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We consider a non-reciprocally coupled two-field
Cahn–Hilliard system that has been shown to
allow for oscillatory behaviour and suppression
of coarsening. After introducing the model, we
first review the linear stability of steady uniform
states and show that all instability thresholds are
identical to the ones for a corresponding two-species
reaction–diffusion system. Next, we consider a
specific interaction of linear modes—a ‘Hopf–Turing’
resonance—and derive the corresponding amplitude
equations using a weakly nonlinear approach. We
discuss the weakly nonlinear results and finally
compare them with fully nonlinear simulations for
a specific conserved amended FitzHugh–Nagumo
system. We conclude with a discussion of the
limitations of the employed weakly nonlinear
approach.

This article is part of the theme issue ‘New trends
in pattern formation and nonlinear dynamics of
extended systems’.

1. Introduction
Breaking Newton’s third law has recently become a
cherished pastime for theoretical physicists and applied
mathematicians alike [1–5]. This not only formally breaks
the boring symmetry in particle–particle interactions,

2023 The Author(s) Published by the Royal Society. All rights reserved.
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but has dire consequences for the system’s behaviour: particles are not anymore attracted or
repelled by their common centre of mass (that remains at rest) but instead may start a chasing
race as one (the ‘predator’) is attracted by the other one, while the latter (the ‘prey’) is repelled by
the first one [6].

In this way, oscillations and persistent motion may not only emerge for particle-based models
but also characterize collective behaviour as described by continuum models, e.g. non-reciprocal
Cahn–Hilliard (CH) models [5,7,8], thereby providing a ‘generic route to traveling states’ [5].1 The
non-reciprocal CH model is also particularly relevant because it keeps all conservation laws intact,
in contrast to models considered, e.g. in [10]. The importance of conservation laws for pattern
formation has been widely discussed: Matthews & Cox [11] and Winterbottom et al. [12] analyse
small-scale stationary and oscillatory instabilities in the presence of a conservation law, which
are relevant for pattern formation in a wide spectrum of systems, e.g. in magnetoconvection [13],
in crystallization of passive and active colloids [14,15] and in the dynamics of the actin cortex of
motile cells [16,17]. It has been recently shown that the standard CH model (introduced to describe
phase separation in a binary mixture [18,19]) also corresponds to an amplitude equation valid
close to a large-scale stationary instability in systems with a single conservation law [20]. This
implies that reaction–diffusion (RD) systems with one conservation law, studied, e.g. in [16,21–
26], may be described in the vicinity of a large-scale stationary instability by a CH equation.
In general, such considerations are highly relevant for the modelling of a large spectrum of
biochemophysical systems ranging from proteins or the cytoplasm within biological cells to the
dynamics of active colloids, microswimmers, tissues or human (or robotic) crowds [1,2,27–34].
For a more extensive introduction to the non-reciprocal CH model within a wider context, see [7].
Its universal importance is considered in [35].

Bifurcationally speaking, above a critical value of the non-reciprocal coupling mediated by
non-equilibrium chemical potentials that keep both conservation laws intact, oscillatory and
travelling states emerge via Hopf and drift (pitchfork and transcritical) bifurcations from steady
periodic or localized patterns [7,36]. Even though the conservation laws play an important role
in the instabilities, this is similar to many other widely studied systems, e.g. RD models [37–40]
and active phase-field crystal models [41–43]. Remarkably, the non-reciprocal interactions may
also result in the transformation of a stationary large-scale instability (CH instability) typical for
phase separation [44] into a stationary small-scale Turing-like instability with mass conservation
(conserved-Turing instability). The Turing instability is well known from RD systems without
mass conservation [45]. In consequence of such a transformation, in CH models, non-reciprocity
may cause complete suppression or arrest of coarsening [7] as well as the emergence of localized
states [36] with a slanted homoclinic snaking typical for systems with a conservation law [13,46].

The original one-field passive CH model describes phase separation of binary fluid phases
or isotropic solids [18,19]. Eminent examples of non-variational one-field variants include
the convective CH model (broken parity symmetry) [47,48] and models extended by non-
equilibrium chemical potentials that describe motility-induced phase separation [49,50]. Two-
field passive CH models feature a reciprocal coupling between species and are employed, e.g. to
study phase separation in ternary mixtures driven by gradients of the corresponding chemical
potentials [51–54]. Non-equilibrium conditions are readily attained when two interacting
number-conserving species are present. It is sufficient to make their interactions non-reciprocal
[7,8]. Particles of one kind may be attracted by particles of another kind, while the latter
may be repelled by the former. Relations of this kind naturally occur between predators and
prey or between parasitic and cooperating bacteria or between catalytic particles with different
phoretic response to chemical(s) produced by particles of another type. The analysis to follow
reveals both, parallels and differences between symmetry-breaking bifurcations in active systems
with mass conservation and in RD systems with autocatalytic components. A combination of
conserved and non-conserved species has been also considered in the framework of arrested

1For a discussion of genericity, see [9].
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phase separation [55]. Two-field CH models with additional reaction terms in both equations (i.e.
with non-variational non-mass-conserving couplings) are also widely studied, e.g. in [10,56,57].

In this communication, we reconsider the non-reciprocally coupled CH model (§2) studied
in [7] and discuss it as a fully mass-conserving equivalent to the classical Turing two-species
RD system (§3). Then we show that, in consequence, resonances exist between conserved-Hopf
instability and conserved-Turing instability, i.e. the conserved equivalents of Hopf and Turing
instability, respectively. This occurs in the vicinity of the codimension-two point where these
two linear instabilities occur simultaneously (§4). The modified FitzHugh–Nagumo system is
considered as a specific example in §5. We close with a conclusion and an outlook in §6.

2. Cahn–Hilliard system with non-reciprocal coupling
A non-reciprocal CH model describes interactions between two species with concentrations
u(x, t) and v(x, t), where the effective non-equilibrium chemical potential of each species depends
asymmetrically on the concentration of the other species:

μu = δF
δu

+ μnv
u and μv = δF

δv
+ μnv

v , (2.1)

where
F =

∫
dx
(κu

2
|∇u|2 + κv

2
|∇v|2 + χ (u, v)

)
(2.2)

is the free energy functional with the general local potential χ (u, v). The non-variational part of
the chemical potentials μnv

u and μnv
v (both assumed to depend on u and v) cannot be obtained

from a common functional, so that ∂vμ
nv
u �= ∂uμnv

v . Introducing the chemical potentials into the
conservation laws ∂tu = −∇ · ju with ju = −γu∇μu (and similar for v) leads, after rescaling time
and length, to the non-reciprocally coupled CH equations:

∂

∂t
u = −∇2[∇2u + f (u, v)] and

∂

∂t
v = −∇2[σ∇2v + g(u, v)], (2.3)

where σ = γ κ is the product of the ratios of mobilities γ = γv/γu and rigidities κ = κv/κu of the
two species. Based on the functional (2.2), the local terms in (2.3) are then f = −(∂uχ + μnv

u ) and
g = −γ (∂vχ + μnv

v ).
Note that dropping the outer Laplace operator −∇2 from the mass-conserving system (2.3)

directly results in a typical two-species RD system, i.e. a system without mass conservation [58].
In the corresponding RD system, the parameter σ represents the ratio of diffusion constants, while
f and g represent the reaction terms. Below, we use this equivalence to relate the linear stability of
uniform steady states of a non-reciprocal CH system directly to the linear stability of such states
in RD systems. Due to mass conservation, in the CH system, any homogeneous state (u, v) =
(us, vs) automatically corresponds to a steady state. By contrast, for an RD system, this requires
adjustments of the constant parts of f and g. We consider the linear stability of (us, vs) and show
that a non-reciprocal coupling does not only allow for the classical CH instability (i.e. a large-
scale stationary instability with a conservation law) but may also result in a conserved-Turing
instability (i.e. a small-scale stationary instability with a conservation law) as studied in [11,59]
and a conserved-Hopf instability (i.e. a large-scale oscillatory instability with a conservation law).
Here, the largest available scale replaces homogeneous oscillations of a standard Hopf instability
that are incompatible with conservation laws.

3. Linear stability: relation between conserved and non-conserved dynamics

(a) Classification of instabilities
Before presenting the linear analysis of the model (2.3), we introduce in table 1 our classification
of instabilities, for a detailed discussion, see [35]. In the literature, the Cross–Hohenberg
classification [60] is often used. However, here, it is not a good choice, because, in our opinion, it
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Table 1. Naming convention of linear instabilities classified via their temporal (stationary versus oscillatory) and spatial
(homogeneous/large-scale versus small-scale) properties for non-conserved and conserved dynamics. For reference, we give
in parentheses the existing names of the instabilities in the classification by Cross & Hohenberg [60]. For further explanations,
see the main text.

non-conserved dynamics conserved dynamics

homogeneous/large-scale, stationary Allen–Cahn (IIIs) Cahn–Hilliard (IIs)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

homogeneous/large-scale, oscillatory Hopfa (IIIo) conserved-Hopf (IIo)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

small-scale, stationary Turing (Is) conserved-Turing (–)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

small-scale, oscillatory waveb (Io) conserved-wave (–)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aAlso known as ‘Poincaré-Andronov-Hopf’.
bSometimes also called ‘finite-wavelength Hopf’ or ‘oscillatory Turing’.

does not clearly distinguish between the conserved dynamics, i.e. the model (2.3), and the non-
conserved dynamics, i.e. the corresponding RD system (equation (2.3) without the leading −∇2).
In table 1, we distinguish two main classes—non-conserved and conserved dynamics—each
divided into four subclasses depending on the spatial and temporal character of the growing
modes near the onset.

First, if the imaginary part of the temporal eigenvalue is zero, the unstable mode grows
monotonically—the instability is stationary, if not, it defines the temporal frequency of the
oscillation—the instability is oscillatory. Second, the wavenumber encoding the spatial structure
of the unstable mode at onset is either zero or finite. In the former case, one has an homogeneous
or large-scale instability, and in the latter case, the wavenumber defines the characteristic length
scale of a small-scale instability.2 In the non-conserved case, the instability at k = 0 always
corresponds to a homogeneous (or global) mode, as each point of a finite or infinite domain
grows monotonically or oscillatory without any spatial modulation. Thus, we refer to it as
a ‘homogeneous instability’. Such an homogeneous behaviour is, however, incompatible with
a fully conserved dynamics.3 Instead, the stationary or oscillatory mode with the smallest
wavenumber compatible with the boundary conditions is excited, e.g. for periodic boundary
conditions its wavelength equals the domain size. In the oscillatory case, this is called a conserved-
Hopf instability. In the following, we address all linear instabilities by the names given in
table 1.

(b) Instability thresholds
Using the ansatz (u, v) = (us, vs) + ε(u1, v1) exp(λt + ik · x) with ε � 1, and abbreviating partial
derivatives with respect to u and v as subscripts, e.g. ∂

∂u f = fu, the linearized equations (2.3) are
expressed as follows:

(L(k2) − λ1)

(
u1
v1

)
= 0 with L(k2) = k2

(
fu − k2 fv

gu gv − σk2

)
= k2L̃(k2). (3.1)

The derivatives in the Jacobian matrix L are computed at the homogeneous state (us, vs), which
we do not need to specify. The eigenvalues are given by

λ = k2λ̃ with λ̃ = tr̃L
2

±
√

(tr L̃)2

4
− det L̃. (3.2)

2Small-scale and large-scale instability are also referred to as ‘short-wave’ and ‘long-wave’ instability, respectively.
Alternatively, but much less frequently, also ‘short-scale’ and ‘long-scale’ instability are used [61].
3This is the case for model (2.3) where all components are conserved. For systems with fewer conserved quantities than
dynamically evolving fields, homogeneous oscillations compatible with the conservation law are possible. In such a case,
the Hopf mode resulting from at least two non-conserved quantities has to be considered in conjunction with also existing
neutral modes due to the conserved quantities.
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It is important to note that the expression (3.1) differs from the classical Turing problem of the
linear stability of a two-component RD system [45,58] solely by the factor k2. This implies that
det L(k2) has zeros wherever det L̃(k2) does. Moreover, since thresholds of symmetry-breaking
instabilities correspond to zero crossings of maxima of Reλ(k2) (where its derivative with
respect to k2 vanishes), whenever both Reλ̃(k2) = 0 and ∂k2 [Reλ̃(k2)] = 0, also Reλ(k2) = 0 and
∂k2 [Reλ(k2)] = ∂k2 [k2Reλ̃(k2)] = 0, implying identical instability thresholds in the conserved and
non-conserved case.4 Therefore, the stability diagrams for homogeneous states of model (2.3) and
of the corresponding RD model are identical. The discussed equivalence directly implies that the
product of the ratios of mobilities and rigidities in the non-reciprocal CH system (conserved case)
σ takes the role of the ratio of diffusion constants in the corresponding RD system (non-conserved
case). However, besides their zero crossings, the dispersion relations in a conserved (λ(k)) and
non-conserved (λ̃(k)) case are different, and distinctions between the two cases are important for
nonlinear analysis and detection of secondary instabilities.

The instability thresholds for a conserved system can therefore be established by analysing
the eigenvalues λ̃ for the non-conserved case. The onset of all stationary instabilities, i.e. with
Re λ̃ = Im λ̃ = 0, is determined by det L̃ = 0, i.e.

0 = fugv − fvgu − k2(σ fu + gv) + σk4 ≡ A − k2B + σk4, (3.3)

which gives the following wavenumbers of marginally stable modes

k2
± = B

2σ

[
1 ±

√
1 − 4σA

B2

]
. (3.4)

Equation (3.4) can have zero, one or two positive real solutions. In the latter two cases, the band
of wavenumbers corresponding to positive real eigenvalues is [0, k±] and [k−, k+], respectively.5

If B < 0 only k− can be real and only if A = fugv − fvgu < 0. The onset occurs at k− = 0 for
A = 0, i.e.

fu = g−1
v fvgu. (3.5)

This corresponds to an Allen–Cahn instability (table 1). If B > 0, both k+ and k− are real if
(B2/4σ ) ≥ A ≥ 0. A Turing instability occurs if k+ = k−, i.e. with critical wavenumber

k2
T = k2

± = B
2σ

= σ fu + gv

2σ
= gv ±√−σ fvgu

σ
. (3.6)

This instability appears at A = B2/4σ , i.e. at σ fu = gv ± 2
√−σ fvgu if the trace

tr L̃ = fu + gv − k2
T(1 + σ ) (3.7)

is negative, otherwise it would correspond to a minimum of the dispersion relation instead of
a maximum. That is, for an RD system, a Turing instability requires at least one species to be
autocatalytic (B > 0) and, additionally, (1 − σ )(σ fu − gv) < 0, which is proven by inserting kT (3.6)
into the trace (3.7) that has to be negative. Here, we choose u as the only autocatalytic species, i.e.
we assume fu > 0, gv < 0, so that a Turing instability only occurs6 if σ > 1 at

σ fu = gv + 2
√

−σ fvgu > |gv |. (3.8)

This means that non-reciprocity via fvgu < 0 is another necessary condition, i.e. a reciprocal
interaction always prevents a Turing instability. When A crosses zero for B > 0, k− becomes again
complex, i.e. then k+ is the only remaining root of the dispersion relation. However, this does

4The determinant det L(k2) has then, in addition to the zeros of det L̃(k2), a persistent zero at k = 0. This may be irrelevant for
linear stability but is important for weakly nonlinear analysis.
5Provided that tr̃L is negative at the roots. For a positive trace, the corresponding root belongs to the subdominant eigenvalue
(‘−’ sign in equation (3.2)), and hence, the dominant eigenvalue is positive and has no root at k±.
6In the RD setting, it corresponds to the known requirement that the inhibitor diffuses faster than the activator. That is,
changing the roles of u and v alters the condition to σ < 1. If both, fu and gv , are either positive or negative, a Turing instability
cannot occur.
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not correspond to an Allen–Cahn instability, instead the Turing band of unstable wavenumbers
simply attaches to k = 0 when A ≤ 0.

The loci of all oscillatory instabilities, i.e. at onset with Re λ̃ = 0 and frequency Im λ̃ = ω̃ �= 0, are
determined by tr L̃ = 0, i.e. if fu + gv − k2(1 + σ ) = 0. This gives marginally stable modes with

k2
o = fu + gv

1 + σ
, (3.9)

and oscillations first occur at ko = 0, i.e. only a Hopf instability (table 1) is possible. Its threshold
is at

fu + gv = 0 (3.10)

with ω̃0 = det L̃(k = 0) = A.
Next, we compare stationary and oscillatory instabilities by considering the transition from

real to complex eigenvalues. Complex eigenvalues λ̃ occur for (tr L̃)2 − 4 det L̃ < 0, i.e. if

[fu − gv − (1 − σ )k2]2 + 4fvgu < 0. (3.11)

Similar to the Turing instability, any oscillatory instability requires non-reciprocal interactions
fvgu < 0. In consequence, for k = 0, the condition (3.11) can be reduced to

A >
1
4

(fu + gv)2, (3.12)

which is outside the parametric region where a large-scale stationary instability is observed
(A < 0) implying that our previous consideration on the Allen–Cahn instability applies.

For k = kT, we introduce (3.6) into (3.11) and find that the eigenvalue is complex if

gv − 4σ

1 + σ

√
−fvgu < σ fu < gv + 4σ

1 + σ

√
−fvgu. (3.13)

The onset of the Turing instability (compared with (3.8)) is outside of this interval if σ �= 1.
Then our previous considerations based on real eigenvalues apply to the Turing instability as
well. For the special case σ = 1, complex eigenvalues occur independently of the wavenumber at
σ fu = gv ± 2

√−σ fvgu. This is identical to the onset condition of the Turing instability (compared
with (3.8)). Furthermore, at this specific point, one has kT = ko. Thus, the Turing instability is
prohibited by complex eigenvalues if σ = 1, as one would expect for an RD system with equal
diffusion constants.

A codimension-two point exists if Hopf (fu + gv = 0) and Turing (σ fu = gv + 2
√−σ fvgu)

instability occur simultaneously, i.e. if

gv = −fu = −2

√−σ fvgu

1 + σ
(3.14)

and all aforementioned requirements are fulfilled, too. A typical stability diagram in the (gv , fu)-
plane at fixed fv , gu and σ is given in figure 1.

Although onset conditions for linear instabilities for the two-species RD system and the
corresponding non-reciprocal two-field CH model are identical, the respective dispersion
relations are not. In particular, for the large-scale oscillatory instability in the conserved case,
the frequency scales with k2, i.e. ω0 = k2ω̃0. Therefore, directly at onset, the large-scale instability
cannot be oscillatory as there ko = 0, and the conserved-Hopf instability differs from the standard
Hopf instability at fu = −gv , and takes place only when a mode with the largest available
wavelength becomes unstable. For a one-dimensional finite sized system with domain length
L and periodic boundary conditions, the available wavenumbers are kL/n = 2nπ/L.

As a consequence of this effect, resonances only occur in the vicinity of but not directly at
the codimension-two point of the infinite system. In the most interesting case, an oscillatory
mode (wave) with kL = ko and a stationary mode with the wavenumber kL/n = kT, where n > 1
are simultaneously marginal. Figure 2 presents a corresponding dispersion relation with n = 2,
i.e. for the parameters marked by a cross symbol in figure 1. If one considers larger values of n,
the position of the cross moves on the orange line closer to the codimension-two point. For specific
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Figure 1. Linear stability diagrams in the (gv , fu) plane showing the thresholds of Hopf/conserved-Hopf (homogeneous/large-
scale oscillatory, equation (3.10)), Turing/conserved-Turing (small-scale stationary, equation (3.8)) and Allen–Cahn/Cahn–
Hilliard (homogeneous/large-scale stationary, equation (3.5)) instabilities as blue, orange and green lines, respectively. Here,
σ = 1.5> 1 and non-reciprocity fvgu = −0.54. The focus lies in the region where u is autocatalytic (fu > 0) and v is not
(gv < 0). The linearly stable region is delimited by heavy solid lines. Thin solid lines indicate where further instabilities set
in beyond the dominating one. The dashed green line indicates where the already unstable Turing band reaches k− = 0
(transition across orange line) or where the unstable complex eigenvalues near k = 0 become real (transition across blue line).
The square symbol marks the codimension-two point (equation (3.14)), where Hopf/conserved-Hopf and Turing/conserved-
Turing instabilities occur simultaneously. The cross symbol indicates the loci of the dispersion relation given in figure 2. (Online
version in colour.)

finite systems of domain size L �= 2πn/kT, the relevant stationary modes are rather related to k− or
k+—the limiting values of the band of unstable conserved-Turing modes (compare with equation
(3.4)). Close to the corresponding primary bifurcations, the behaviour can be analysed with the
help of a weakly nonlinear analysis [62,63], as described in §4 for a general system (2.3). Further
beyond the onset, one may compare general weakly nonlinear results with fully nonlinear time
simulations for a specific conserved amended FitzHugh–Nagumo model (see §5). Note that for
systems without conservation laws, resonances are frequently studied. Examples include Hopf–
Turing, Turing–Turing and wave–Turing resonances in RD systems or nonlinear optical systems
[62–66].

4. Hopf–Turing resonance—weakly nonlinear analysis
We consider the resonant interaction between a conserved-Turing and two conserved-Hopf
modes with the three wavevectors forming an isosceles triangle. In a finite system, they satisfy
the condition ko1 − ko2 + k± = 0 with |ko1| = |ko2| ≡ ko. The corresponding interactions for a non-
conserved system have been analysed in [62]. We consider the case when the resonance occurs
close to the common onset of linear instability for a specific finite system, defined by the critical
values of two parameters. We impose a small deviation in one of these parameters, let us say
β = βc + ε with |ε| � 1. Then, both the growth rates and the amplitudes are small and, thus, by
expanding them in powers of ε, they are treated through a weakly nonlinear approach. Details
are given in appendix A, and here, we only sketch the procedure and give its results.

As an ansatz, we write the two-component vector field u = (u, v) as a sum of the uniform steady
state us and a small deviation, i.e.

u = us + ε[a+(T)u+eik+·x + ao1(T)uo1 ei(ko1·x+ωo1t) + ao2(T)uo2 ei(ko2·x+ωo2t) + c.c.] + O(ε2), (4.1)
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Figure 2. Dispersion relation showing real and imaginary part of λ(k) (equation (3.2)) at the parameter values where the
conserved-Turing instability has its onset (at kL/2 = kT ) and is resonant with the critical mode of the conserved-Hopf instability
(ko = kL), i.e. kT = 2ko. Solid and dashed blue lines representRe λ(k) for real and complex eigenvalues, respectively. Dotted
red lines give the imaginary parts. The inset illustrates the dispersion on a larger magnitude range. Parameters are σ = 1.5,
fu = 0.76, fv = −1, gu = 0.54 and gv = −0.66 and correspond to the cross symbol in figure 1. In a finite system, this
resonance is only realizable for a perfectly tuned domain size of L= 10π . (Online version in colour.)

where a+(T), ao1(T) and ao2(T) are the amplitudes that evolve on a large time scale T = εt; u+ ∈ R

and uo1, uo2 ∈ C are the zero eigenvectors of the stationary and the two wave modes, respectively.
Analogously to the zero eigenvalues, they are equal in the conserved and non-conserved case.
The frequencies ωo1 and ωo2 are the imaginary parts of the eigenvalues at onset of instability of
the wave modes. We consider an isotropic system, which implies that uo1 = uo2 ≡ uo and ωo1 =
ωo2 ≡ ωo. Note that either end of the Turing-unstable wavenumber band, k+ or k−, may be used
for the stationary mode. Here, we take k+.

After inserting equation (4.1) into equations (2.3), the leading-order amplitude equations are
obtained at O(ε2) by applying solvability conditions, i.e. multiplying by corresponding adjoint
eigenvectors u†+, u†

o normalized to satisfy u†+ · u+ = u†
o · uo = 1, and projecting onto the extant

Fourier modes. For details, see appendix Aa.
The general form of the resulting lowest-order resonant amplitude equations is the same as

in the standard non-conserved case. However, the coefficients of these equations, which depend
on the eigenvectors, the Jacobian matrix and the Hessian, carry an additional k2+ and k2

o prefactor
corresponding to the respective stationary and oscillatory mode:

ȧ+ = k2
+(μ+a++ν+āo1ao2)

and ȧo1 = k2
o (μoao1 + νoā+ao2) and ȧo2 = k2

o (μoao2 + νoa+ao1)

⎫⎬⎭ , (4.2)

where ν+ is real, while νo is complex. The coefficient μ+ is real and, since the imaginary part of μo

can be absorbed into the frequency of the wave modes (i.e. by applying a transformation ao1/2 →
ao1/2 eik2

o Imμot or equivalently ωo → ωo + k2
o Imμo), this parameter can be also viewed as real. Since

the interaction coefficients are generally distinct, the system lacks gradient structure, allowing, in
principle, for persistent non-stationary behaviour within the amplitude equation representation,
leading to secondary oscillations of the original field. Including cubic terms is unnecessary close
to the onset, since the amplitudes may remain finite in this system even without higher-order
damping interactions.

By using the polar representation of the complex amplitudes, a+ = ρ+eiθ+ , ao1 = ρ1eiθ1 and ao2 =
ρ2eiθ2 , (4.2) is written in terms of the three real positive amplitudes and three phases, but the
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dynamics depends only on the single-phase combination Θ = θ+ + θ1 − θ2, so that (4.2) can be
reduced to a system of four real equations as described in appendix Aa:

ρ̇+ = −ρ++ρ1ρ2 cos Θ

and ρ̇1 = μρ1 + ρ+ρ2 cos(Θ − ϕ) and ρ̇2 = μρ2 + ρ+ρ1 cos(Θ + ϕ)

}
(4.3)

and

Θ̇ = −ρ1ρ2

ρ+
sin Θ − ρ+

[
ρ1

ρ2
sin(Θ + ϕ) + ρ2

ρ1
sin(Θ − ϕ)

]
. (4.4)

The only remaining effective parameters are μ = μok2
o/(|μ+|k2+), and ϕ as the phase of the complex

parameter νo.
This system of equations has stationary and oscillatory solutions summarized in figure 3. In

the stationary case, the values of the amplitudes ρ+, ρ1, ρ2 obtained by resolving (4.3) are (see
appendix Ab for details)

ρ+= |μ|
[cos(Θ − ϕ) cos(Θ + ϕ)]1/2 and ρ1,2 =

[
− μ

cos(Θ ± ϕ) cos Θ

]1/2
. (4.5)

Introducing (4.5) into (4.4) brings the equation defining stationary values of Θ into the form

− tan Θ + μ[tan(Θ − ϕ) + tan(Θ + ϕ)] = 0. (4.6)

A trivial solution to (4.6) is Θ = 0, which defines the symmetric stationary solution of (4.3)
with ρ+ = ρ2

1 = ρ2
2 = |μ/ cos ϕ|. This state corresponds in the original model to a steady pattern

with a superposed standing wave giving the impression of a mass oscillating between two
neighbouring peaks (for a visual impression in the one-dimensional set-up, see figure 3l). Related
localized patterns with a superposed oscillation on a larger scale are also found in a non-reciprocal
CH model [36]. In active phase-field crystal models, related states are described as alternating
localized or alternating periodic states [43].

An asymmetric stationary solution is obtained when (4.6) is converted through a chain of
trigonometric transformations (see appendix Ab) into a transparent implicit relation

(1 − 2μ) cos2 Θ = sin2 ϕ. (4.7)

Hence, the asymmetric solution is confined to the interval 0 ≤ μ ≤ 1
2 cos2 ϕ. The existence limits

correspond to the bifurcation from the trivial state at μ = 0 and the pitchfork bifurcation from
the symmetric solution at μ = 1

2 cos2 ϕ. An additional restriction comes from the condition that
the amplitudes given by (4.5) have to be real and positive. This requires |ϕ| > π/2. Branches of
solutions do not diverge if |Θ| < ϕ − π/2.

The asymmetric state corresponds in the original model to a pattern with a superposed
travelling wave of half the wavenumber giving the impression of mass unidirectionally travelling
between peaks (figure 3k). The asymmetric state is stable beyond the pitchfork bifurcation of
the symmetric solution and undergoes a Hopf bifurcation on another stability limit. Note that
this is a secondary bifurcation on top of the Hopf bifurcation creating the linearly growing
wave modes involved in this planform. In the original model, this Hopf bifurcation results
in a state corresponding to a standing wave with a superposed travelling modulated wave
(figure 3h–j). To our knowledge, such states have not yet been systematically studied in systems
with conservation laws although some states of similar complexity are described for an active
phase-field-crystal model for a mixture of active and passive particles [43]. The instability limits of
both symmetric and asymmetric stationary solutions merge at the double zero singularity located
at ϕ = 3

4 π , μ = 1
4 . Further details, involving elaborate calculations, are given in appendix Ac.

The pitchfork bifurcation corresponds in the original model to a kind of drift-pitchfork
bifurcation. Related localized patterns with superposed oscillation and drift are also found in
a particular non-reciprocal CH model [36] and in active phase-field-crystal models [42,43]. Note
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Figure 3. Results of the weakly nonlinear analysis are presented: (a) Branches of stationary solutions at ϕ = 0.68π as a
function ofμ. Diamond and circle symbols indicate Hopf and pitchfork bifurcations. Stable and unstable branches of solutions
are shown by the solid and dashed lines, respectively. (b) Phase diagramwith solid and dashed lines indicate pitchfork and Hopf
bifurcations, respectively. The regions of prevailing stationary linearly stable symmetric and asymmetric states are indicated by
the letters ‘S’ and ‘A’, respectively. (c–f ) Amplitudes as functions of time for different types of long-time oscillatory behaviour.
The parameters are (c)μ = 0.26,ϕ = 0.6π , (d)μ = 0.08,ϕ = 0.68π , (e)μ = 0.1,ϕ = 0.75π and (f )μ = 0.1,ϕ =
0.9π , and are indicated by cross symbols in (b). In (a,c–f ), the curves forρ+, ρ1, ρ2 andΘ are shown as blue, orange, green
and red lines, respectively. (g–l) Space-time plots in the specific one-dimensional set-up of the original field given by u(x, t)=
ρ+ cos(k+x + Θ (t)) + ρ1 cos(kox + ωt) + ρ2 cos(−kox + ωt) with k+ = 2ko = 4π/L with domain size L= 1 and
(g) ω = 1, (h–l) ω = 0.2. (g) to (j) correspond to the oscillating states of (c) to (f ). (k,l) correspond to the linearly stable
asymmetric state at μ = 0.12,ϕ = 0.68π and the linearly stable symmetric state at μ = 0.2,ϕ = 0.68π , respectively.
(Online version in colour.)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 F

eb
ru

ar
y 

20
23

 



11

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220087

...............................................................

that, due to the resonance, the described complex scenario differs from the basic codimension-
one scenario where a steady state starts to drift at a drift-pitchfork [67] or drift-transcritical [14]
bifurcation (all called travelling bifurcation in [58]). It is more closely related to scenarios where
a stable standing wave that emerged in a Hopf bifurcation gives way to a modulated travelling
wave through a drift-pitchfork bifurcation or where a stationary state that is unstable to a drift
mode undergoes an additional Hopf bifurcation [38,68]. These scenarios are slightly simpler than
the one treated here as they do not involve a spatial resonance. A small deviation from the
resonance conditions could also result in such scenarios. This is, however, not captured by the
amplitude equations.

Figure 3a presents a bifurcation diagram showing the stationary solution branches given by
(4.5) and (4.7) for fixed ϕ = 0.68π , where the coloured lines give the three different amplitudes
and the phase as described in the caption. A linear stability analysis of the symmetric state
gives [ 1

2 cos2 ϕ, 1
4 ] as the μ-range of linear stability limited by the aforementioned pitchfork

bifurcation on the left-hand border (circle symbols) and a Hopf bifurcation (diamond symbols)
on the right-hand border. The latter represents another secondary Hopf bifurcation, and for a
visual impression of the resulting oscillatory state in the one-dimensional set-up, see figure 3g.

The discussed existence and linear stability in the (ϕ, μ)-plane are summarized in figure 3b. The
pitchfork bifurcation indicated by the circle symbols in 3a is given as the solid line that separates
the regions ‘A’ and ‘S’, where the asymmetric and symmetric stationary solutions are linearly
stable, respectively. The stability regions are further limited by the dashed lines that mark the loci
of the Hopf bifurcations given by diamond symbols in 3a. Examples of corresponding periodic
orbits obtained in the description of the amplitude equations are shown in figure 3c–f in the
sequence of increasing ϕ; their loci in the (ϕ, μ)-plane are marked by crosses in figure 3b. We
have to be warned that the existence region of oscillatory solutions does not encompass the entire
domain where stationary solutions are unstable, since, in the absence of cubic and higher-order
damping terms that could be detected by a higher-order bifurcation analysis, some trajectories
escape to infinity.

5. Example: modified FitzHugh–Nagumo system
Next, we aim at identifying resonant behaviour in the fully nonlinear regime. To do so, we have to
focus on a specific non-reciprocal CH system. We employ for this purpose a simple representative
example obtained by choosing f and g in equations (2.3) to be of the third order in intraspecies
interactions and linear in interspecies interaction. In particular, we use f (u, v) = u − u3 − v

and g(u, v) = αu − βv − v3. Correspondingly, χ (u, v) = −u2/2 + u4/4 + βv2/(2γ ) + v4/(4γ ) + (1 −
α/γ )uv/2 in (2.2) as well as μnv

u = (1 + α/γ )v/2 and μnv
v = −(1 + α/γ )u/2. Both species have

non-zero mean densities, i.e., 1/L
∫

u dx = us and 1/L
∫

v dx = vs that act as effective quadratic
nonlinearities in f and g, respectively.7 In the absence of the cubic nonlinearity in g, our
example represents a fully mass-conserving version of the standard FitzHugh–Nagumo model.
It represents a simple example of (2.3); however, as explained later, here we have not detected
the secondary Hopf instabilities and the corresponding oscillatory behaviour discussed in the
previous section. Therefore, we include the cubic nonlinearity in g and obtain a conserved
modified FitzHugh–Nagumo system that is identical to the recently considered non-reciprocal
CH model.

For the homogeneous state (u, v) = (us, vs) we have fu = 1 − 3u2
s , fv = −1, gv = −(β + 3v2

s ),
gu = α, A = α − (1 − 3u2

s )(β + 3v2
s ), B = (1 − 3u2

s )σ − (β + 3v2
s ). Imposing 3u2

s < 1, β + 3v2
s > 0, we

choose u but not v to be autocatalytic (fu > 0, gv < 0). If the coupling is non-reciprocal (fvgu < 0),

7In other words, if we introduce the shifted densities u − us and v − vs, the resulting nonlinear terms in the shifted densities
include quadratic nonlinearities.
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i.e. for α > 0, the necessary conditions for the instabilities are as follows:

Cahn-Hilliard: A < 0 ⇒ α < (1 − 3u2
s )(β + 3v2

s )

conserved-Turing: B > 0 ∧ σ > 1 ∧ σ fu > gv + 2
√

−σ fvgu

⇒ σ > 1 ∧ σ (1 − 3u2
s − 3v2

s ) > β > −σ (1 − 3u2
s − 3v2

s ) + 2
√

σα

and conserved-Hopf: A >
1
4

(fu + gv)2 ∧ fu + gv > 0

⇒ β < min
{
−1 + 3u2

s − 3v2
s + 2

√
α, 1 − 3u2

s − 3v2
s

}
∧ α >

(
1 − 3u2

s
2

)2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.1)

The wavenumbers of stationary and oscillatory marginal modes (compared with (3.4) and (3.9))
are then given by

k2
±=k2

T

⎡⎣1 ±
√√√√1 − 4σ (α − (1 − 3u2

s )(β + 3v2
s ))(

(1 − 3u2
s )σ − (β + 3v2

s )
)2
⎤⎦ (5.2)

and

k2
o = 1 − 3u2

s − (β + 3v2
s )

1 + σ
, (5.3)

where k2
T = ((1 − 3u2

s )σ − (β + 3v2
s ))/2σ is the critical wavenumber at the onset of the conserved-

Turing instability.
We consider now a scenario where a marginal conserved-Hopf mode (ko = kL) and a marginal

conserved-Turing mode (k± = kL/2) are resonant in a one-dimensional domain. For the considered
specific system, this is achieved at 4k2

o = k2+ = k2
L/2. Using equations (5.2) and (5.3) gives after

simplification the critical values

αc =
(

1 − 3u2
s − 16π2

L2

)(
1 − 3u2

s − 4π2

L2 (1 − 3σ )

)

and βc = 1 − 3(u2
s + v2

s ) − 4π2

L2 (1 + σ ),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.4)

which define this codimension-two point. The corresponding frequency of the marginal
conserved-Hopf mode is

ωo =
8
√

3π3
√

L2(σ − 1)(3u2
s − 1) + 4π2(4σ − 1)

L4 . (5.5)

To consider the weakly nonlinear regime in the vicinity of the codimension-two point, we set
α = αc and β = βc + ε. The resulting relevant non-zero entries of ∂L(k2)/∂β and the Hessian H that
implicitly enter equations (4.2) (see appendix Aa for details) are as follows:

∂L22(k2)
∂β

= −k2, H111(k2) = k2fuu = −k26us

and H222(k2) = k2gvv = −k26vs.

⎫⎪⎬⎪⎭ (5.6)

Note that for the special case of a trivial homogeneous state, i.e. us = vs = 0, quadratic interactions
are absent and the description of resonances via the leading order amplitude equations (4.2) do
not apply.
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Incorporating the imaginary part of μo into the frequency, the coefficients in equations (4.2)
become

μ+ = ε
L2(1 − 3u2

s ) − 16π2

12π2(σ + 1)
, μo = − ε

2

and ν+ = L2 (vs − us(3usvs + 1)) − 16π2vs

2π2(σ + 1)
,

and νo = 3L2us

L2(3u2
s − 1) + 16π2

− 3vs + i
12π2 (L2(3u2

s − 1) + 4π2) (L2(3u2
s vs + us − vs) + 16π2vs

)(
L2(3u2

s − 1) + 16π2
)

L4ωo
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.7)

We have performed direct time simulations of this model in the vicinity of the degenerate
bifurcation where we expect resonance behaviour. In particular, we choose μo > 0 and μ+ < 0 as
in §4, i.e. we decrease β by ε < 0. Fixing a specific domain size L, there are σ , us and vs as free
parameters of the original model that can be used to adjust three parameters of equations (5.7).
To compare the specific model with the weakly nonlinear results in figure 3 (from equations (4.3)
and (4.4)), we adjust μ = μok2

o/(|μ+|k2+), and ϕ as the phase of the complex parameter νo. As there
is an additional free parameter in the original model, we have further fixed the absolute value
of νo to one. Note that in the absence of a cubic nonlinearity in g(u, v), i.e. for the fully mass-
conserving version of the standard FitzHugh–Nagumo model, H222(k2) in equation (5.6) vanishes
and vs does not contribute to the coefficients in equations (5.7). In principle, there are still enough
free parameters to adjust μ and ϕ, practically however, we are unable to enter the parameter
range where we expect oscillatory states, i.e. the range depicted in figure 3b. This is due to
further restrictions based on the various inequalities involved in the occurrence of the instabilities
(compare with equations (5.1)) and the considered signs in the amplitude equations (4.3) and
(4.4) (compare with appendix Aa). Including the cubic nonlinearity in g(u, v) solves this issue.
A typical result is given in figure 4, where (a) gives the dispersion relation at parameter values
where ko = kL and k+ = kL/2 are resonant, while (b) shows a space-time plot of the corresponding
time simulation. The latter indeed shows a two-frequency behaviour analogous to the secondary
oscillations found with the weakly nonlinear approach in §4 (compare with figure 3).

However, performing time simulations at parameters that correspond to regions ‘A’ and ‘S’
in figure 3b, where asymmetric and symmetric stationary solutions of the amplitude equations
(4.2) are, respectively, stable, we encounter only travelling waves, standing waves (both with
wavenumber kL) or stationary Turing patterns with the wavenumber kL/2. Due to the scaling in
the employed ansatz (4.1), these states are not captured by the amplitude equations.

6. Summary and outlook
We have considered a non-reciprocally coupled two-field CH system that is known to allow
for oscillatory behaviour and suppression of coarsening. We have reviewed the linear stability
analysis of uniform steady states and have shown that for general intraspecies and interspecies
interaction terms all instability thresholds of the fully mass-conserving CH system are identical
to the ones for the corresponding non-mass-conserving RD system. Next, we have briefly
highlighted the differences in the linear behaviour of conserved and non-conserved models that
occur beyond the instability onset. Focusing on the codimension-two point where conserved-
Hopf and conserved-Turing instabilities simultaneously occur, we have discussed possible
interactions of linear modes. In particular, we have analysed the specific case of a ‘Hopf–
Turing’ resonance. To do so, we have first employed a weakly nonlinear approach to consider
the amplitude equations close to the codimension-two point. After discussing the behaviour
of solutions in the general case, we have derived the coefficients of the amplitude equations
for a specific non-reciprocal CH model that corresponds to a modified conserved FitzHugh–
Nagumo model. Although a conserved version of the standard FitzHugh–Nagumo model shows
a codimension-two point, it does not allow to adjust parameters in such a way that the parameter
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Figure 4. (a) Dispersion relationRe λ(k) (equation (3.2)) for a finite system of the size L at parameter values where there are
resonantmarginalmodes ko = kL (equation (3.9)) and k+ = kL/2 (equation (3.4)) of the conserved-Hopf and conserved-Turing
instabilities, respectively. (b) Space-time plot of u(x, t) obtained by fully nonlinear time simulation of the mass-conserving
modified FitzHugh–Nagumo system showing two-frequency oscillatory behaviour. The parameters are σ ≈ 1.19557> 1,
fu[= 1 − 3u2s ]≈ 0.81867, fv = −1, gu[= α]≈ 0.60739 and gv [= −β − 3v2

s ]≈ −0.73075,where for the specificmodel
β = βc + ε ≈ 0.15016 with ε = −10−4, us ≈ 0.24585 and vs ≈ 0.43992. The domain size is L= 10π . In the formulation
of the amplitude equations (4.3) and (4.4), the corresponding parameters are μ = 0.05 and ϕ = −0.65π , respectively.
(Online version in colour.)

ranges of the weakly nonlinear model correspond to the interesting cases shown in figure 3b.
This may be due to the fact that it is a non-generic model, see discussion in [9]. Finally, we have
shown that fully nonlinear time simulations indeed show two-frequency behaviour analogous to
the secondary oscillations discussed in the framework of the weakly nonlinear theory.

However, we have also noted that not all behaviour predicted by the amplitude equation is
found in the fully nonlinear calculation. To better understand where weakly and fully nonlinear
results agree and where they disagree, the mapping of the respective parameter sets and resulting
behaviour should be further scrutinized in the future. A problem that needs further attention is
that the parameter mapping is not one-to-one and itself is highly nonlinear. This makes it, for
instance, quite difficult to identify parameter ranges where certain states dominate in a nonlinear
model with corresponding ranges in the weakly nonlinear description. The usage of continuation
methods might allow one to obtain bifurcation diagrams for nonlinear models that could then
be directly compared with a bifurcation diagram presented in the weakly nonlinear case. This
would also allow one to clarify the question whether an additional inclusion of cubic terms into
the weakly nonlinear approach has a major impact.
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Authors’ contributions. T.F.: conceptualization, data curation, formal analysis, investigation, methodology,
software, validation, visualization, writing—original draft and writing—review and editing; U.T.:
conceptualization, formal analysis, investigation, methodology, supervision, validation, writing—original
draft and writing—review and editing; L.M.P.: conceptualization, formal analysis, investigation,
methodology, supervision, validation, writing—original draft and writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. T.F.H. was supported by the foundation ‘Studienstiftung des deutschen Volkes’. T.F.H. and U.T.
acknowledge support from the doctoral school ‘Active Living Fluids’ funded by the German-French
University (grant no. CDFA-01-14).
Acknowledgements. The authors thank Svetlana V. Gurevich for fruitful discussions.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 F

eb
ru

ar
y 

20
23

 

http://doi.org/10.5281/zenodo.7503482


15

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220087

...............................................................

Appendix A. Details of weakly nonlinear analysis

(a) Derivation of the amplitude equations (4.3) and (4.4)
In this section, we provide more details on the calculations discussed in §4. We consider the
system (2.3) close to a wave-Turing resonance, where the three wavevectors form an isosceles
triangle. The steady state is denoted by us. In one spatial dimension (1D), the ‘triangle’ is flat and
the wavenumber of the oscillatory mode is simply half the wavenumber of the stationary one. To
be definite, we concentrate here on this case, though all derivations apply to a general situation.
To capture nonlinear interactions by a weakly nonlinear approach, we further demand that both
corresponding growth rates are small, i.e. we are close to the codimension-two bifurcation that
occurs in an infinite system under the conditions given by equation (3.14). In a specific finite-
size system of length L, the condition is modified to 2ko = k+ = kL/2 = 4π/L, where ko (equation
(3.9)) and k+ (equation (3.4)) correspond to the marginal modes of the conserved-Hopf and the
conserved-Turing instability, respectively. Note that the following results equivalently apply if
one chooses the stationary marginal mode with k− instead of k+ to be in resonance with the
oscillatory ones. The two conserved-Hopf modes correspond to left and right-travelling waves in
1D. In an isotropic system, they exhibit the same dispersion, i.e. they have the same frequency
and the same eigenvector. Two parameters have to be set to specific critical values that adjust the
codimension-two point. Then, we use one of them, say β, and introduce a small deviation, i.e.
β = βc + ε. Since ε � 1, it can be used as a smallness parameter, and we expand all fields in ε as
follows:

u = us + εu1(x, t, T) + ε2u2(x, t, T) + O(ε3)

with u1(x, t, T) = a+(T)u+ eik+x + ao1(T)uo ei(−kox+ωot) + ao2(T)uo ei(kox+ωot) + c.c.

⎫⎬⎭ (A 1)

The amplitudes a+(T), ao1(T) and ao2(T) evolve on a large time scale T = εt and correspond to the
stationary, right-travelling and left-travelling mode, respectively, with their corresponding zero
eigenvectors u+ ∈ R and uo ∈ C. The frequency ωo > 0 is the imaginary part of the eigenvalues at
the onset of instability of the wave modes. Note that equation (A 1) results from the more general
ansatz (4.1) if isotropy is used. We introduce (A 1) into (2.3) and expand in ε to obtain

ε2(∂Tu1(x, t, T) + L · u2(x, t, T)) + O(ε3) = ε2
(

∂L
∂β

(β − βc) · u1 + u1 · H · u1

)
+ O(ε3), (A 2)

where

L= 1∂t − L = 1∂t + ∂xx

(
∂xx + fu fv

gu ∂xx + gv

)
(A 3)

is the linear partial differential operator that includes both the time derivative with respect to the
fast time scale t and the Jacobian matrix L, written here in spatial representation. 1 is the unit
matrix and the zero eigenmodes solve

L · u+ eik+x =L · uo ei(±kox+ωo) = 0. (A 4)

Further, we define the Hessian H = ∇uL. Both L and H are evaluated for the uniform steady state
u = us at β = βc. The special property of the Hopf–Turing resonance is that quadratic terms are
sufficient to obtain a saturated system, so that, for our purpose, we neglect all higher terms. Next,
we multiply the remaining O(ε2) terms in equation (A 2) by one of the three adjoint linear modes
that solve the adjoint linear eigenvalue problem, i.e.

u†
+ e−ik+x · L= u†

o e−i(±kox+ωo) · L= 0, (A 5)

and integrate over the whole domain. In each case, the term that involves u2 in equation (A 2)
vanishes, and the integration amounts to a projection on the corresponding Fourier modes. We
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normalize all adjoint vectors via u†+ · u+ = u†
o · uo = 1. This gives

eik+x ∼ ∂Ta+ = u†
+ · ∂L(k2+)

∂β
· u+(β − βc)a+ + u†

+ · (ūo · H(k2
+) · uo)āo1ao2,

ei(−kox+ωot) ∼ ∂Tao1 = u†
o · ∂L(k2

o )
∂β

· uo(β − βc)ao1 + u†
o · (u+ · H(k2

o ) · uo)ā+ao2,

and ei(kox+ωot) ∼ ∂Tao2 = u†
o · ∂L(k2

o )
∂β

· uo(β − βc)ao2 + u†
o · (u+ · H(k2

o ) · uo)a+ao1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 6)

where we use the resonance condition

eik+x ei(−kox+ωot) = ei((k+−ko)x+ωot) = ei(kox+ωot), (A 7)

which gives the quadratic coupling terms. All quantities with a bar denote complex conjugates.
In the resulting system of amplitude equations (A 6), all spatial derivatives are replaced by the
corresponding wavenumber. Then equations (A 6) are rewritten as follows:

ȧ+ = k2
+(μ+a++ν+āo1ao2) ,

ȧo1 = k2
o (μoao1 + νoā+ao2) and ȧo2 = k2

o (μoao2 + νoa+ao1),

⎫⎬⎭ (A 8)

where the coefficients μ+, ν+ ∈ R and μo, νo ∈ C resemble the structure of the amplitude system in
the non-conserved case [62], but in the conserved case, additional prefactors consisting of squared
wavenumbers occur. We apply the transformation ão1/2 = ao1/2 e−ik2

o Imμot, i.e.

˙̃ao1/2 = (ȧo1/2 − ik2
o Im μoao1/2) e−ik2

o Im μot, (A 9)

which eliminates the contribution of the imaginary part of μo in equations (A 8). In the
following, we omit the tilde, and consider μo as real. Next, we introduce a polar representation
of the complex amplitudes, a+ = ρ+eiθ+ , ao1 = ρ1eiθ1 , ao2 = ρ2eiθ2 and of the remaining complex
coefficient νo = νeiϕ where, by construction, ρ+, ρ1, ρ2, ν > 0. Then equations (A 8) become

(ρ̇++iθ̇+)eiθ+ = k2
+(μ+ρ+eiθ+ + ν+ρ1ρ2ei(θ2−θ1)),

(ρ̇1 + iθ̇1)eiθ1 = k2
o (μoρ1eiθ1 + νρ+ρ2ei(−θ++θ2+ϕ))

and (ρ̇2 + iθ̇2)eiθ2 = k2
o (μoρ2eiθ2 + νρ+ρ1ei(θ++θ1+ϕ)).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A 10)

We divide by the respective exponential factor on each left-hand side and introduce the relative
phase Θ = θ+ + θ1 − θ2 that can be identified as the only relevant phase information that enters
the dynamics. The real and imaginary parts of equations (A 10) give the dynamics of the
corresponding real amplitude and phase, respectively. Further, the dynamics of the phases are
combined to give Θ̇ . Then the amplitude equations of the relevant field quantities are as follows:

ρ̇+ = k2
+(μ+ρ++ν+ρ1ρ2 cos Θ) ,

ρ̇1 = k2
o (μoρ1 + νρ+ρ2 cos(Θ − ϕ)) ,

ρ̇2 = k2
o (μoρ2 + νρ+ρ1 cos(Θ + ϕ)) ,

and Θ̇ = θ̇++θ̇1 − θ̇2 = −k2
+ν+

ρ1ρ2

ρ+
sin Θ − νk2

oρ+
(

ρ1

ρ2
sin(Θ + ϕ) + ρ2

ρ1
sin(Θ − ϕ)

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 11)

It follows from the first equation in (A 11) that it is necessary for the existence of stationary
solutions that either μ+ and ν+ have the same sign and cos Θ < 0, i.e. |Θ| > π/2 or they have
opposite sign, implying cos Θ > 0, i.e. |Θ| < π/2. Here, we assume ν+ > 0, μ+ < 0, the latter
implying that the Turing mode is linearly weakly damped. We apply a rescaling to eliminate
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all but two effective parameters. Specifically, we use 1/(k2+|μ+|) as the time scale, |μ+|k2+/(νk2
o ) as

the scale of ρ+ and |μ+|k+/(
√

νν+ko) as the scale of ρ1/2. It reduces equations (A 11) to

ρ̇+ = −ρ++ρ1ρ2 cos Θ ,

ρ̇1 = μρ1 + ρ+ρ2 cos(Θ − ϕ) ,

ρ̇2 = μρ2 + ρ+ρ1 cos(Θ + ϕ) ,

and Θ̇ = −ρ1ρ2

ρ+
sin Θ − ρ+

(
ρ1

ρ2
sin(Θ + ϕ) + ρ2

ρ1
sin(Θ − ϕ)

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(A 12)

where μ = μok2
o/(|μ+|k2+) and ϕ are the two remaining free parameters.

(b) Stationary solutions
Setting the time derivatives to zero defines stationary solutions. The first three equations of (A 12)
give the stationary values of the amplitudes:

ρ+= |μ|
[cos(Θ − ϕ) cos(Θ + ϕ)]1/2 and ρ1,2 =

[
− μ

cos(Θ ± ϕ) cos Θ

]1/2
. (A 13)

All amplitudes need to be positive, and hence, it follows from (A 13) that cos(Θ ± ϕ) < 0, i.e. π/2 <

|ϕ| < π . Using (A 13) in the equation for Θ in (A 12) defines the stationary values of Θ by

− tan Θ + μ[tan(Θ − ϕ) + tan(Θ + ϕ)] = 0. (A 14)

The trivial solution of (A 14) is Θ = 0, which is the symmetric stationary solution, since it follows
from equations (A 13) that ρ+ = ρ2

1 = ρ2
2 = |μ/ cos ϕ|, i.e. left and right-travelling wave modes have

the same amplitude. Non-zero Θ corresponds to asymmetric solutions. We use the identity

tan(Θ − ϕ) + tan(Θ + ϕ) = sin Θ cos ϕ − cos Θ sin ϕ

cos Θ cos ϕ + sin Θ sin ϕ
+ cos Θ sin ϕ + sin Θ cos ϕ

cos Θ cos ϕ − sin Θ sin ϕ

= 2 cos Θ sin Θ

cos2 Θ cos2 ϕ − sin2 Θ sin2 ϕ
(A 15)

and transform (A 14) into

− tan Θ + μ
2 cos Θ sin Θ

cos2 Θ cos2 ϕ − sin2 Θ sin2 ϕ
= 0

⇒ (1 − cos2 Θ) sin2 ϕ − cos2 Θ cos2 ϕ + 2μ cos2 Θ = 0

⇒ (1 − 2μ) cos2 Θ = sin2 ϕ.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A 16)

Since (1 − 2μ) cos2 Θ < 1 − 2μ, asymmetric solutions can only exist if 1 − 2μ ≥ sin2 ϕ, i.e. for
0 ≤ μ ≤ 1

2 cos2 ϕ. The acceptable interval of both angles, as well as the sign of μ would overturn if
we had chosen μ+ > 0 in (A11).

(c) Stability of stationary solutions
Next, we consider the stability of the symmetric and asymmetric solutions. For this, we determine
the Jacobian matrix J,

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 ρ2 cos Θ ρ1 cos Θ −ρ1ρ2 sin Θ

ρ2 cos(Θ − ϕ) μ ρ+ cos(Θ − ϕ) −ρ+ρ2 sin(Θ − ϕ)

ρ1 cos(Θ + ϕ) ρ+ cos(Θ − ϕ) μ −ρ+ρ1 sin(Θ − ϕ)

P − Q − R

ρ2+ρ1ρ2

−P + Q − R

ρ+ρ2
1ρ2

−P − Q + R

ρ+ρ1ρ
2
2

− S
ρ+ρ1ρ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A 17)
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with abbreviations

P = ρ2
1ρ2

2 sin Θ , Q = ρ2
+ρ2

2 sin(Θ − ϕ) , R = ρ2
+ρ2

1 sin(Θ + ϕ)

and S = ρ2
1ρ2

2 cos Θ + ρ2
+ρ2

2 cos(Θ − ϕ) + ρ2
+ρ2

1 cos(Θ + ϕ)

⎫⎬⎭ . (A 18)

Introducing the stationary solution into (A17), we compute the characteristic polynomial

det(λ1 − J) = a0λ
4 + a1λ

3 + a2λ
2 + a3λ + a4 = 0 (A 19)

with constant real coefficients ai. We apply the Hurwitz criterion to analyse linear stability. For
linear stability, the following conditions have to be fulfilled

a1 > 0, a4 > 0, a1a2 − a0a3 > 0 and (a1a2 − a0a3)a3 − a2
1a4 > 0. (A 20)

In particular, zero crossings of a4 that is the determinant of J indicate monotonic instabilities.
For the symmetric solution, the Jacobian matrix is

J
sym

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
√ −μ

cos ϕ

√ −μ
cos ϕ

0√ −μ
cos ϕ

μ −μ
( −μ

cos ϕ

)3/2
sin ϕ√ −μ

cos ϕ
−μ μ −

( −μ
cos ϕ

)3/2
sin ϕ

0 −2
√ −μ

cos ϕ
sin ϕ 2

√ −μ
cos ϕ

sin ϕ −1 + 2μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A 21)

and the Hurwitz criterion yields

2 − 4μ > 0, (A 22)

4μ2(−1 + 2μ + 2μ tan2 ϕ) > 0, (A 23)

2 − 12μ + 28μ2 − 16μ3 − 4μ2(−1 + 4μ) tan2 ϕ > 0 (A 24)

and − 4μ2(−1 + 4μ)
(

1 − 3μ + 4μ2 + (1 − 2μ) cos(2ϕ) + μ cos(4ϕ)
)

sec4 ϕ > 0. (A 25)

In the following, we always consider the region 0 ≤ μ ≤ 1/2, π/2 ≤ ϕ ≤ π . Note that all results are
invariant when ϕ → −ϕ. Equation (A 22) holds for the considered parameter region. The other
three conditions are plotted in figure 5, where the yellow regions in (a)–(c) correspond to positive
values of the expression in equations (A 23)–(A 25), respectively. Together they yield [ 1

2 cos2 ϕ, 1
4 ]

as the region of linear stability for the symmetric solution. At μ = 1
2 cos2 ϕ, where a4 crosses

zero, the asymmetric solution emerges from the symmetric one in a pitchfork bifurcation, and
the latter is unstable for smaller μ values. At μ = 1

4 a Hopf bifurcation renders the symmetric
solution unstable for larger μ values. At ϕ = 3

4 π , i.e. when 1
2 cos2( 3

4 π ) = 1
4 the pitchfork and the

Hopf bifurcation merge at the double zero singularity and no stable symmetric solutions exist for
ϕ ≥ 3

4 π . For the asymmetric solution, the calculation is more involved since we must use some
trigonometric relations to replace all Θ dependencies. First, from (A 14), we know

tan(Θ − ϕ) + tan(Θ + ϕ) = tan Θ

μ
(A 26)

and

tan2(Θ − ϕ) + tan2(Θ + ϕ) = tan2 Θ

μ2 − 2 tan(Θ − ϕ) tan(Θ + ϕ). (A 27)

Furthermore,

tan(Θ − ϕ) + tan(Θ + ϕ) = 2 cos Θ sin Θ

cos(Θ + ϕ) cos(Θ − ϕ)

= 2 tan Θ

(1 + tan2 Θ) cos(Θ + ϕ) cos(Θ − ϕ)
,
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Figure 5. Hurwitz criterion for the symmetric solution, equations (a) (A 23), (b) (A 24) and (c) (A 25). Yellow (blue) regions
correspond to positive (negative) values. (Online version in colour.)

and comparing with (A 26), it follows

cos(Θ + ϕ) cos(Θ − ϕ) = 2μ

1 + tan2 Θ
, (A 28)

which can then be used to obtain

tan2(Θ − ϕ) + tan2(Θ + ϕ) = sin2(2Θ) + sin2(2ϕ)
2 cos2(Θ + ϕ) cos2(Θ − ϕ)

= (sin2(2Θ) + sin2(2ϕ))(1 + tan2 Θ)2

8μ2 . (A 29)

Now, by inserting (A 29) into (A 27), we see that

16μ2 tan(Θ − ϕ) tan(Θ + ϕ) = 8 tan2 Θ − (sin2(2Θ) + sin2(2ϕ))(1 + tan2 Θ)2. (A 30)

From (A 16), it follows that

sin2(2ϕ) = 4 sin2 ϕ cos2 ϕ = 4(1 − 2μ) cos2 Θ(1 − (1 − 2μ) cos2 Θ)

and
sin2(2Θ) = 4 cos2 Θ sin2 Θ = 4 cos2 Θ(1 − cos2 Θ),

which we insert into (A 30) and obtain

tan(Θ − ϕ) tan(Θ + ϕ) = −1 + 2μ + tan2 Θ

2μ
. (A 31)

Finally, by using (A 27), we can replace any tan2 Θ via

tan2 Θ = 1 − (sin2 ϕ/(1 − 2μ))

sin2 ϕ/(1 − 2μ)
= 1 − 2μ

sin2 ϕ
− 1. (A 32)

Next, by using the replacements (A 26), (A 27), (A 31) and finally (A 32), all coefficients of the
Hurwitz criterion (A 20) are written as functions depending solely on μ and ϕ:

2(1 − 2μ) > 0, (A 33)

4(1 − 2μ)μ(−1 + (1 − 2μ) csc2 ϕ) > 0, (A 34)

csc2 ϕ(5 − 28μ + 40μ2 − 16μ3 − (−3 + 2μ + 4μ2) cos(2ϕ)) > 0 (A 35)

and − 4μ

(
(4μ − 1)(1 − 5μ + 8μ2) + (3 − 16μ + 40μ2 − 16μ3)(−1 + (1 − 2μ) csc2 ϕ)

+3(4 − 7μ + 4μ2)(−1 + (1 − 2μ) csc2 ϕ)2
)

> 0. (A 36)
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Figure 6. Hurwitz criterion for the asymmetric solution, equations (a) (A 34), (b) (A 35) and (c) (A 36). Yellow (blue) regions
correspond to positive (negative) values. (Online version in colour.)

Equation (A 33) is always fulfilled for the considered μ values, and figure 6 illustrates equations
(A 34)–(A 36) in (a)–(c), respectively. We see that figure 6a gives the pitchfork bifurcation to the
symmetric stationary state and figure 6b does not apply taking into account the existence interval
0 ≤ μ ≤ 1

2 cos2 ϕ. That is, figure 6c gives the lower stability border of the asymmetric solution.
Rewriting the corresponding equation (A 36), we conclude that the asymmetric stationary state is
stable if

− (4μ − 1)(1 − 5μ + 8μ2) sin4 ϕ − 3(4 − 7μ + 4μ2)(cos2 ϕ − 2μ)2

−
(

3 + 8μ(μ − 2)(1 − 2μ)
)

(cos2 ϕ − 2μ) sin2 ϕ > 0. (A 37)

The zero crossing of the left-hand side indicates the locus of the secondary Hopf bifurcation,
which renders the asymmetric state unstable.
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