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Abstract. We determine the steady-state structures that result from liquid-liquid demixing in a
free surface film of binary liquid on a solid substrate. The considered model corresponds to the
static limit of the diffuse interface theory describing the phase separation process for a binary
liquid (model-H), when supplemented by boundary conditions at the free surface and taking the
influence of the solid substrate into account. The resulting variational problem is numerically
solved employing a Finite Element Method on an adaptive grid. The developed numerical scheme
allows us to obtain the coupled steady-state film thickness profile and the concentration profile
inside the film. As an example we determine steady state profiles for a reflection-symmetric two-
dimensional droplet for various surface tensions of the film and various preferential attraction
strength of one component to the substrate. We discuss the relation of the results of the present
diffuse interface theory to the sharp interface limit and determine the effective interface tension of
the diffuse interface by several means.
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1. Introduction

Simultaneous demixing and dewetting frequently occurs in industrial applications that involve
films of soft matter on solid substrates. Examples include several coating technologies or the
production of hierarchically structured functional polymer layers and printable polymeric elec-
tronic circuits. In emerging nano-technological applications, the thickness of the diffuse interface
between different phases might become comparable to the structure size or layer thickness. This
implies that the interaction between internal diffuse interfaces and sharp free surfaces and/or solid
boundaries becomes an issue that has to be understood, in particular, for films of sub-micrometer
thicknesses.

Various experimental studies as reviewed, e.g., in Ref. [13] involve films of phase separating
polymers. The resulting structured films are often seen as resulting from either a dewetting process
of the film or a phase separation of the components within the film. However, neither of the two
descriptions is complete as the finally observed films show a modulated surface profile and a
concentration profile within the film. Examples of final structures include drops of one component
embedded in a film of the other component (that shows a surface modulation), and drops of one
component on a film of the other component [13]. The aim of the present paper is to present
a variational technique that allows us to describe such final steady state structures that might be
reached through a number of dynamical pathways. For instance, dewetting induced by phase
separation is studied in Ref. [26]; surface roughening of a phase-separated polymer mixture in
Ref. [18]; wetting, phase separation, and the pathways to resulting structures of polymer mixtures
are described in Refs. [44, 20, 43]. The development of theoretical approaches to simple’ phase-
separating films might in the future be extended to account for more involved situations like, for
instance, evaporating films of solutions of binary mixtures on horizontal [16] or inclined [31]
substrates.

Theoretical approaches to the demixing problem are commonly based on the Cahn—Hilliard
theory [7, 27] using the Landau—Cahn free energy functional approximation to model phase sep-
aration in a bulk system while neglecting the effects of confinement. A small number of studies
focuses on phase-separation in a gap between solid walls [9, 5, 25] or at a single rigid wall [8].

Such an approach is, however, not valid when at least one of the boundaries is a free surface,
i.e., it corresponds to a film surface that is free to move and thereby to change its profile. To de-
scribe the time evolution of such a system the convective flow of the bulk liquid has to be accounted
for. Then one may describe in a consistent and simultaneous manner the coupled effects of diffu-
sive phase separation, surface and interface tensions, and hydrodynamic convective motion. The
coupled transport equations for concentration (convective Cahn—Hilliard equation [14, 15]) and
momentum (Navier—Stokes—Korteweg equations) for a phase-separating binary liquid or liquid—
gas mixture are known as model-H [17]. Note that this and similar theories are often referred to as
phase-field theories. Several groups use model-H to study the dynamics of fluids in the bulk or in
a fixed confined geometry [1, 35, 19, 2, 41, 28, 42]. Recently, model-H was re-derived employing
phenomenological non-equilibrium thermodynamics to consolidate a number of slightly differing
formulations in the literature [40]. The model is supplemented by boundary conditions for velocity
and concentration fields at the free surface and the solid substrate and is used to investigate steady
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stratified layers [40] and their linear stability with respect to lateral perturbations in the film thick-
ness and concentration profiles [29]. A similar approach employing a simpler model was taken in
Ref. [12].

For very thin films the time-scales for vertical and lateral structuring may separate. In conse-
quence, one can assume that the film first phase-separates vertically on a short time-scale. Then
the film evolves a horizontal structure on a longer time-scale. Under this circumstances an alter-
native approach is viable based on long-wave theory (or lubrication approximation) [33, 21]. In
this approach the later stages of the evolution are studied as the evolution of a two-layer film on a
solid substrate [36, 3, 10, 37, 38], i.e., the diffuse interface of the vertical stratification is replaced
by a sharp interface which is described by its height above the substrate /; in the same way as
the local height of the film is 4. Then the coupled evolution equations for the profiles h;(z, t) and
h(z,t) of the liquid-liquid and liquid-gas interfaces are determined. Extensions include the study
of two-layer films with surfactants [11].

In the present work, we take a different approach. We do not restrict our attention to long-wave
structures, but focus on the steady state equilibrium structures (film thickness and concentration
profiles) that will result from the long-time evolution, i.e., after all short-time layering and long-
time coarsening processes have let the system settle in an energy minimum. Such states are de-
scribed by the static limit of model-H including the boundary conditions at the free surface and the
substrate. The static limit can be obtained as solution of a variational problem (see appendix of
[40]) — a formulation we employ here to numerically obtain the steady state solutions.

We discuss that variational formulation in Sections 2. and 3.. Thereby, we restrict our attention
to a two-dimensional (2D) film on a solid substrate. To solve this model, in Section 4.1. we
introduce a numerical procedure based on Finite Elements (FE). Steady state solutions for selected
parameter values are computed and described in Section 4.2.. Thereby, a continuation procedure is
employed where one uses either the surface tension of the free surface or the magnitude of the van
der Waals interaction with the substrate as the continuation parameter. The results are discussed in
Section 5.. In particular, we compare the numerical solutions with the limiting case of large surface
tension using a one-dimensional theory for solutions with radial symmetry. We also discuss arc
fitting procedures to obtain sharp interface equivalents for the diffuse interface solutions. Finally,
the influence of the substrate is elucidated. The final Section 6. concludes and gives an outlook.

2. The model for coupled demixing and dewetting

The free energy functional for a partially miscible two-component liquid film on a solid substrate
can be written in the form (cf. appendix of Ref. [40])

Fle, 0,0, \ :/Q [%(VC)2 ¥ fle b,m)} dv

— M [/ cldV—clvo] —)\[/ dV—Vo] +7§ vdA. 2.1)
2 (0] of?

Here, ¢; = p;/(p1 + p2) and C; for i = 1,2 are the dimensionless local and mean concentration
of component 7, respectively; ¢ = ¢; — ¢ = 2¢; — 1 is the difference of concentrations; o is the
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effective rigidity related to the interface tension of the diffuse interface separating the phases (see
next Section). Vj is the prescribed volume of the domain (2 occupied by the liquid; -y is the surface
tension of the free surface that is here assumed not to depend on concentration (such a dependence
will be considered elsewhere); f(c; b, x) is the volume density of the local Helmholtz free energy
of the fluid. )\ and )\, are the Lagrange multipliers enforcing the total volume to be 1, and the total
volume taken by the component 1 to be C;V}, respectively. The components 1 and 2 are locally
pure when cis 1 and —1, respectively. The fluid is assumed to be incompressible and of constant
density p = p; + po. For the local free energy we assume the form

e = —fo ol - 5 @2)
with
o(c) = In(1 — ) + ¢c?, (2.3)

where the z-axis is perpendicular to the planar substrate, and ¢ and b are constants. The energy
includes the van der Waals interaction with the substrate (z-dependent term). The singular form
of the function ¢(c), fashioned after the van der Waals equation of state, confines ¢ within the
physical interval —1 < ¢ < 1 and is useful for setting the boundary condition at the substrate, as
specified below. Such a form for the energy — fy¢(c) one obtains, e.g. using Flory-Huggins theory.
For ¢ > 1, the symmetric function —¢(c) has two minima corresponding to two phases. Here we
consider b > 0, i.e., component 1 is repelled by the substrate. The case b < 0 is related by the
symmetry (b — —b,c — —¢,C; — Cy).

Equation (2.1) is non-dimensionalised using fj as the energy scale and the characteristic thick-
ness of the diffuse interface, . = \/o.,/fo = \/40./fo, as the length scale. Further on, we
shall numerically compute the film thickness profile i (z) and the concentration profile ¢(x) in a
2D layer on a solid substrate, that is infinitely extended and periodic with period 2L along the
x-direction. Retaining the same notation for the scaled (dimensionless) functions and variables,
we rewrite Eq. (2.1) as

L ph(z) c 2
Fle(x), h(z), A\, A] = /0 /0 [% + f(¢;b,x) — Ager — A| dzde

L
+ ’)// \ 1+ [h/(l')]QdiU + )\dC'lAO + )\AQ, (24)
0

where x = (z, z); and A denotes the prescribed area in the considered 2D problem in analogy with
Vb in Eq. (2.1). Note, that the dimensionless surface tension 7 in (2.4) corresponds to the ratio of
the dimensional surface tension and the internal interfacial tension, ;, which is defined in Section
3.. To compute symmetric solutions, it is sufficient to consider half a period, i.e. = € [0, L], with
the boundary conditions (BCs) 0,c = h/(z) = 0 at z = 0 and = = L, that are already included as
the natural BCs in our variational principle Eq. (2.4). For b > 0, the substrate is shifted to z = —d
for numerical convenience, where 0 < d < 1, and the BC at z = 0 is defined by the asymptotic
condition ¢;(x,0) = d/b, which follows from Eq. (2.2). Note, however, that in calculations with
b > 0,C}, Ay, and h(x) correspond to the region of positive z only. The BC for c at the free surface
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is taken to be zero normal derivative, 0.c¢ — h/(z)0,c = 0, which corresponds to a surface tension
that does not depend on concentration. Again, this is the natural BC contained already in Eq. (2.4).
Similarly, for the case b = 0 the natural BC at the substrate is 0,c = 0. The more general case
where one of the components is preferred at the free surface will be considered elsewhere.

3. Basic equations

First, we consider the basic phase-separating solution for a one-dimensional infinitely extended
system. The spatial coordinate is z. Minimizing the functional (2.4), assuming b = 0, results in
the Euler—Lagrange equation

d(z) +4¢'(c(2)) + 20 = 0, (3.1)

subject to the natural boundary conditions ¢/(z) = 0 at z — +oo. Integrating Eq. (3.1), using the
notation ¢(z) = c4 for z — 400, one obtains

£(2) = dlple-) — ple(2))] + Dnale- — ()] (32)

Quadratures yield the profile ¢(z) in the inverse form

z/(Z) de 1/C(Z) e (3.3)
(0 ) 2Juo) 2[p(c2) — ()] + A (e —c) '

The free energy function —¢(c), defined in Eq. (2.3), is a symmetric double-well function admit-
ting two stable phases with ¢ = cy. For \y = 0, Eq. (3.1) has a simple kink solution with the
average composition C; = 1/2, ¢(0) = 0, and ¢ = £4/1 — 1/q. The interface tension of the
diffuse interface is computed as

_ > /2 _ 1 OO /2 _ 1 o /
"= cidz = 1 d“dz = 1 d(c)de, (3.4)

o0 o0

where one substitutes for ¢’ from Eq. (3.2). In our numerical computations we used ¢ = 2.5, which
gives v; = 0.58909 and c. = £0.77460. The dimensional interfacial tension y3™ is then fol. i,
where fj is the energy scale and [. = \/ oe,/fo = \/ 4o,/ fo is the width of the diffuse interface.
Note that an estimation of the dimensional form of the integral (3.4) gives %dim ~ o./l.. Fora
more extensive discussion of non-dimensionalisation in the context of model-H see [40, 29].

It is useful to indicate the diffuse interface between the two phases by a simple curve — the
apparent sharp interface (ASI). As a natural generalization of the 1D case (cf. [34]) the Gibbs
interface is defined for the general 3D case as the level set of ¢(x) that separates domains at
assumed constant ¢ = c. in such a way that the same average concentration V! J pcdV =Chis
obtained as for the original diffuse interface. The Gibbs interface (a contour curve in our 2D case)
is a one-parameter curve uniquely determined by the constant value of ¢ along it: ¢ = cg. So, the
number c¢ is the solution of

crAi(eg) + c_As(cg) = / c(x)dx = C1 A, (3.5)
0
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where A; and A, denote the areas of the respective phases at ¢, and c_ separated by the cg-contour.
Ay = A+ A, is the total area of the considered domain. For the kink solution ¢(z) described here,
Gibbs interface reduces to the point z = 0, where ¢(0) = ¢g = 0. In Section 5. other concepts are
introduced to define curves as representatives of apparent sharp interfaces.

4. Numerical 2D solution

4.1. Finite element variational method

The 2D problem is solved by the finite element method (FEM). We introduce isoparametric finite
elements (FE), i.e., we define (using matrix notation)

v = H(§)z,, z=H(§)z., 4.1)
h=H(&,(&)h = Ho(¢)h, c=H(¢ n)e, (4.2)

where H is the 1xn (row) matrix of n given basis functions corresponding to the chosen element
type. £ = (£, n) are the natural coordinates of the element, that usually belong to the range [—1, 1].
In our calculations we used linear triangular elements with area coordinates, well known in the
FEM literature [4]. The column vectors of the unknown nodal values are denoted by x,, ., fz, C.
The variable &, denotes the &-curve that corresponds to the element edge that belongs to the top
boundary 0(2*. We are using isoparametric elements, i.e., H is identical for all fields.

Using the FE discretization, Eqs. (4.1) and (4.2), the variables c and h are expressed as func-
tions of the FE natural coordinates &, 7. The x, z coordinates are themselves functions of &, 7. The
functional F[c, h, \q, A] in Eq. (2.4), becomes

F= F[C(€>7h(£s)v)\d7>‘]

2

_ / { V()] + fle(€): b, x(€)] _)\dw —)\} JA(f)d2€

ol 8 2
+ 'y/ Js(&s)dEs + AaCrAg + NAy, (4.3)
802 (&s)
where V is the gradient in x-space,
I(z, 2) ds
Ja = d Js = .
G dé.

In order to determine the stationarity condition for the functional (4.3), one needs to calculate
0F. Using Egs. (4.1) and (4.2) we note that

dx(€) = H(£)0d,,  02(§) = H(€)d%., (4.4)
0h(&s) = Ho(&)oh,  dc(§) = H(€)de. (4.5)
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Our FE mesh will change to accommodate different free surface profiles, i.e., « is adapted to h(z).
In order to define a unique FE discretization for arbitrarily varying h(z), all degrees of freedom
(DOFs) connected with the FE mesh, &, ., have to be expressed in terms of the DOFs of the
variational problem, i.e., we have to define rules for mesh adaption.

For the present problem, it is advantageous to fix the x-coordinates of all nodes, &, and adapt
only their z-coordinates, &, to the h(;)-profile. This is done in such a way that their height above
the substrate measured in the local height of the profile /() is constant, i.e., for the ith node

~ ~ j:in A -y
Zy; = const, Tzi = ﬁHS(&(@ri))hw (4.6)
HS(§S(Izi>>hO

where symbols ., ho denote variables x,, h in their given initial configuration. Eq. (4.6) defines
the relation between z-coordinates of all nodes and the DOFs of the free surface. One can write it

symbolically as
z, = Qh. 4.7)

Using Egs. (4.6), (4.7), and (4.1), we have
bx =0, 0z=H(&)dx, = H(&)Qoh. (4.8)

Thus the independent DOFs of the functional F are ¢, ﬁ, A, and A. The gradient in Eq. (4.3) can
be written as

(Ve)(€) = T (§)[0:H (§)]"e, (4.9)
where T'(§) = (Ogx) ™! is the inverted transformation matrix d¢x defined as

dz = (O¢x) d&. (4.10)

In the following derivation, we use index notation with Einstein’s convention of summation. Eq. (4.9)
reads

(Vic)(§) = T;i(€)[0, Hi(&)] & 4.11)

The resulting variation of V¢ is

= (ViH})6¢ — (Vo Hy)éw(ViH o) Quudhu, (4.12)

where V5 = 0,. In matrix notation we have
§(Ve) = (VH)ée — (0. H)e(VH)QSh = (VH)de — (0.¢)(VH)Q6h. (4.13)
The variations of the Jacobians are

04 = 0cxd, 0z — 0,20:02 = (Jewdy H; — Dy H;)Qy;0h;
= JA(0.H))Qy0h; = Jo(0.H)Q6h, (4.14)
0Ty = J7 ¢, h(E,)De,0h(E,) = J'0c, HyhOe, H,oh. (4.15)
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The first row of Eq. (4.14) shows that §.J,4 is independent of the DOFs of the variational problem
for our rules of mesh adaption. Finally, the stationarity condition for the functional (4.3) is

OF = 0F[e, h, Mg, N = 5&T/
%

B(VH)TVC + H"(0.f(c;b,x) — Mg /2)} d%¢
+h'QT / {—E(VH)T(VC)azc + H"0.f(c; b, a:)} Jad€
(9

L
— 6\ / cyd?€ — 0N / h(z)dz
2 0

N 2
+ 5hTQT/(8ZH)TJA {NTC) + f(e; b, @) — Mgy — )\} d?e
0
+ 5ﬁTv / (0e, H,) T (9, H)hJT1AE, + 6MqCL A + 0AAg = 0, (4.16)
o0t

which gives the nonlinear FE equations of the problem. Newton’s method is used to solve the
resulting system of equations numerically.

4.2. Computational procedure and parameters

We numerically investigate small steady two-dimensional droplets, i.e., solutions with a relatively
small and compact spatial domain of phase 1 within the ambient liquid composed of phase 2 or, at
the interface of phase 2 and air. The geometric parameters are fixed to L = 13.75 (lateral system
size) and h = 5.5 (mean film thickness).

The continuation procedure is as follows

1. The basic mesh is created with a maximum element edge size of (.55, i.e., one has about 10
elements along the vertical of the original rectangular domain and about 25 elements along
the horizontal. As detailed below, a drop attached to the free surface is used as a starting
solution or initial approximation on the coarse mesh.

2. The coarse mesh is used to effectively obtain the indicative numerical solution for a given
value of the continuation parameter (y or b).

3. The obtained solution on the coarse mesh is used as an initial approximation for the adaptive
mesh refinement and further computation of the refined solution. The refinement is then
repeated once more and the final solution is obtained. The refinement predominantly takes
place in the diffuse interface region, in the region close to the substrate, and in zones along
the free surface, where high concentration gradients and/or surface curvature are detected.
In regions where both refinement steps are performed, the typical size of a final element is
0.1375, i.e., one has about 7 elements per characteristic width of the diffuse interface. A
typical refined mesh and sample solutions are shown in Figs. 1 and 2, respectively.
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4. The continuation parameter is advanced and the previous solution on the basic coarse mesh,
obtained in the “coarse” step 2, is used as an initial approximation and steps 2 to 4 are
repeated.

X

Figure 1: Steady state droplet geometry with the refined mesh for the solution at v = 1.3, b = 10.
Refined regions are encountered at the diffuse interface, at the boundary of the depletion zone
(described in Section 5.5. and shown below in Fig 10), and near the highly curved parts of the free
surface.

In the limit of large surface tension v > 1, i.e. when the ratio between the free surface tension and
interfacial tension becomes very large, in the sharp interface approximation, the energy is minimal
for a droplet with a semi-circular interphase boundary attached either to the substrate or to the
almost planar free surface. The latter has to be chosen as a starting point for the determination of
droplets that are repelled by the substrate. This is here always the case.

Normally, we fix b and gradually decrease . Thereby, we generate a series of solutions with
increasing curvature x, of the free surface and decreasing curvature of the interphase boundary
(kg, as represented by the Gibbs interface). The case b = 0 is investigated to compute positions
of the Gibbs interface and the average curvatures (which may be distorted by the influence of the
substrate). The breakdown of the formula we use to determine Gibbs interface (3.5) is illustrated
by a series of solutions obtained by continuation in b at fixed . Also here, the solutions on the
coarse basic mesh, for b = 0 are used as an initial approximation. In all calculations, the remaining
parameters are fixed at ¢ = 2.5, Ay = Lh = 75.627, and C; = 0.2. In addition, for b > 0 we use
d = 0.055. In the following section we analyse the obtained symmetric 2D solutions.

In physical terms the discussed drops correspond to two-dimensional nano-droplets. For dif-
fuse interface widths between 10nm and 100nm the chosen mean film thickness [lateral domain
size] lies roughly between 50nm and 0.5pm [150nm and 1.5pum] — typical ranges in Ref. [13].
The studied range of the dimensionless surface tension y (ratio of dimensional surface tension to
dimensional effective interface tension of the diffuse interface) is between O(1) and O(10?). The
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(b) -08  -06

Figure 2: Concentration ¢(x) and thickness h(z) profiles for (a) y = 1.2, b = 1 and (b) v = 178,
b = 14. The significant repulsion of component 1 by the substrate and the small v displace a lens-
shaped drop in (a). At very large b and ~y one observes a very squeezed drop and a large depletion
layer in (b).
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X

Figure 3: Superimposed droplet shapes for increasing v at fixed b = 0. In particular, shown are
profiles for v = 0.95 (solid line), v = 1.78 (dashed line), v = 3.16 (dot-dashed line), and v = 178
(dotted line). The diffuse interface is represented by the Gibbs interface as described in Section
5.1..

latter corresponds to the limit of large surface tension v > 1, e.g., to two polymers that are nearly’
miscible: they demix with a very wide diffuse interface. The lower considered limit of v ~ 1 cor-
responds to a rather strong interfacial tension: the components can be considered to be strongly
immiscible; the diffuse interface is then very thin (about Inm). For two polymers one would nor-
mally expect v ~ 10, i.e., their interfacial tension is about one order of magnitude smaller than
their polymer-air surface tension. A further discussion of typical parameter values can be found in
[29].

5. Results and discussion

S5.1. Properties of the diffuse interface

The sequence of droplet shapes for neutral substrates (b = 0) shown in Fig. 3 is obtained by
gradually lowering «. In the figure, the diffuse interface is represented by Gibbs interface at cg
[defined by Eq. (3.5)].

The value of ¢ may be influenced by the substrate, as discussed in Section 5.5.. In addition, for
large b, cq is very close to ¢, and the cg-contour no longer represents the drop region. Moreover,
it may become intractable numerically. There are other ways to define an apparent sharp interface
(ASI) but none of them is equivalent to the diffuse interface. A very convenient way is to define
the ASI as the contour of maximal excess of the local free energy max|[f(c; 0, x)] = max|[—p(c)]
whichis at ¢ = ¢, = 0.

Yet another ASI can be constructed using force-balance arguments. The stress in the considered
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binary fluid, [1, 40, 35], is given by

2
T = [f(ch —L;b,x) + @ — A1 — )\} I—(Ve)(Va)
2
- [f(c; by + et /\} - Yveve). (5.1)
8 2 4
For a static solution one has
V-7=0. 5.2)

For b = 0, taking the sharp interface limit the stress distribution reduces to constant pressures
inside and outside of the drop and constant interface force located at the sharp interphase boundary
(cf. [19]). Eg. (5.2) indicates that the difference between the pressure inside and outside of the
drop — the Laplace pressure — is related to the constant interface tension ~; [defined by Eq. (3.4)],
and the local curvature of the sharp interface x; by

Pin — Pout = ViRi- (53)

Eq. (5.3) implies x; = const, i.e., the possible static solutions are circular drops of one phase
completely immersed in the other phase, lens-shaped drops attached to the free surface, and semi-
circular drops attached to an unbiased substrate.

Let us consider a ridge (2D drop) with the lens-shaped cross section. The surface and interfacial
tensions at the contact point, where the ASI meets with the free surface, have to be in equilibrium

’}/tl + ’)/tg + ’)/Ptp =0. (54)

Here, v and ~p are the surface and interface tension for the free surface and the ASI, respectively.
The t,, t5, and tp are corresponding tangent vectors at the contact point. Eq. (5.4) represents
Plateau’s law. Note, that projecting Eq. (5.4) onto the z-axis and neglecting the component t,,, we
obtain for the present geometry

VKs = YPKP, (5.5)

which is the condition of equal Laplace pressures that determines curvatures for the specified sur-
face tensions. For b > 0, the component t,, cannot be neglected and one has to use the full
z-component of Eq. (5.4). This is done in all calculations below in Section 5.3., where the force-
balance approach and Eq. (5.4) are employed to determine the ASI. Using force-balance argu-
ments, one can also uniquely replace the original diffuse interface by the ASI in a way that is
presented in the following section, where the semi-circular drop is examined.

5.2. Semi-circular droplets in the limit of large surface tension

Consider a 2D droplet located at the free surface. For v > 1 the surface is nearly flat and one
has h(z) ~ h. For a distant and noninteracting substrate, this droplet can be approximated by a
semi-circular droplet. It can be analyzed using polar coordinates with the origin at the center of
the circle, which lies on the axis of lateral reflection symmetry at z = 0.
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Figure 4: Shown are the characteristics of solutions with (semi-)circular symmetry. The main
graph gives the concentration field ¢ = ¢(r) and its derivative ¢/(r). The inset presents with a higher
resolution the positions of the radii Rg, R, and R, corresponding to the Gibbs interface, the
interface of maximal excess free energy, and the interface determined by force-balance arguments,
respectively. Details of their definition as well as a detailed discussion can be found in Section
5.2..

The Euler—Lagrange equation arising from the variation of the functional (2.4) with respect to
dc, rewritten in polar coordinates (r, #) and assuming circular symmetry, reads

/
A (r)+ 4m +4¢'(c(r)) + 2Xa = 0. (5.6)
r
The asymptotic condition at r — oo is ¢/(r) = 0. In this case, one cannot obtain the first integral
in a closed form. The profile ¢(r) is obtained by numerically solving the nonlinear ODE (5.6) as

an initial value problem with initial conditions
cry=cy, d(r)=0 at r=0. (5.7

Using a shooting method one finds a ¢; such that one obtains a solution with one diffuse interface
and with ¢/(r) approaching O for r larger than the radius of a drop. Results are shown in Fig. 4.
The parameter values used are the same as for the 2D FEM solution (see Section 4.2.). There,
however, one additionally uses b = 0, v = 178 and obtains the corresponding Ay = 0.23841 (here
we use \q = 0.238 which gives C'; = 0.1996). Then the present 1D solution is close to the 2D
FEM solution and both can be compared.

The values of cq and R = kg~ ! can be calculated using the volume balance formula (3.5)
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written for circular symmetry

L
(c; —c )TRE = / [c(r) — c_|2mrdr, with L=/ %, (5.8)
0

where Ay = Lh is the prescribed volume in 2D calculations, see Section 4.2.. The factor 4 in
Eq. (5.8) is motivated by the fact that the considered 2D solution resembles one quarter of a circular
drop. We obtain kg = 0.30427 and cg = —0.19152 (cf. Fig. 4). Maximal excess of the free energy
at ¢, = 0 gives ko = 0.31293.

Using force-balance arguments, we determine the ASI to be located at the radius r = Ry,
where the Oth and the 1st moment of 744, [given by Eqgs. (5.1) and (5.2)] are equivalent to the
corresponding moments of the traction for the fictitious drop with sharp interface at the ASI, i.e.,

L
/ rpdr = —prRes + Y = 0, (5.9)
0

L 2
/ Toordr = —pom + Yon Rin: (5.10)
0

These two equations are written assuming zero pressure in the ambient phase 2, which can be
checked by computing the 1.h.s. of Eq. (5.9). The solution of these equations is

Ym = pLBm (5.11)

2 L
and Rm = — ngT’dT’, (5.12)
PL Jo

where the Laplace pressure can be calculated as the difference of the pressures at the center and
far outside the drop, where V¢ is negligible. Using Eq. (5.1) we obtain

pPL = f(cout) - f(cin) + (Cin - Cout))\d/2- (513)

Using the numerical values obtained for the 1D solution ¢, = ¢y and ¢,y = ¢(L), we obtain
pr, = 0.18432. Finally, we compute from Eq. (5.12) k,,, = 0.31401 and ¢(R,,) = 0.023689 (see
Fig. 4). The interface tension is estimated as v,, = pp/km = 0.58700. This value is somehow
smaller than the nominal value +;, which was obtained from Eq. (3.4).

5.3. Least squares curves fit

Next, we compute the average curvatures directly from the obtained FE solutions. Then the in-
terfacial tension of the diffuse interface can be approximated by ~p using the force balance at the
apparent contact point according to Eq. (5.4). This formula is analogous to the Young—Laplace
law of balance of surface tensions, that enables one to calculate equilibrium contact angles of two
fluid media or phases of a fluid at a substrate. In order to determine the equilibrium contact angles
in a similar way, we perform a least squares fit of the drop boundary by two circular arcs and fit
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Figure 5: Least squares curves fit of the droplet solution. Circles and diamonds denote the data-
points for the droplet and film part of the free surface, respectively. Crosses and triangles denote
the interfaces defined via the maximal excess free energy and the Gibbs criterion, respectively.
Panel (a) gives the complete solution for v = 0.95 and b = 0 whereas in (b) a corresponding zoom
is given for the contact zone. Panel (c) shows a similar detail for v = 178 and b = 1. Note, that
the fitted arcs are denoted by their respective curvatures (cf. Section 5.3.).
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Y

Figure 6: Dependences of the average curvatures (determined by least squares fitting) on ~ for
b =0, 0.01, 0.1, and 1.0. The same line styles are used for both figures (a) and (b). (a) Average
curvature k4 of the free surface of the drop. (b) Average curvatures of various curves characterizing
the diffuse interface (see Section 5.3. for details). k. and kg correspond to maximal excess free
energy interface and Gibbs interface, respectively. xp corresponds to the arc passing through the
contact point.

the free surface of phase 2 by a straight line. The data-points in the diffuse interface region are
not used for fitting the free surface. Fig. 5 illustrates the curve fitting procedure. The intersection
of the arc fitting the drop surface and the straight line determines both the apparent contact point
and the vectors ¢; and t,. It can be seen, that the arc fitted to the Gibbs interface (data-points
denoted by triangles) does not pass through the contact point. This indicates that the Gibbs inter-
face is a poor choice if one wants to effectively replace the actual nonlocal interface tension by
the concentrated force — interface tension — acting on some sharp interface. A better choice is the
contour of maximal excess of the local free energy as defined in Section 5.1. (crosses in Fig. 5).
For our calculations, we determine the unit vector ¢p as the tangent to the arc concentric to the arc
of maximum excess energy passing through the apparent contact point (this arc is not shown in the
figure). The curvature of the latter arc is xp, that of the maximal excess free energy arc is k., and
that of the Gibbs arc is kg. The dependencies of these curvatures on y for some fixed values of b
are shown in Fig. 6.

For the solution at v = 178 and b = 0, i.e., corresponding to the 1D solution considered in
Section 5.2., the curvatures are kg = 0.30431, k., = 0.31293, and kp = 0.31360 (cf. Fig. 6) and
cg = —0.18922 (cf. Fig. 9b. Comparison with the results obtained in the 1D limiting case (Section
5.2.) shows good agreement.

Assuming that y is given and all angles are determined via fitted arcs, we use the z-component
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of Eq. (5.4) to calculate vp and the z-component to determine the error

t1e tor tpe
B = Ytz + Yioz + YPlp ’ (5.14)

TP

for any value of b. For b = 0, averaging over the results for vp ranging from 0.95 to 178, we
obtain the mean value vp = 0.58426. The largest error is & = 0.00617. Note, that the interface
tension ~yp increases with b, e.g. at b = 1 we obtain the mean value vp = 0.60505 with maximal
E =0.02742.

Note, that the interface tension p for the 2D solutions is slightly smaller than the nominal
value, ~;, given by Eq. (3.4). This is due to the finite area of the FE region considered and the used
numerical discretization.

5.4. Influence of the substrate

For b > 0, the shape of the droplet is influenced by the substrate. Component 1 and therefore the
droplet is repelled by the substrate and the shape of all interfaces may significantly deviate from
arcs and straight lines.

The basic geometrical parameters of the droplet solutions (as characterized by the Gibbs con-
tour) are the maximal thickness of the liquid film Ay, the minimal height of the Gibbs contour
ZG min, and the vertical and horizontal extensions of the symmetric droplet aq and bq4, respectively.
The ratio aq/bq is the dimensionless form factor characterizing the shape of a droplet.

For the three non-zero fixed values b = 0.01, 0.1, and 1, the surface tension -y is gradually
decreased to determine the dependencies of the droplet shape parameters on v shown in Figs. 7
and 8. The asymptotic boundary condition at the substrate was used as described earlier in Section
2.. The volume and the average concentration were fixed at the same values as before. Curve fitting
is illustrated in Fig. 5S¢, clearly indicating deviations between data-points and fitted arcs.

Inspecting Figs. 7 and 8 two effects can be discerned. First, with increasing b and ~y the droplet
is squeezed from below by the substrate and from above by the surface tension. Second, the
droplet region with prevailing component 1 is as a whole repelled more strongly than the film with
prevailing component 2, i.e., the droplet is lifted up as a whole, especially at higher b and smaller ~.
Figure 7 shows mainly the effect of the repelling of the whole drop, whereas Fig. 8 better reflects
the changing shape of the droplet itself. The most rounded (squeezed) shape one finds at smallest
(largest) v and b.

For the one-dimensional ¢(z) profile determined in Section 3. the equilibrium chemical poten-
tial is Ay = 0. Here, in order to stabilize a drop one needs to impose a nonzero Ay that balances
the Laplace pressure. This balance is expressed by Eq. (5.13), where the main contribution on the
r.h.s. comes from the \4-term. The dependence of the equilibrium chemical potential Ay on 7 is
shown for various b in Fig. 9a. It can be seen that \q increases with increasing v and b, i.e., it is
larger for a more squeezed drop.
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Figure 7: Shown are characteristic vertical measures as functions of + for b = 0, 0.01, 0.1, and
1.0. (a) Height over z = 0 of the maximum of the droplet (h,.,). (b) Height over x = 0 of the
minimum of the Gibbs interface (zg min)-
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Figure 8: Shown are (a) the vertical and horizontal extensions of the drops as well as (b) their form
factors as functions of y for b = 0, 0.01, 0.1, and 1.0. The same line styles are used for both panels
(a) and (b). Panel (a) gives the vertical size aq = hpax — 2@ min and the horizontal half-width of
the droplet by /2 (as obtained from the Gibbs interface). Panel (b) gives the form factor aq/bq.
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Figure 9: (a) Equilibrium chemical potential \4. (b) Concentrations c¢ (at the contour representing
the Gibbs interface) and c, = 0 (at the contour of maximal excess free energy). Shown are \gy, cg,
and c, as functions of v for b = 0, 0.01, 0.1, and 1.0. The line styles on (a) and (b) are the same.

(b) z

Figure 10: Shown are vertical concentration profiles ¢(0, z) along the symmetry axis of the drop.
Profiles for (a) v = 178 and b = 0.01, 2, 4, 6, 8, 10, 12, and 14, with line styles: solid, dashed,
dot-dashed, solid, dashed, .. ., respectively; and (b) v = 1.3 and b = 0.01, 2, 4, 6, 8, and 10 (line
styles as in (a)). The formation of the depletion layer with diminished c; is particularly strong in
(a) for b = 14.
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(a)

(b) x

Figure 11: Shown are superimposed droplet and surface shapes for (a) v = 178 and b = 0.01, 2,
4,6, 8,10, 12, and 14; and (b) v = 1.3 and b = 0.01, 2, 4, 6, 8, and 10. The line styles correspond
to Fig. 10. In contrast to Fig. 3, here the diffuse interface is represented by the contour of maximal
excess free energy at ¢ = ¢, = 0.

5.5. Depletion layer and breakdown of the volume criterion

An additional effect of the interaction with the substrate can be appreciated in Figs. 9b and 10, that
give the Gibbs curvature cg () for several b and several vertical concentration profiles ¢(0, z) on
the symmetry axis of the droplet, respectively. In particular, in Fig. 10 one observes close to the
substrate the formation of a depletion layer where component 1 is strongly repelled and component
2 is attracted. For b = 2 the layer roughly covers the region 0 < z < 0.5. The layer can be thought
of as a “new phase” that is not included in the volume balance formula (3.5). The latter then
increasingly exaggerates cg with increasing b. As can be seen in Fig. 9b, ¢ may be significantly
larger than the value at maximum excess energy, ¢, = 0. For even larger 0, cg is so close to
cy that the cg-contour may be intractable computationally. In this regime the Gibbs contour no
longer represents the interface. Some droplet shapes in this regime are shown in Fig. 11, where the
ce-contour is used to represent the interphase boundary.

In Section 5.4. we argue that \q increases with increasing v and b. Actually, as one can see in
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the corresponding Fig. 9a, for very small b = 0 and 0.01 the graphs of A\4(~y) are slightly shifted
upwards with respect to their expected location. This is due to the (nearly) absent depletion layer
(cf. Fig. 10). If such a layer were present the rest of the film would be slightly enriched with the
repelled component 1. This in turn would help to stabilize the droplet and lower the imposed ).
Thus the effect of the b-term in the free energy (2.2) is twofold: (1) it increases the concentration
of component 1 in the film above the depletion layer and (2) it repels the entire droplet of phase 1
when b is sufficiently large.

6. Conclusions

In this contribution we have numerically examined the steady-state structures that result from
liquid-liquid demixing in a two-dimensional free surface film of binary liquid on a solid substrate.
The considered model corresponds to the static limit of the diffuse interface theory describing the
phase separation process for a binary liquid (model-H). It has a variational structure, i.e., it can be
directly derived as a variation of the underlying free energy functional. The model has been solved
numerically employing a Finite Element Method on an adaptive grid and allows to obtain the cou-
pled steady-state film thickness profile and the concentration profile inside the two-dimensional
film. As an example we have determined steady state profiles for a symmetric droplet for vari-
ous surface tensions of the film and various preferential attraction strength b of one component
to the substrate. For a neutral substrate (b = 0), in particular, we have obtained film thickness
and concentration profiles as a function of surface tension. We have evaluated the relation of our
diffuse interface result to the corresponding sharp interface solutions and solutions in the limit of
large surface tension. As a result, we have shown that the computed curvatures of one-dimensional
radially symmetric solutions and the corresponding two-dimensional FEM solution are in rather
good agreement. The contact point (a notion of the sharp interface model) determined by force-
balance arguments for the one-dimensional case corresponds to the contact point determined by
curve fitting in the two-dimensional case.

The interface tension of the diffuse interface between drop and liquid layer has been calculated
by several independent means: (i) a nominal formula for infinitely extended phases gives ~;; (ii)
using the correspondence of the solution with v > 1 to a solution of circular symmetry gives
Ym; and (iii) using Plateau’s law gives yp. The values thus obtained are in good correspondence.
Furthermore, we have observed changes in the vertical droplet position and droplet morphology
due to a repulsive van der Waals interaction between component 1 of the binary liquid and the sub-
strate. The results elucidate the structure of two-dimensional droplets of nanometric size in films of
sub-micron thicknesses when phase separation is strongly influenced by boundary effects. Future
extensions could focus on nanodroplets with radial symmetry and the general three-dimensional
case. This would then allow us to analyse line tension effects.

Finally, it was shown that the sharp interface representation by an apparent sharp interface
(ASI) depends on the particular criterion used: Gibbs volume balance, Plateau’s law for surface
tensions, or the maximal excess free energy c-contour. In consequence, we have concluded that in
physical situations where the interface width is of the same order of magnitude as the mean film
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height, the nonlocal diffuse interface can normally not be reduced to a single sharp interface. A
future study should take into account the depletion layer at the substrate by modifying Eq. (3.5) or
deriving an alternative criterion for the determination of the Gibbs interface.

In the present study, we have used a generic expression for the local energy that takes into
account van der Waals interactions between the two components of the liquid as well as the repul-
sion of one of the components by the substrate. This should, however, be seen as an example as
the present computational approach can be directly adapted to various different physical settings.
For instance, one may (i) employ expressions for the bulk free energy density that are adapted
to particular polymer blends, (ii) incorporate a concentration-dependent surface tension at the free
surface as in [40, 29] to model situations where solutal Marangoni forces are present, (iii) apply the
approach to films of liquid crystals by replacing the used scalar order parameter (concentration)
by a vectorial or tensorial one (director orientation), (iv) incorporate wetting interactions of the
mixture with the substrate. That would allow to investigate coupled dewetting of the film and de-
composition inside the film. Further studies may also (v) consider substrates with heterogeneities,
1.e., with topographical or chemical variations. Although in the latter case experimental results
exist for binary mixtures [24, 32, 13], theoretical results are at present only available for films of
simple liquids [22, 23, 6, 39, 30].
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