films as heavy dashed lines (cf. Sect. 4.2). Oblique films are marked
by O labels (cf. Sect. 4.4); oblique checkerboard states by J labels (cf. Sect. 4.5); and droplet
and stripe states by C label (cf. Sect. 4.6).

4.1 Laterally structured films

We find three branches of laterally structured films: (1/2, 0), (1, 0) and (3/2, 0), shown
as heavy solid lines in Fig. 1. At concentration c̄ = 0 (critical case) they correspond
to vertically homogeneous films with lateral modulations of periods 2L, L and 2/3L,
respectively (cf. Ref. [10]). The L2-norm on these branches is maximal at c̄ = 0. They
join the homogeneous base state (0, 0) at c̄1/2,0 = 0.56 (subcritical), c̄1,0 = 0.49 (su-
percritical), c̄3/2,0 = 0.36 (supercritical), respectively, as also calculated from Eq. (2).

The branch (1/2, 0) extends beyond the spinodal limit at c̄sp = 1/
√
3 up to the

saddle node at c̄ ≈ 0.7. This is still far below the binodal at cbi = 1. The branches
(1, 0) and (3/2, 0) remain well within the spinodal region. The branch (3/2, 0) has no
saddle node, i.e., the L2-norm decays monotonously with c̄.
Typical profiles from the (1/2, 0), (1, 0), and (3/2, 0) branches are given in

Figs. 3(a), 3(b), and 3(c), respectively. Following these branches towards the homo-
geneous state (0, 0) the transition occurs through a widening of the internal diffuse
interfaces. At c̄ = 0 all the profiles are invariant under a subgroup of the symmetries of
the equation and boundary conditions (cf. caption of Fig. 2 and Ref. [10]). The num-
ber of symmetry elements is normally further reduced for off-critical compositions. In
particular, we find for branch (3/2, 0) the group {I,σxc,πz, ρxzc} at c̄ = 0 becomes
{I,σxc} at c̄ ̸= 0; for branch (1, 0) one has {I,σxc,σzc,πc} −→ {I,σxc,σzc,πc}; and
for branch (1/2, 0) the change is {I,σxc,πz, ρxyc} −→ {I,σxc}.

Interestingly, when increasing c̄ additional branches emerge from the (s, 0)
branches in further symmetry breaking pitchfork bifurcations. This occurs for the
(1/2, 0) and (1, 0) branch at c̄ = 0.69 and c̄ = 0.48, respectively. On the new branches
the vertical interfaces incline rightwards, in such a way that the three-phase con-
tact region at the substrate and at the free surface are shifted to the left and to the
right, respectively. For the branch emerging from (1/2, 0), this progressive shifts leads
to the creation of a droplet in the right bottom corner, as shown in Figs. 3 and 3.
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x
z

c

Fig. 2. (colour online) Sketch of a film presented in the space spanned by coordinates x, z
and concentration c. The planes xz, xc and zc are perpendicular to the c, z and x axes,
respectively. To characterise the symmetries of a solution in this space, we denote by I the
identity transformation; by σxz, σxc and σzc the reflections at the planes xz, xc and zc,
respectively; by πx, πz, πc the rotation about x, z and c axes by π, respectively; and by ρxzc
the inversion at the origin.

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 3. Upper row: typical concentration profiles on the laterally structured branches at
off-critical compositions: (a) (1/2, 0), (b) (1, 0), and (c) (3/2, 0). The loci of these states in
Fig. 1(a) are indicated by labels a, e, and p, respectively. Middle row: profiles on branch
emerging from the branch (1/2, 0) marked in Fig. 1(a) with the labels b and c. Lower row:
profiles on branch emerging from the branch (1, 0) marked in Fig. 1(a) with the labels f and
g. Remaining parameters as in Fig. 1(a).

The new branch is only invariant under {I}. For (1, 0), two droplets are formed – one
in the right bottom and left upper corner each (Figs. 3f, 3g). The related branch is
invariant under {I,πc}.
The energy per unit of length of the three branches is compared in Fig. 1(b).

Inside the spinodal region the homogeneous branch (0, 0) has the largest energy. Ac-
tually, nearly everywhere in the binodal region the homogeneous state has for a given
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Fig. 4. Typical layered concentration profile on the branch (0, 1/2), marked in Fig. 1(a)
with the label i.

mean concentration a larger energy than all the phase separated states. The higher
energy of the (3/2, 0) branch, intermediate of (1, 0) and lowest of the (1/2, 0) branch
is due to the number of internal diffusive interfaces, proportional to their energetic
cost. Increasing c̄ from zero, there is a progressive widening of the internal diffuse
interfaces leading to smaller concentration gradients and therefore to a lower total
energy. This is visible in Fig. 1(b) for all the branches as a slow monotonous decrease
of the energy with c̄.
Although a full analysis of the linear stability of the obtained solutions is out of

our present scope we sketch conclusions obtained from the bifurcational and energetic
structure observed in Figs. 1 and 1 at the example of the laterally structured branch
(1/2, 0) and its side branch: As shown in Sect. 3, the homogeneous state is linearly
stable c̄1/2,0 > 0.56 where it acquires an instability w.r.t. a lateral structuring. It is the
branch of lowest energy above c̄ = 0.67. The branch (1/2, 0) bifurcates subcritically,
has one unstable eigenvalue before it acquires a second one at about c̄ = 0.59 where
the side branch emerges. These two modes consecutively stabilise at the saddle node
of the (1/2, 0) branch at c̄ = 0.70 and at c̄ = 0.696 where the side branch ends again.
Below c̄ = 0.696 the (1/2, 0) branch is stable and corresponds to the branch of lowest
energy. The side branch starts off supercritically at c̄ = 0.59 with one unstable mode,
becomes stable at its first saddle-node at about c̄ = 0.698 (confirmed by the fact that
it is the non-trivial branch of lowest energy between c̄ = 0.668 and 0.698), becomes
unstable again at its second saddle-node at c̄ = 0.65 before it ends supercritically at
c̄ = 0.696. Note that here we do not discus the stability of the other branches.

4.2 Layered films

Layered films of the type (0, 1/2) are characterized by a single horizontal diffusive
interface and only exist within the spinodal region (heavy dashed line in Fig. 1(a)).
Its L2-norm is maximal at c̄ = 0 and decreases monotonously with c̄ until joining the
homogeneous solution through a pitchfork bifurcation at c̄0,1/2 = 0.45 as confirmed
by Eq. (2).
Figure 4(a) shows a typical concentration profile on this branch. Increasing c̄

widens the diffuse interface and brings it towards the substrate or the free surface, and
leads to a continuous transition towards the homogeneous state. At c̄ = 0 this branch
is invariant under the symmetry group {I,σzc,πx, ρxzc}, whereas for off-critical com-
positions group is reduced to {I,σzc}.
The energy of the (0, 1/2) branch is lower than the one of the homogeneous state,

and larger than the one of the laterally structured branch (1/2, 0) that also has a
single but much shorter diffuse interface. As for the rest of the branches there is a
slow monotonous decrease of the energy with c̄ for the reasons outlined in Sect. 4.1

4.3 Checkerboard films

Up to here, we have studied branches that show at c̄ = 0 purely lateral or vertical
structuring, and the changes along the branches (and emerging side-branches) that
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(a) (b) (c)

Fig. 5. Typical concentration profiles on (a) the checkerboard branch (1/2, 1/2) at the label
n in Fig. 1(a), (b) the checkerboard branch (1, 1/2) at label u in Fig. 1(a), and (c) on its
side-branch at label t in Fig. 1(a).

result when increasing the concentration. Another type of profile found at c̄ = 0 cor-
responds to a ’superposition’ of lateral and vertical structuring giving rise to checker-
board states. In particular, for c̄ = 0 the condition k2x + k

2
y < 1 must be satisfied

as discussed in the section on linear stability. Thus the only possible branches for
H = 5 and L = 12 are (1/2, 1/2) and (1, 1/2). These are the checkerboard films we
find numerically (see heavy dash-dash-dotted lines in Fig. 1). They only exist well
within the spinodal region.
A typical profile on the (1/2, 1/2) branch is shown in Fig. 5(a). At c̄ = 0 this

branch is invariant under the symmetry group {I,πx,πz,πc} while at c̄ ̸= 0 the
group is {I,πc}. A typical profile on the (1, 1/2) branch is shown in Fig. 5(b). At
c̄ = 0 this branch is invariant under {I,σzc,πx, ρxyz} while at c̄ ̸= 0 the group is
{I,σzc}. At c̄ = 0.13 a side-branch emerges that always has a higher L2 norm than
the (1, 1/2) branch itself. On the side-branch when one increases c̄ the horizontal and
vertical interfaces transform to parts of circular arcs that limit a droplet on the cen-
tre of the substrate, and another two in the upper left and right corner, respectively
(cf. Fig. 5(c)).
With increasing c̄ both checkerboard states widen their diffuse interfaces un-

til merging with the homogeneous states (0, 0) through pitchfork bifurcations at
c̄1/2,1/2 = 0.42 for (1/2, 1/2) and c̄1,1/2 = 0.33 for (1, 1/2), as also obtained from
Eq. (2) setting the corresponding vertical n and horizontal s mode numbers.
The checkerboard films are lower energetically than the homogeneous state in

Fig. 1(b). The film with more internal interfaces (1, 1/2) is of larger energy than
the (1/2, 1/2) film. Both are energetically more expensive than purely vertically or
laterally structured films due the greater overall length of internal diffuse interfaces.

4.4 Oblique films

In contrast to the films discussed above that exist at c̄ = 0, the oblique films do not
emerge from the trivial state as described by Eq. (2) for some combination of mode
numbers. Instead they emerge from laterally structured (s, 0) or layered films (0, n) in
symmetry breaking pitchfork bifurcations when changing the domain size (cf. Fig. 8
of Ref. [10]). Here we find that they also join laterally structured or layered films at
some off-critical composition.
The branch O1 emerges in the critical case from the branch (1, 0) and here joins

the layered state (0, 1/2) at c̄ = 0.27. A profile from the O1 branch is presented in
Fig. 6(a). As c̄ is increased the bend in the diffuse interface becomes weaker before it
becomes horizontal where it joins the branch (0, 1/2). This branch is always invariant
under {I,σzc}.
The branch O3/2 emerges in the critical case from the branch (3/2, 0) and here

joins the same branch at the small off-critical composition c̄ = 0.09. Figure 6(b)
shows a profile from this branch, the similarity with profiles on the (3/2, 0) branch
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(a) (b)

Fig. 6. Typical concentration profiles on (a) the oblique branch O1 at label k in Fig. 1(a)
and (b) the oblique branch O3/2 at label r in Fig. 1(a).

(a) (b) (c)

Fig. 7. Typical concentration profiles on branch J1,1/23/2 at (a) point v and (b) point w in

Fig. 1(a), and (c) of branch J1/2,1/23/2 at s

is evident. At c̄ = 0 this branch is invariant under the symmetry group {I, ρxyz},
reduced in the off-critical case to {I}.
TheO1 films have a long bended diffuse interface, while theO3/2 films exhibit three

shorter inclined vertical ones. The analysis of the energy of this states in Fig. 1(b)
shows that the total cost of producing the latter is larger.

4.5 Oblique checkerboard films

Next we discuss another type of films that can be seen as a type of checkerboard films

with inclined interfaces. These films are located on the branches J1,1/23/2,0 and J
1/2,1/2
3/2,0

in Fig. 1.

When changing L at c̄ = 0 the branch J1,1/23/2,0 joins the laterally stratified (3/2, 0)

branch with the checkerboard (1, 1/2) branch, and J1/2,1/23/2,0 joins the laterally strat-

ified (3/2, 0) branch with the checkerboard (1/2, 1/2) (cf. Fig. 8 of Ref. [10]). This
implies that along its length the mode numbers in horizontal and vertical direction
are changed through continuous bending and reconnection of diffuse interfaces. Along

the branch J1,1/23/2,0 the L2 norm decreases monotonously up to c̄ = 0.32, beyond this
point our numerics is not able to follow this branch. Two typical profiles from this
branch are shown in Figs. 7(a) and 7(b), where the progressive widening and dilution

of the interfaces with increasing c̄ is clearly observed. At c̄ = 0 the branch J1,1/23/2,0 is

invariant under {I, ρxzc}, and for c̄ ̸= 0 only under {I}.
The branch J1/2,1/23/2,0 exists for a small range of off-critical compositions, merging

with (3/2, 0) at c̄ = 0.14. As shown in Fig. 7(c), when c̄ increases the lower part of the
diffuse interface at the right shifts from the right wall towards the substrate, leading
finally to the lateral structuring typical of (3/2, 0).
Apart from the homogeneous state, the energy on these branches is only lower than

that of the checkerboard states because the diffuse interfaces have steeper gradients
in the latter.
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(a) (b)

Fig. 8. Typical concentration profiles on branch C1/21/2 on (a) the lower and (b) upper sub-

branch labeled by m and l in Fig. 1(a), respectively.

4.6 Droplets and stripes

The final solutions we discuss are the ones on the branches C1/21/2 . These are two sub-

branch that both seem to emerge at c̄ = 0.16 from the branch (1/2, 1/2). They only
exist at off-critical compositions. As observed in the profile from the lower sub-branch
(cf. Fig. 8(a)) it evolves from a profile on the branch (1/2, 1/2) by inclining the left
horizontal interface towards the substrate and detaching of component 2 (blue online)
from the left lower corner, giving rise to the formation of a droplet of component 2
deposited on the lower substrate. At the top right corner another droplet of compo-
nent 2 develops. Moving along the lower sub-branch with increasing c̄ the droplet at
the top right corner gets progressively squeezed against the right boundary creating
a vertical stripe, that coexists with the droplet on the substrate. One could call this
a reverse Plateau Rayleigh transition.
Note that this branch is only invariant under the identity transformation I, show-

ing once more how off-critical compositions easily break all the symmetries. This
branch is on the L2 diagram situated between the O1 and (1/2, 1/2) branches, and
its energy is also bounded by the energy of these branches.

5 Conclusions

We have presented two-dimensional steady morphologies for flat films of a binary mix-
ture that is confined into a rectangular geometry (film thickness H = 5 and lateral
extension L = 12). A high surface tension imposes a flat free surface. The obtained 2D
concentration profiles correspond to steady solutions of the Cahn-Hilliard equation in
a rectangular domain at off-critical compositions. The solutions are obtained through
a minimisation of the underlying Lyapunov functional using a gradient method. The
present consideration of a rectangular geometry without energetic bias and flat free
surface in the off-critical case will serve as a reference case for a future study of
the off-critical case with energetic bias at the free surface and with modulated free
surface.
We have obtained the bifurcation diagram with the mean concentration as con-

trol parameter and the L2 norm of the concentration field and energy as solution
measures. A linear stability analysis has established the region of linear instability
(spinodal region) where the homogeneous film is unstable to at least one instability
mode. Within the spinodal region laterally structured films of type (1/2, 0) are stable
and have minimal energy. For the presented geometry there exist several primary bi-
furcation from the homogeneous state. They are all pitchfork bifurcations whose loci
may be calculated analytically through the linear analysis.
We have numerically determined and briefly discussed solutions of various types:

laterally structured films, stratified layers, checkerboard films, oblique films, films
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with several droplets and films with droplets and stripes. Thereby, some of the solu-
tions, like the films with droplets and stripes, only exist for off-critical compositions.
Note that part of the results are similar to results recently obtained on the square
domain [18]. However, as the rectangular domain is less symmetric than the square
domain, here several of the degeneracies between solution branches are lifted (e.g.,
the one between laterally structured and stratified films) and the obtained bifurcation
diagram is more involved.
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