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Abstract – Employing a long-wave mesoscopic hydrodynamic model for the film height evolution
we study ensembles of pinned and sliding drops of a volatile liquid that continuously condense
onto a chemically heterogeneous inclined substrate. Our analysis combines, on the one hand, path
continuation techniques to determine bifurcation diagrams for the depinning of single drops of
nonvolatile liquid on single hydrophilic spots on a partially wettable substrate and, on the other
hand, time simulations of growth and depinning of individual condensing drops as well as of the
long-time behaviour of large ensembles of such drops. Pinned drops grow on the hydrophilic spots,
depin and slide along the substrate while merging with other pinned drops and smaller drops that
slide more slowly, and possibly undergo a pearling instability. As a result, the collective behaviour
converges to a stationary state where condensation and outflow balance. The main features of the
emerging drop size distribution can then be related to single-drop bifurcation diagrams.

Copyright c⃝ EPLA, 2019

Introduction. – The behaviour of liquid drops on
solid homogeneous and heterogeneous substrates is of
high relevance to many processes of everyday life and for
technological processes such as printing, coating and cool-
ing [1]. The behaviour of individual drops is frequently
studied experimentally and theoretically, considering, e.g.,
spreading and sitting drops without lateral driving [2], lat-
erally driven drops, e.g., by gravity on an incline, that
are pinned by substrate heterogeneities [3,4] or freely slide
along a homogeneous substrate [5,6]. However, in applica-
tions such as condensation or printing, one is often inter-
ested in the collective behaviour of large drop ensembles.
This problem has attracted much interest in particular for
rigid substrates where the interactions between individual
drops and the resulting mass transfer processes determine
the ensemble behaviour. The long-time merging within
such drop ensembles is a particular soft matter example
of a coarsening process similar to the Ostwald-ripening

(a)E-mail: u.thiele@uni-muenster.de

of crystalline nanoparticles [7], quantum dots [8] or emul-
sion droplets [9] where the mean drop/cluster/dot size and
their mean distance continuously increase in time follow-
ing power laws. For simple nonvolatile liquids on hori-
zontal homogeneous substrates coarsening is well studied
experimentally [10–12] and theoretically through simula-
tions and asymptotic considerations [13–15] mainly based
on thin-film (or lubrication or long-wave) equations with
a mass-conserving dynamics [16–18]. Additionally includ-
ing condensation, the process is also studied employing
particle-based statistical models and Smoluchowski-type
(cf. [19]) evolution equations for distribution functions
of drop sizes [20]. With lateral driving forces, the dy-
namics of drop ensembles is dramatically different as the
sliding speed of drops strongly depends on their size.
The resulting relative motion of differently sized drops
makes overall coarsening much faster than without lateral
driving forces. However, instabilities may counteract co-
alescence and at large times the ensemble dynamics may
self-organise and converge to an almost stationary drop
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size distribution [21]. Examples are drops that slide under
an air flow or on an incline as well as spinodal decomposi-
tion under flow [22]. Here, we investigate the influence of
substrate heterogeneities and continuous condensation on
the dynamics of laterally driven drop ensembles. We es-
tablish the resulting basic features employing a long-wave
model and the particular choice of randomly distributed
identical heterogeneities. Note that condensing and coa-
lescing drops with instantaneous sliding avalanches have
also been described with particle-based statistical models
and Smoluchowski-type equations [23].

More in detail, ref. [6] analyses a long-wave mesoscopic
hydrodynamic model employing numerical path contin-
uation techniques [24,25] and establishes the bifurcation
behaviour of single sliding drops of nonvolatile liquid on
smooth homogeneous inclined substrates. They find that
at fixed lateral forcing [volume] beyond a critical vol-
ume [forcing] related to a saddle-node bifurcation and a
nearby global bifurcation, sliding drops undergo a pearling
instability [5] and emit satellite droplets at their back.
Reference [6] also quantifies how sliding speed and the
mentioned critical parameter values depend on drop size
and driving strength. This allows one to characterise the
fast coalescence of drops and the resulting fast coarsening
under driving. In a multiscale approach, ref. [21] then con-
nects the single-drop results with the time evolution of the
drop size distribution obtained in large-scale direct numer-
ical simulations (DNS) of drop ensembles and, in conse-
quence, derives a Smoluchowski-type statistical model for
the drop size distribution. Main features of the resulting
steady distribution can be related to the bifurcation dia-
gram of single sliding drops. The approach of refs. [6,21]
is based on a number of strong assumptions that are dif-
ficult to realise in experiments as most real substrates are
heterogeneous, the used liquids are often volatile and peri-
odic boundary conditions are rather difficult to achieve for
sliding drops under lateral driving. Here, we adapt their
approach to more realistic experimental conditions.

In particular, first, we incorporate i) the deposition of
liquid by condensation and ii) heterogeneous wettability in
the form of hydrophilic spots into the long-wave thin-film
model. Next, we follow the methodology outlined above:
We employ continuation techniques to obtain the bifurca-
tion diagram for the depinning behaviour of single drops
of nonvolatile liquid. This is then compared with simu-
lations of growth and depinning dynamics of single drops
that condense onto single spots. Finally, the resulting bi-
furcation diagram is related to large-scale DNS and it is
discussed how the existence of heterogeneities and liquid
condensation affect the ensemble behaviour.

Modelling and numerical implementation. – We
employ a nondimensional long-wave equation to model the
time evolution of the height profile h(x, y, t) that describes
drops of a volatile liquid on a partially wetting, heteroge-
neous substrate, cf. [26,27] and references therein:

∂th = −∇ · [Q(h)(∇p + χ)] + β(p − µ) (1)

with the pressure p(x, y, t) = ∆h + [1 + ξg(x, y)]Π(h),
where ∆h and Π(h) = −∂hf(h) are the Laplace and Der-
jaguin (or disjoining) pressure, respectively [2,28]. The
latter results from the wetting energy f(h) = −1/2h2 +
1/5h5 . Note that p may be expressed as variation of a
free energy functional [29]. The function ξg(x, y) rep-
resents the heterogeneous wettability of the substrate,
namely, the local long-wave equilibrium contact angle
θeq(x, y) ∝

√
1 + ξg(x, y) while the scaled equilibrium ad-

sorption layer height remains constant h0 = 1. For drops
on an incline, the driving force is given by χ = G(α, 0)T ,
where G is the gravitation number and α is the scaled
inclination angle1 . Here, the heterogeneities take the
form of randomly distributed identical small circular hy-
drophilic regions, i.e., more wettable spots, with a small
continuous transition region towards the partially wet-
ting background substrate. In particular, for a single
spot we employ g(r̃) = − 1

2 [tanh(r̃ + R) − tanh(r̃ − R)]
with r̃2 = (x − xi)2 + (y − yi)2 , where R is the uni-
form spot radius and (xi, yi) the centre position of spot i.
Furthermore, β is an evaporation rate and µ is the par-
tial ambient vapour pressure. In combination they con-
trol the strength of condensation or evaporation. Note
that the dependence on pressure automatically incorpo-
rates the Kelvin effect and a wettability-dependence of
phase change —for a discussion of evaporation models
see [30]. The model is analysed employing i) numerical
pseudo-arclength path-continuation techniques [24,25] im-
plemented using pde2path [31] and ii) direct numerical
simulations (DNS) based on a finite-element method on a
quadratic mesh with bilinear ansatz functions and a 2nd-
order implicit Runge-Kutta scheme for time stepping im-
plemented using the DUNE PDELab framework [32,33].

Single-drop depinning. – On a smooth homogeneous
substrate, drops of any size slide for arbitrarily small lat-
eral driving, i.e., for any α ̸= 0 [6]. In stark contrast,
on a heterogeneous substrate, drops are pinned at small
driving strength as investigated in depth with long-wave
models for drops on one-dimensional substrates [26,34]
and on two-dimensional substrates with stripe-like het-
erogeneity [3,35]. Figure 1 presents for a single drop of
nonvolatile liquid pinned by a single circular hydrophilic
spot a typical bifurcation diagram at fixed drop volume
VD employing the driving strength α as control parameter
(top)2 and selected corresponding drop profiles (bottom).

1 Starting from the dimensional Derjaguin pressure Π̃(h̃) =
−A/h̃3 + B/h̃6 , we scale height by heq = (B/A)1/3 , lateral lengths
by l0 =

√
3heq/

√
5θeq, and time by t0 = 9ηheq/25γθ4

eq . Then,

θeq =
√

3A/5γh2
eq is the equilibrium contact angle at ξ = 0 and

G = 3ρgh2
eq/5γθ2

eq is the gravitation number. The physical inclina-
tion angle is θeqα. Here, we use G = 10−3 , e.g., for θeq = 0.1, heq
is about a micron. We do not expect qualitative changes for smaller
heq [6] —a case that is at present not numerically feasible.

2 As solution measure we mainly use the L2 -norm ∥δh∥ :=√
Ω−1

∫
Ω[h/h0 − 1]2dxdy. Spherical cap-like drops of large volume

are characterised by a relatively large ∥δh∥, which is reduced for
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Fig. 1: Typical bifurcation diagram (top) and selected drop
profiles as contour plots (bottom) related to the depinning of
a drop of partially wetting, nonvolatile (β = 0) liquid from a
circular hydrophilic spot (dashed lines in bottom panels) un-
der lateral driving. The bifurcation diagram gives the (time-
averaged) L2 -norm ∥δh∥ as a function of substrate inclination
α (i.e., strength of driving) for linearly stable and unstable
pinned drops (solid and dashed line, respectively) and for the
depinned sliding drops that undergo a periodic stick-slip mo-
tion in the considered periodic setting (cross symbols). The
parameters of the drop profiles are indicated by correspond-
ing roman numbers in the upper panel. The domain size is
lx × ly = 200 × 100 and ξ = 1.0, the drop volume is fixed at
VD = 5 × 104 and the spot radius is R = 20.

Further cases are discussed in the Supplementary Mate-
rial Supplementarymaterial.pdf (SM). At small driving
there exists a branch of linearly stable pinned drops sitting
off-centre on the spot (e.g., I, II) and a branch of unstable
drops that are located slightly downstream of the spot and
connect to it by a narrow liquid bridge (e.g., IV). Start-
ing from a spherical cap-like drop at α = 0 (not shown),
with increasing α the stable drop first keeps its spherical
cap-like shape but shifts its centre downstream (I). Fur-
ther increasing α, the drop is increasingly deformed, so
that ∥ δh ∥ decreases monotonically (II). The branch of lin-
early stable states ends in a saddle-node bifurcation at
αdepin ≈ 0.1926 (III) where it annihilates with the branch
of unstable states. As known from other geometries [3,34],
at the saddle-node bifurcation a branch of stick-slip states
emerges in a global bifurcation. As here we work with pe-
riodic boundary conditions, these represent time-periodic
states with a period that diverges when approaching the
bifurcation point.

drops that are small or strongly deformed. The drop volume VD is
measured as the volume above the adsorption layer of height h0 = 1.

Each cycle of the resulting motion has two distinct
phases: first, the drop is pinned by the spot but slowly
stretches downstream. Then it depins and slides fast to
the next defect where it pins again. This is illustrated in
the SM. Close to the bifurcation, the time scales for the
stick- and the slide-phase strongly differ, and the overall
behaviour closely resembles experimentally observed stick-
slip motion [4]. Note, that the unstable steady states rep-
resent critical perturbations that have to be overcome to
depin and start to slide already below the critical driving
strength, i.e., for α < αdepin.

Single-drop condensation and depinning. – Next
we introduce condensation (β > 0 and µ < 0 in eq. (1)).
Then, on the partially wettable background substrate the
equilibrium adsorption layer height is only slightly shifted
(given by Π(h) − µ = 0), but on the hydrophilic spots,
the film height grows with a rate |βµ| (marginally slowed
down by the Kelvin effect). As a result, individual drops
condense onto the hydrophilic substrate defects. As their
mass continuously grows, they eventually reach the critical
mass for depinning at fixed inclination and depin under
the influence of the lateral driving force. After depinning,
drops slide and may undergo a pearling instability similar
to ref. [21].

We first quantify this process and its dependence on con-
densation rate in fig. 2 for a single drop on a hydrophilic
spot. The figure compares the bifurcation curve of steady
pinned drops as a function of their volume VD (at fixed
inclination) with the time evolution of condensing drops
for two different condensation rates. Note, that in con-
trast to fig. 1 periodic boundary conditions (BC) are only
used in the spanwise (i.e., y-) direction, while in stream-
wise (i.e., x-) direction Neumann BC are used. At the
upstream border the film is always flat and Neumann BC
result in no-flux BC while downstream these BC allow
drops to slide out of the domain. The same BC are em-
ployed in the ensemble DNS below.

Here, each time simulation is started from a flat film of
adsorption layer height h0 = 1, i.e., VD = 0 and ∥ δh ∥ = 0.
Subsequently, liquid condenses into a drop on the ideally
wettable spot. As soon as the height profile deviates from
a flat film, a finite Laplace pressure results in a slight de-
crease (increase) of condensation in the bulk drop (contact
line) region. This results in further small internal fluxes
that rearrange liquid within the drops.

Inspecting the top panel of fig. 2 in detail, one ap-
preciates that the growing drops (e.g., bottom panels II
and III) closely follow in the (VD, ∥ δh ∥ )-plane the bifur-
cation curve representing stable steady drops of different
volumes. This holds up to the saddle-node bifurcation
that indicates depinning for drops of nonvolatile liquids.
The slightly smaller norm at identical volume indicates a
smaller contact angle —an effect that is more pronounced
at larger condensation rates, i.e., at larger deviation from
equilibrium. For evaporating drops, it is known that due
to evaporation-driven internal flows towards the contact
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Fig. 2: Top: the lines with symbols characterise the time evo-
lution of a single drop of volatile liquid that grows by con-
densation on a hydrophilic spot. Shown is the L2 -norm ∥δh∥
over drop volume VD for two different condensation rates as
given in the legend and for comparison the bifurcation curve
of pinned nonvolatile drops (bare solid line). The short ver-
tical lines indicate the volume at depinning in the nonvolatile
(V s

depin, left line) and volatile (V c
depin, right lines) case. The

inset gives VD(t) for the condensing drops. The bottom row
gives snapshots of the growing pinned drop for β = 2 × 10−5

at times marked by roman numbers in the inset. The domain
size is lx × ly = 200 × 100, ξ = 1.0, the inclination is fixed
at α = 0.3, the spot radius is R = 20 and the partial vapour
pressure that drives condensation is µ = − 0.05.

line region, the contact angle is larger than the equilibrium
value [27,36]. Here, we encounter the expected opposite
effect for condensing drops due to condensation-driven in-
ternal flows towards the drop centre.

When the drops pass the critical volume for depinning
V s

depin ≈ 3.19 × 104 of the steady nonvolatile drop, they
depin. However, with ongoing condensation, the volume
where this happens is moderately shifted to a larger V c

depin
(in fig. 1 indicated by the two short vertical lines on the
right) because the time scale of the depinning process has
to become shorter than the one for condensation. There-
fore the shift V c

depin−V s
depin is larger for faster condensation

(larger β). After the connection to the defect is capped,
at the present moderate lateral driving the sliding drop
closely approaches a slightly oval spherical cap-like shape
(small but distinct increase of the norm close to V c

depin).
The sliding drop moves downstream and quickly leaves the
domain. This results in the abrupt decrease in volume vis-
ible in the inset of fig. 2. As the qualitative behaviour is
similar for all considered condensation rates, now we focus
on the larger one (β = 10−4 ) as this allows for large-scale
DNS on time scales that are large as compared to time
scales of condensation, depinning and sliding.

If the domain is sufficiently extended, at high driv-
ing strength one can observe that the drop undergoes a
pearling instability (as in ref. [6]). As in the following,
depinning and pearling will play an important role, we

Fig. 3: Morphological phase diagram in the nonvolatile case
indicating where pinned, stable sliding and pearling drops
dominate in the parameter plane spanned by drop volume and
inclination angle. The borders between regions correspond to
power laws (given in the inset) extracted from sets of bifurca-
tion diagrams as, e.g., fig. 1 above and fig. 1 of [6]. Remaining
parameters are as in fig. 1.

present in fig. 3 a morphological phase diagram for sin-
gle drops in the nonvolatile case. It indicates in a log-
log plot volume and inclination ranges where drops are
pinned at the defect, slide down the homogeneous back-
ground substrate and undergo a pearling instability while
sliding. The separating lines can be fitted by the power
laws given in the legend of fig. 3.

Large-scale time simulation. – Large-scale DNS of
eq. (1) are conducted on a large spatial domain (4000 ×
4000) with about 400 identical randomly distributed, not
overlapping, hydrophilic spots of radius R = 20 (see black
spots in the top left panel of fig. 4) for different fixed incli-
nation angles. We believe this relatively high spot density
presents a good first approximation for a heterogeneous
substrate. Note that at this density most drops will inter-
act with several defects before leaving the domain. This
also ensures that the results will not critically depend on
streamwise domain size as may be the case at low spot
density.

Statistical analyses are applied to the resulting ensem-
bles of growing pinned and sliding drops3. To shorten the
initial transient, here, the initial condition is a flat film of
height hini = 2.0 perturbed by small-amplitude additive
noise and a further spatial harmonic modulation of large
wavelength. The latter induces different initial conditions
(IC) at the individual hydrophilic spots, so that artifi-
cially synchronised behaviour is avoided and the system

3 To quantify the process, the total number of drops ND(t) in the
domain is determined as well as all individual drop volumes and the
resulting drop size distribution f(VD, t). We define an individual
drop via the connected area AD of its footprint where the height
h(x, y, t) is larger than a threshold height that is slightly larger than
the height of the adsorption layer (here hthresh = 1.05). For each
step of the DNS, all drop volumes VD are calculated by integrating
h(x, y, t) over the corresponding AD. Then the distribution f(VD, t)
is obtained by a Gaussian kernel density estimate (KDE) [37].
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Fig. 4: Shown are snapshots from a large-scale direct time simulation (eq. (1)) of an ensemble of condensing drops on an
inclined substrate with NS ≈ 400 identical randomly distributed hydrophilic spots with R = 20 (black dots in top left panel).
The condensation rate is moderate β = 10−4 , α = 0.5, and the domain size is 4000 × 4000. During an initial transient, spinodal
dewetting contributes to the formation of drops that later (from about t = 104 ) mainly condense onto the hydrophilic spots.
From t ≈ 7.5× 104 the dynamics is dominated by pinned and sliding drops. In the long-time limit (here, reached at t ≈ 25× 104 )
the dynamics converges to a stationary state where condensation, depinning and inclination-driven outflow balance, resulting
in a steady drop size distribution.

sufficiently fast approaches a purely statistical state. Fur-
thermore, at the upstream boundary a strip of bare ad-
sorption layer height is introduced into the IC to ensure
the no-flux BC (fig. 4 (top left)). In this way, the total
volume in the domain exclusively results from a balance
of condensation and downstream outflow.

The series of snapshots in fig. 4 presents important
phases of the resulting dynamics for α = 0.5. A compar-
ison with other inclinations is given in the SM. The cor-
responding dependencies of mean film height h̄ and drop
number ND on time are given in fig. 5. The first phase (top
row of fig. 4) represents a transient dominated by spinodal
dewetting that results in the fast emergence of many small
droplets and their subsequent coarsening (decrease of ND
in fig. 5) accompanied by an ongoing increase of h̄ due to
condensation. The effect of the hydrophilic spots is clearly
visible at t = 0.5 × 104 (fig. 4) where significantly larger
droplets have developed on all of them. They absorb the
smaller droplets within their immediate vicinity and at-
tract most condensation. The remaining small droplets
continue their coarsening and fusion into the large drops
at the defects. A clear qualitative difference is seen in the
transition from t = 3.5 × 104 to t = 7.5 × 104 as most
droplets from initial dewetting have disappeared and the
dynamics is dominated by condensation and depinning.
At t ≈ 105 the decreasing ND is converging to a steady

Fig. 5: Time evolution of (left) the mean film height h̄ and
(right) the drop number ND obtained in large-scale DNS at
different inclinations α as given in the legend. The number
NS of hydrophilic spots is shown as thin horizontal line. In
all cases, first (t ! 105 ) condensation, spinodal dewetting and
drop coarsening dominate, i.e., h̄ increases and ND decreases.
Then depinned drops slide out of the domain and h̄ decreases,
until at about t = 2, . . . , 3 × 105 a balance of condensation and
outflow is established. With decreasing α, the stationary state
is characterised by a smaller ND and a larger h̄.

number while h̄ still decreases due to the outflow of the
initial batch of larger drops.

At large times (e.g., t = 46.0×104 in fig. 4) a steady drop
size distribution has developed where ND and h̄ fluctu-
ate about their respective mean values. This implies that
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Fig. 6: The left panels show time evolutions of the drop size dis-
tribution as volume-time plots of the Gaussian kernel density
estimate (KDE) f(VD, t) for (top) α = 0.3, (middle) α = 0.5
and (bottom) α = 0.7. The phases described at fig. 5 can be
well distinguished. The respective right panels give the final
steady drop size distributions f(VD), obtained as time average
of the converged but fluctuating distribution from t = 4.5× 105

to t = 5.0 × 105 . The critical drop sizes for depinning Vdepin

and pearling Vpearl are indicated as horizontal lines (cf. fig. 3).

condensation and outflux balance in a stationary state.
Thereby, the values of the corresponding plateaus in fig. 5
for ND (h̄) decrease (increase) with increasing inclination:
At low α, the depinning threshold Vdepin is larger than
at high α, and the ensemble consists of fewer and larger
drops (for an image see SM). In all cases, the number of
hydrophilic spots NS naturally forms the lower limit for
ND, such that ND − NS indicates the number of sliding
drops. Due to later depinning and slower sliding the mean
height in the domain is larger at lower α. It is notable that
here ND truly converges in the long time limit while in
the nonvolatile case on homogeneous substrates the drop
number still slowly decreases in the long-time limit [21].
There this small drift is due to large linearly stable sliding
drops that feature a long backwards protrusion [6]. In the
present case, such drops are disturbed and broken up by
the heterogeneities.

Two further effects are visible in fig. 4: First, one dis-
cerns a gradient in drop sizes in streamwise direction which
results from the increase of drop size as they move through
the domain and collect liquid from hydrophilic spots that
they pass. Second, in contrast to the homogeneous sub-
strates [21], the ensemble always remains dominated by a
large number of relatively small drops pinned at the hy-
drophilic spots. This is very clear in fig. 6 where on the
left volume-time plots of the drop size distribution f(VD, t)
are shown for different driving strength while on the right
the resulting steady distributions f(VD) are shown. We
always find that a characteristic double-peaked drop size
distribution emerges. The loci of the two peaks are close
to the critical drop sizes for depinning Vdepin and pearling
Vpearl, respectively, that are obtained from the single-drop
bifurcation diagrams (figs. 1 and 3). With decreasing α
the peaks become wider and their distance becomes larger.
Notably, at low α an intermediate range between the peaks
emerges where f(VD) decreases exponentially with increas-
ing drop size.

Conclusion. – We have employed a long-wave film
height evolution equation to qualitatively study the collec-
tive behaviour of ensembles of pinned and sliding drops of
volatile liquid on chemically heterogeneous inclined sub-
strates combining path-continuation methods and large-
scale direct numerical simulations. We have obtained
bifurcation diagrams that quantify the depinning of in-
dividual drops from hydrophilic spots in the nonvolatile
case and could show that such a bifurcation curve roughly
predicts the path taken by the continuous condensation of
individual drops onto such spots. In the case of the drop
ensemble condensing onto many identical randomly dis-
tributed, not overlapping, hydrophilic spots, beyond de-
pinning the drops slide along the substrate, collect the
liquid of other pinned drops and of smaller drops that
slide more slowly. Sufficiently large sliding drops undergo
a pearling instability. We have found, that as a result of
these competing processes the collective behaviour of the
drop ensemble converges to a stationary state of on av-
erage balanced condensation and outflow. The stationary
state is characterized by a drop size distribution whose
main features are related to the single-drop bifurcation
diagrams.

In the future, it will be interesting to determine how
the collective behaviour depends on details of the wetting
behaviour, on the parameters related to condensation and
on the characteristics of the substrate heterogeneities. Of
particular interest are the spatial, size, shape and wetta-
bility distribution of the heterogeneities. Further it is of
interest if the described features are robust beyond the
long-wave approximation.
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