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Oscillatory behavior is ubiquitous in out-of-equilibrium systems showing spatiotemporal pattern
formation. Starting from a linear large-scale oscillatory instability—a conserved-Hopf instability—that
naturally occurs in many active systems with two conservation laws, we derive a corresponding amplitude
equation. It belongs to a hierarchy of such universal equations for the eight types of instabilities in
homogeneous isotropic systems resulting from the combination of three features: large-scale vs small-scale
instability, stationary vs oscillatory instability, and instability without and with conservation law(s). The
derived universal equation generalizes a phenomenological model of considerable recent interest, namely,
the nonreciprocal Cahn-Hilliard model, and may be of a similar relevance for the classification of pattern
forming systems as the complex Ginzburg-Landau equation.
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The concept of active systems emerged as a paradigm in
the description of a wide variety of biochemophysical
nonequilibrium phenomena on multiple scales ranging
from the collective behavior of molecules within biological
cells to the dynamics of tissues or human crowds [1]. In a
narrow interpretation, active matter always involves che-
momechanical coupling and shows some kind of self-
sustained (collective) motion of the microscopic agents
[2–5]. In a wider sense, active systems encompass open
systems that are kept out of equilibrium by a throughflow of
material or energy [6], and therefore may develop self-
organized spatiotemporal patterns. This then includes the
large spectrum of systems described by reaction-diffusion
models [7–9] and systems characterized by the interplay of
phase separation and chemical reactions [10].
In this context, predator-prey-type nonreciprocal inter-

actions between constituents of active matter have recently
become a particular focus as the implied breaking of
Newton’s third law results in a rich spectrum of nascent
self-excited dynamic behavior [11–15]. Besides various
(stochastic) agent-based models of Langevin-type, continu-
ous deterministic field theories have also been proposed
[5], most notably, in the form of nonreciprocal Cahn-
Hilliard models [16–18]. The latter add nonreciprocal
interactions to classical Cahn-Hilliard models [19] (model
B in [20]) that describe the dynamics of phase separation,
e.g., in binary or ternary mixtures [21,22]. In particular, the
resulting nonreciprocal Cahn-Hilliard models represent two
conservation laws with nonvariational coupling. It is shown
that this coupling may result in traveling and oscillating
states [16–18], arrest or suppression of coarsening [18],
formation of small-scale spatial (Turing) patterns as well as
stationary, traveling and oscillatory localized states [23]—
all features that are forbidden in standard reciprocal Cahn-
Hilliard models.

However, these nonreciprocal Cahn-Hilliard models are
introduced on phenomenological grounds by symmetry
considerations, but no derivation of the field theory from a
microscopic description or other deeper justification has
been provided yet. Here, we show that the model indeed
merits extensive study as it actually represents one of the
universal equations of pattern formation. One may even
argue that it corresponds to a “missing amplitude equation”
for the basic eight types of linear instabilities in spatially
extended isotropic homogeneous systems that can be
described by scalar fields. An amplitude (or envelope)
equation describes the universal bifurcation behavior char-
acterizing the spatiotemporal dynamics in the vicinity of
the threshold of a single instability or of several simulta-
neous instabilities, and can be systematically derived in a
weakly nonlinear approach [24]. The mentioned eight
instability types result from the combination of three
features: (i) large-scale vs small-scale instability, (ii) sta-
tionary vs oscillatory instability, and (iii) instability without
and with conservation law(s). The spatial and temporal
character of an instability encoded in features (i) and (ii) is
well captured in the classification of instabilities by Cross
and Hohenberg [25], and the four corresponding amplitude
equations for systems without conservation law are very
well studied. One example is the complex Ginzburg-
Landau equation [26] valid near the onset of a large-scale
oscillatory (also known as Hopf or type IIIo [25]) insta-
bility. An overview of the basic eight instability types in our
amended classification, their dispersion relations, and
seven existing amplitude equations, is provided in Sec. 1
of the Supplemental Material.
However, the consequences of conservation laws in the

full range of pattern-forming systems are less well studied:
Small-scale stationary and oscillatory cases with a con-
servation law are considered in [27] and [28], respectively,
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with applications to pattern formation in the actin cortex of
motile cells [29,30], in crystallization [31], and in magneto-
convection [32]. However, only recently it was shown that
the standard single-species Cahn-Hilliard equation does not
only describe phase separation in a binary mixture [19,33]
but furthermore can be derived as an amplitude equation
valid in the vicinity of a large-scale stationary instability in
a system with a single conservation law [34]. In conse-
quence, close to onset, a reaction-diffusion system with one
conservation law as, e.g., discussed in [29,35–43], can be
quantitatively mapped onto a Cahn-Hilliard equation.
Similarly, the equation captures core features of certain
collective behavior in chemotactic systems [44] and of cell
polarization in eukaryotic cells [45].
This leaves only one of the eight cases unaccounted for,

namely, the large-scale oscillatory instability with conser-
vation laws, that we call conserved-Hopf instability. In the
following, we consider active systems with two conserva-
tion laws and show that the general nonreciprocal Cahn-
Hilliard model emerges as a corresponding universal
amplitude equation. Thereby, all the particular phenom-
enological models studied in [16–18,23] are recovered as
special cases. This also applies to the complex Cahn-
Hilliard equation appearing as a mass-conserving limiting
case in Ref. [46].
Before we embark on a general derivation of the

amplitude equation we emphasize its applicability to the
wide spectrum of systems where the conserved-Hopf
instability and related intricate nonlinear oscillatory behav-
ior can occur: A prominent example is the spatiotemporal
pattern formation of proteins vital for cellular processes.
Although chemical reactions cause conformation changes
of proteins, their overall number is conserved on the
relevant time scale, e.g., MinE and MinD in ATP-driven
cellular Min oscillations [41]. Such an instability can also
be expected in other reaction-diffusion systems with more
than one conservation law, e.g., the full cell polarity model
in Ref. [36]. Relevant examples beyond reaction-diffusion
systems include oscillations in two-species chemotactic
systems [47]; an active poroelastic model for mechano-
chemical waves in cytoskeleton and cytosol [48]; thin
liquid layers covered by self-propelled surfactant particles
[49]; oscillatory coupled lipid and protein dynamics in cell
membranes [50]; multicomponent phase-separating reac-
tive or surface-active systems [51,52]; and two-layer liquid
films or drops on a liquid layer with mass transfer [53] or
heating [54] where the two interfaces may show intricate
spatiotemporal oscillation patterns [53,55,56].
In most cases, the two conserved quantities correspond

to concentration fields, film or drop thickness profiles,
particle number densities, and the conserved-Hopf insta-
bility occurs as a primary instability. However, another
class of examples exists where it appears as a secondary
instability. For example, in Marangoni convection the
interaction between a large-scale deformational and a

small-scale convective instability is described by coupled
kinetic equations for the film height and a complex
amplitude [57]. There, the liquid layer profile and the
phase of the complex amplitude represent the two con-
served quantities and the occurring conserved-Hopf insta-
bility corresponds to an oscillatory sideband instability.
Systems like the given examples that feature two con-

servation laws and exist in a sustained out-of-equilibrium
setting can become unstable through a conserved-Hopf
instability, i.e., the linear marginal mode [growth rate
ΔðkcÞ ¼ 0] occurs at zero wave number (kc ¼ 0) and zero
frequency [ΩðkcÞ ¼ Ωc ¼ 0]. This is determined via a
linear stability analysis of the trivial uniform steady state
yielding the dispersion relations λ$ðkÞ of the dominant pair
of complex conjugate modes where Δ ¼ Reλ$ and
$Ω ¼ Imλ$. Although λ$ðk ¼ 0Þ ¼ 0 always holds, as
the two conservation laws imply the existence of two
neutral modes, the conserved-Hopf mode is oscillatory at
arbitrarily small wave numbers. In other words, directly
beyond instability onset the system undergoes large-scale
small-frequency oscillations, i.e., the conservation laws
imply that the first excited mode has the smallest wave
number compatible with the domain boundaries and
oscillates on a correspondingly large time scale as Ω → 0
for k → 0. In consequence, the weakly nonlinear behavior is
not covered by any of the seven amplitude equations
summarized in Sec. 1 of the Supplemental Material.
Dispersion relations below, at, and above the threshold of

a conserved-Hopf instability are sketched in Fig. 1 and are
at small k given by

FIG. 1. Linear growth rates ΔðkÞ ¼ Reλ$ðkÞ in dependence of
the wave number k below (solid blue line, δ < 0), at (solid purple
line, δ ¼ 0) and above (solid red line, δ > 0) the threshold of a
conserved-Hopf instability as described by the dispersion relation
λ$ðkÞ given by the series expansion Eq. (1). The black dashed
lines give the frequencies $ΩðkÞ ¼ Imλ$ðkÞ that are identical in
all three cases. Labeled thin dotted lines and solid bars indicate
typical quantities and scalings above onset as described in the
main text.
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λ$ðkÞ ¼ ΔðkÞ $ iΩðkÞ
with ΔðkÞ ¼ δk2 − δ̃k4 þOðk6Þ
and ΩðkÞ ¼ ωk2 þ ω̃k4 þOðk6Þ: ð1Þ

The onset occurs when δ becomes positive while δ̃ > 0.
Above onset, Eq. (1) indicates modes within a band of
wave numbers 0 < k < kþ ¼

ffiffiffiffiffiffiffi
δ=δ̃

p
that exponentially

grow. The fastest mode is at km ¼ kþ=
ffiffiffi
2

p
and has the

growth rate Δm ¼ δ2=ð4δ̃Þ.
To determine an amplitude equation that captures the

bifurcation structure characterizing the spatiotemporal pat-
tern formation in the vicinity of the onset of a conserved-
Hopf bifurcation with a dispersion relation as depicted in
Fig. 1, we apply a weakly nonlinear approach [24]. First, we
introduce a smallness parameter εwith jεj ≪ 1 and consider
the system close to onset where δ ¼ δ2ε2. From hereon
subscript numerals indicate the order in ε of the correspond-
ing term. Then, the width of the band of growing wave
numbers and the maximal growth rate scale as ε and ε4,
respectively. This determines the additional large spatial
scale X⃗ ¼ εx⃗ and slow timescale T ¼ ε4t relevant for the
dynamics. Additionally, Eq. (1) indicates that the leading
order oscillation frequency scales like Ω ≈ ωk2 ∼ ε2. This
implies that a second slow timescale τ ¼ ε2t has to be taken
into account.
Specifically, we now consider a general homogeneous

isotropic multicomponent system with two conservation
laws,

∂tρ ¼ −∇⃗ ·
"
QðuÞ∇⃗ηðu; ∇⃗Þ

#

∂tσ ¼ −∇⃗ ·
"
RðuÞ∇⃗μðu; ∇⃗Þ

#

∂tn ¼ Fðu; ∇⃗Þ; ð2Þ

i.e., coupled kinetic equations for two conserved (ρ and σ)
and N nonconserved [n ¼ ðn1;…; nNÞ] scalar field varia-
bles. Note that Eq. (2) can represent any of the examples
mentioned above. From here onwards, u ¼ ðρ; σ; nÞ is used
as an abbreviation where convenient. The dynamics of the
two conserved quantities is given by the divergence of
corresponding fluxes that consist of the product of a
mobility (Q or R) and the gradient of a nonequilibrium
(chemical) potential (η or μ) that, in general, still depends
on spatial derivatives ∇⃗. The dynamics of the nonconserved
quantities is given by the vector F of general functions of
fields and their spatial derivatives. In the simplest case, the
system may represent a reaction-diffusion system with
N þ 2 species that has been rearranged (similar to [42])
to explicitly show the two conservation laws [58]. More
complicated examples include multifield thin-film descrip-
tions where two components are conserved [56] and

multispecies membrane models showing phase separation
and chemical reactions [50]. For an active system the
potentials cannot be obtained as variational derivatives of a
single underlying energy functional. Here, we sketch the
derivation of an amplitude equation for the conserved-Hopf
instability (Fig. 1) of a homogeneous steady state of a
general system (2) while Sec. 2 of the Supplemental
Material presents the complete algebra.
To perform the weakly nonlinear analysis valid in the

vicinity of instability onset, we expand all fields in ε,
i.e., uðX⃗; τ; TÞ ¼ u0 þ εu1ðX⃗; τ; TÞ þ ε2u2ðX⃗; τ; TÞ þ & & &,
where u0 is the steady uniform state with Fðu0Þ ¼ 0 and
uiðX⃗; τ; TÞ, i ¼ 1; 2;… are the deviations that describe the
(weakly) nonlinear behavior. We take the above discussed
scaling of space and time implied by the dispersion relation
into account by writing ∇⃗x⃗ ¼ ε∇⃗X⃗ and ∂t ¼ ε2∂τ þ ε4∂T ,
respectively. With this we then consider Eqs. (2) order by
order. The scaling implies that we need to successively
consider all orders up to Oðε5Þ to discover evolution
equations that capture dynamic effects on the slow time-
scale T.
In principle, at each order we first determine the non-

conserved fields as (nonlinear) functions of the conserved
fields, reflecting that the dynamics of the former is slaved to
the latter. Second, we obtain the continuity equations to the
corresponding order by inserting the obtained expressions
into the appropriate mobilities and potentials similar to
Taylor-expanding them. In particular, at order ε, the
contributions of the two continuity equations vanish and
the remaining N equations become a homogeneous linear
algebraic system for the slaved quantities, solved by
n1ðX⃗; τ; TÞ ¼ nρρ1ðX⃗; τ; TÞ þ nσσ1ðX⃗; τ; TÞ where nρ and
nσ correspond to the zero eigenmodes ð1; 0;nρÞ and
ð0; 1; nσÞ of the dominant eigenspace at k ¼ 0 [59].
At order ε2, again the continuity equations are again

trivially fulfilled, and the remaining equations form an
inhomogeneous linear algebraic system for n2. Thereby, the
inhomogeneity is nonlinear in lower order quantities. At
order ε3, the first nonvanishing contributions from the
continuity equations appear, that, after eliminating n1,
correspond to linear equations in ∇⃗2ρ1 and ∇⃗2σ1. They
provide the conditions for the instability onset at δ ¼ 0 in
Eq. (1). They also capture the leading order oscillations
with frequency ω on the time scale τ by an antisymmetric
dynamic coupling that represents a nonreciprocal coupling
of lowest order (a structure equivalent to the Schrödinger
equation for a free particle). Also for n3 an inhomogeneous
linear algebraic system emerges. At the subsequent order
ε4, further contributions to the evolution on the time scale τ
are obtained from the continuity equations. Finally, at order
ε5 we obtain expressions for ∂Tρ1 and ∂Tσ1. Using the
earlier obtained results for n1, n2, and n3, the complete
continuity equations at this order can be written as non-
linear functions of the ρi and σi. This provides the weakly

PHYSICAL REVIEW LETTERS 131, 107201 (2023)

107201-3



nonlinear expression for the leading order time evolution
on the timescale T. Next, the expressions found at the
different orders are recombined, in passing “inverting” the
scalings and expansions of time, coordinates, and fields ρ
and σ. The resulting amplitude equation corresponds to a
generalized nonreciprocal Cahn-Hilliard model (i.e., two
nonreciprocally coupled Cahn-Hilliard equations) and is
given in Sec. 2 of the Supplemental Material. In the
common case of constant mobilities (Q ¼ Q0 and
R ¼ R0) in Eq. (2), cross-couplings in the highest-order
derivatives may be removed by a principal axis trans-
formation, resulting in

∂tA ¼ ∇⃗2
$
α1Aþ α2Bþ NAðA; BÞ −DA∇⃗2A

%

∂tB ¼ ∇⃗2
$
β1Aþ β2Bþ NBðA; BÞ −DB∇⃗2B

%
. ð3Þ

Here, the spatially slowly varying real amplitudes A and B
are linear combinations of the deviations of the conserved
fields from their mean values, DA and DB are effective
interface rigidities, and NA and NB are general cubic
polynomials in A and B, e.g., NA ¼ α3A2þα4ABþα5B2þ
α6A3þα7A2Bþα8AB2þα9B3. All parameters are real [60].
The derived general nonreciprocal two-component

Cahn-Hilliard model describes the universal bifurcation
behavior in the vicinity of any conserved-Hopf instability
independently of the particular system studied—all such
systems and most of their parameters at instability onset are
encoded in the rich parameter set of the derived equations.
It should further be noted that the derived general model
encompasses further primary bifurcations as it actually
corresponds to the amplitude equation for an instability of
higher codimension. This is shown in Sec. 3 of the
Supplemental Material employing the example of a
Cahn-Hilliard instability of codimension two. In other
words, the derived amplitude equation may be considered
as belonging to a higher level of a hierarchy of such
equations. It captures several qualitatively different linear
instability scenarios. Such hierarchies are useful to under-
stand the qualitative differences and transitions between
instability types. Amplitude equations on a higher hier-
archy level describe the bifurcation behavior close to higher
codimension points, i.e., the behavior in the vicinity of
several different instabilities. In the limiting case where
only one of the contained instabilities is close to its onset,
the higher level equation can often be reduced to a simpler
lower level equation [61]. However, such a further reduc-
tion of the derived nonreciprocal Cahn-Hilliard equation
remains a task for the future.
Note that the presence of additional subdominant neutral

modes (e.g., resulting from additional conservation laws) or
the simultaneous onset of several distinct instabilities
would (possibly in extension of the present work) also

result in amplitude equations on a higher level of the
“codimension hierarchy” [30,62].
It is an interesting observation that the various ad hoc

nonreciprocal Cahn-Hilliard models studied in [16–18]
emerge as special cases of the equation derived here
[63]. Table 3 in Sec. 2 of the Supplemental Material
provides the corresponding parameter choices in Eq. (3).
Two other limiting cases are also included: (i) If
certain symmetries between coefficients hold, one may
introduce a complex amplitude C ¼ Aþ iB and
present Eq. (3) as a complex Cahn-Hilliard equation

∂tC ¼ −G∇⃗2
h
εþ ð1þ ibÞ∇⃗2 − ð1þ icÞjCj2

i
C, i.e., as a

complex Ginzburg-Landau equation with an additional
outer Laplace operator reflecting the conservation property,
as briefly considered in Ref. [46]. This, in passing clarifies
that Eq. (3) is more than just a “conserved complex
Ginzburg-Landau equation” because it does not show its
phase-shift invariance. (ii) Imposing another symmetry
between coefficients renders the coupled equations varia-
tional. Then they represent a generic model for the
dynamics of phase separation in a ternary system [22,71].
To conclude, we have derived an amplitude equation

valid in the vicinity of a conserved-Hopf bifurcation and as
well at related bifurcations of higher codimension. It
qualitatively captures transitions generically occurring in
the wide variety of out-of-equilibrium systems that feature
two conservation laws. Note that close to the conserved-
Hopf instability it also provides a rather good quantitative
description of the bifurcation structure. This is exemplified
in Sec. 4 of the Supplemental Material [65] where the
amplitude equation is derived and analyzed in comparison
with the full system for the relatively simple case of a three-
component reaction-diffusion system with two conserva-
tion laws. As the latter reduce the local phase space
(defined as in Ref. [42]) to one dimension, the emerging
behavior will be much less complex than seen in the Min
system [41] and other high dimensional cases [49].
The derived equation forms part of the hierarchy of

universal amplitude equations for the above discussed eight
basic instabilities. Thus, its relevance for the classification
of pattern forming behavior close to the onset of insta-
bilities resembles that of the complex Ginzburg-Landau
equation that describes the universal bifurcation behavior in
the vicinity of a standard Hopf instability in systems
without conservation laws [24–26,72]. However, one has
to add restrictively that the large number of parameters of
the derived generic model might limit its practical use as a
complete parametric study of all generic behaviors is
prohibitively costly. Still its study has already started to
form a valuable bridge between the analysis of the many
specific models and the set of amplitude equations on a
lower hierarchy level (that still needs completion). In cases
where the primary bifurcation is subcritical (e.g., for the
Min oscillations [41]), even higher order amplitude equa-
tions might be insufficient to faithfully predict the
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spatiotemporal behavior. Then weakly and fully nonlinear
approaches should be employed in a complementary
manner.
Although it is known that the conserved-Hopf instability

is related to phenomena that are not covered by the complex
Ginzburg-Landau equation [56] only very few studies have
considered its (weakly) nonlinear behavior by correspond-
ing amplitude equations, normally, in special cases [57,73].
On the one hand, Ref. [57] restricts its focus to amplitude
equations for spatially periodic traveling and standing
waves, and on the other hand, Ref. [73] deals with a
particular case without reflection symmetry where one of
the two conservation laws is weakly broken. The universal
character of the model derived here, implies that literature
results on the onset of motion and oscillations [16–18] and
as well potentially on the suppression of coarsening and the
existence of localized states [18,23] may be applied to the
class of out-of-equilibrium systems that undergo a con-
served-Hopf instability. In consequence, spatiotemporal
patterns occurring in a wide spectrum of systems from
protein dynamics within cells and on membranes [41,50],
chemotactic systems of organisms [47], coupled cytoske-
leton and cytosol dynamics [48], multicomponent phase-
separating reactive, surface-active or active systems
[49,51,52], to two-layer liquid films with heating or mass
transfer [53–55] should be further studied to identify their
common universal features as out-of-equilibrium systems
with conservation laws as well as characterizing differences
that may prompt a further development of the hierarchy of
amplitude equations.
Note that the present work has entirely focused on

isotropic homogeneous systems described by scalar fields,
implying that systems like the active Ising model in [74,75]
are not covered as they involve a pseudoscalar. The
dispersion relations of such systems with conservation
laws have properties different from the ones considered
here. It would be highly interesting to produce a system-
atics similar to the one proposed here for systems involving
pseudoscalars. To our knowledge, so far only a few cases
have been treated by weakly nonlinear theory.
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I. DISPERSION RELATIONS AND AMPLITUDE EQUATIONS

This section of the Supplementary Material gives an overview of the eight types of linear instabilities of uniform steady states
occurring in homogeneous isotropic systems described by scalar field variables. In particular, we discuss the corresponding
dispersion relations and the seven well investigated amplitude equations (also called envelope equations) obtained by weakly
nonlinear theory in the vicinity of the instability thresholds.

The restriction to homogeneous isotropic systems implies that underlying model equations are translation- and rotation-
invariant. For simplicity, in the following we only consider spatially one-dimensional systems, i.e., isotropy becomes reflec-
tion symmetry (also called parity symmetry). The considered multi-component order parameter field u(x, t) represents a set of
scalars. All occurring conservation laws are assumed to be local, i.e., the kinetic equation(s) for corresponding conserved fields
⇢ have the form of a continuity equation @t⇢ = �@xj where j(x, t) is a flux that may depend linearly or nonlinearly on all
components of u(x, t) and their spatial derivatives.

Parity symmetry implies that each r.h.s. term features an even number of spatial derivatives. Here, x and t are position and
time while @x and @t are the corresponding partial derivatives.

The linear stability of steady uniform states u(x, t) = u0 is determined by adding small-amplitude perturbations that respect
the boundary conditions and show an exponential time dependence e�t where � is a real or complex eigenvalue of the resulting
Jacobian. In the case of infinitely extended translation-invariant systems, the spatial dependence corresponds to harmonics eikx
with wavenumber k. Introducing u0 +�ûe�t+ikx with � ⌧ 1 into the kinetic equation and linearizing in � ultimately gives the
dispersion relation �(k) and corresponding eigenmodes û. The real part � := Re� is a rate that characterizes the exponential
growth (� > 0) or decay (� < 0) of the corresponding linear mode. The imaginary part ⌦ := Im� corresponds to a frequency
that can be zero (stationary case) or nonzero (oscillatory case).

nonconserved dynamics conserved dynamics

homogeneous/large-scale, stationary Allen-Cahn (IIIs) Cahn-Hilliard (IIs)
homogeneous/large-scale, oscillatory Hopfa (IIIo) conserved-Hopf (IIo)

small-scale, stationary Turing (Is) conserved-Turing (-)
small-scale, oscillatory waveb (Io) conserved-wave (-)

a Also known as “Poincaré-Andronov-Hopf”.
b Also called “finite-wavelength Hopf” or “oscillatory Turing”.

TABLE I. Naming convention of linear instabilities (and corresponding bifurcations) classified via their spatial (homogeneous/large-scale vs.
small-scale) and temporal (stationary vs. oscillatory) properties for the cases of nonconserved and conserved dynamics. In parentheses we give
the names in the (incomplete) classification of Cross and Hohenberg [1].

There are eight basic types of instability when basing the classification on the combination of three features: (i) large-scale vs.
small-scale instability, (ii) stationary vs. oscillatory instability, and (iii) instability without and with conservation law(s). Each of
them features typical dominant modes directly at and in the vicinity of the instability threshold. Denoting the control parameter
by ", the left hand side panels of Fig. 1 present the main types in our amended classification by showing the dispersion relation
�(k). In each case we give relations below (" < 0), at (" = 0) and above (" > 0) the instability threshold. We also indicate
the critical wavenumber kc where at instability onset a maximum of �(k) touches zero, the marginal wavenumber(s) k± where
Re�(k) crosses zero above onset, and the fastest growing wavenumber km where �(k) has a maximum above onset. Note that
for each of the four shown cases there exist a stationary and an oscillatory variant.
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FIG. 1. Classification of dispersion relations distinguishing large-scale and small-scale instabilities as well as instabilities without and with
conservation law(s). Shown are (left) the real part � = Re�(k) of the dispersion relation and (right) the position of marginal wavenumber(s)
k± (solid line) and fastest growing wavenumber km (dashed line) in the plane spanned by wavenumber k and control parameter ". For each
of the four cases there exist stationary and oscillatory variants. In the left panels we also indicate the critical wavenumber kc where the
instability onset occurs (at " = 0, heavy solid blue line). Dashed lines give �(k) below (" < 0) and above (" > 0) onset. Shown are (a,b) the
nonconserved homogeneous (Allen-Cahn and Hopf) instability, (c,d) the conserved large-scale (Cahn-Hilliard and conserved-Hopf) instability,
(e,f) the nonconserved small-scale (Turing and wave) instability, and (g,h) the conserved small-scale (conserved-Turing and conserved-wave)
instability. Naming conventions are summarized in Table I.
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The right hand side panels of Fig. 1 give the loci of k± and km in the (k, ")-plane thereby illustrating the band of unstable
wavenumbers in its dependence on ". Note that in each case these dependencies are based on the leading order dispersion
relation. When higher orders in k2 are included k±(") and km(") can be quantitatively different for " 6= 0. Our naming
convention for the eight instabilities is given in Table I. For reference, the classification of Cross and Hohenberg [1] is given, but
note that it only distinguishes six cases. Ref. [1] further states that “type II can often be scaled to resemble type I”. In our opinion
this is not correct. Also, their statements that on the one hand stationary and oscillatory instabilities have at onset frequencies
⌦ = 0 and ⌦ = O(1), respectively, and on the other hand that type II occurs in the presence of a conservation law seem to
contradict each other, as the oscillatory case II has ⌦ ⇠ O("2). In contrast, we propose a classification that takes the importance
of conservation laws directly and systematically into account. Note, however, that in the cases with conservation law we restrict
our attention to situations where the conservation law is directly related to the mode that becomes unstable. Cases where fields
with conserved and fields with nonconserved or mixed dynamics interact in such a way that a mode representing nonconserved
dynamics becomes unstable in the presence of an additional conservation law are not considered here. They could be part of a
classification that incorporates the interaction of different branches of the dispersion relation.

Inspecting the first and third row of Fig. 1 we see that there are four basic instability types for nonconserved systems: If
the critical wavenumber, i.e., the marginal wavenumber at onset is zero (kc = 0) the marginal mode is homogeneous (some-
times called global) as it synchronously affects each point of the domain without any spatial modulation. We refer to it as
a homogeneous, uniform or global instability. If the corresponding critical frequency ⌦c is zero [nonzero] the instability is
stationary [oscillatory]. The corresponding amplitude equations for the stationary (Allen-Cahn instability) and the oscillatory
(Hopf instability) case are the Allen-Cahn equation

@tB = sgn(")B + @xxB + ↵B2
� B3 (1)

and the complex Ginzburg-Landau equation

@tA = sgn(")A+ (1 + ii)@xxA � (1 + i↵i)|A|
2A (2)

respectively.
Here, B(x, t) is the spatially slowly varying real amplitude of the spatially homogeneous stationary mode while A(x, t) is the
spatially slowly varying complex amplitude of the spatially homogeneous oscillatory mode at k = 0. Note that a derivation of the
universal amplitude equation results in specific coefficients for each term on the right hand side that depend on the corresponding
original model. Furthermore, the space and time variables describe spatially and temporally slow dynamics, hence, amplitude
equations are often referred to as envelope equations. Introducing a transformation of space, time and amplitude one can always
eliminate three coefficients. Here and for the following cases we give these simplified universal equations in the supercritical
cases. In the corresponding subcritical cases the cubic nonlinearity acts destabilizing, e.g., it occurs with a positive sign in
Eq. (2). Then, higher order stabilizing terms, e.g., a quintic nonlinearity, must be included to obtain a well behaved system. The
sgn(") function occurs since it determines whether the amplitude linearly grows or decays.

In contrast, a nonzero marginal wavenumber at onset (kc 6= 0) indicates a small-scale instability, i.e., an instability of finite
wavelength. The amplitude equation in the stationary case (Turing instability) is the real Ginzburg-Landau equation

@tA = sgn(")A+ @xxA � |A|
2A (3)

where A(x, t) is the slowly varying complex amplitude of the spatially periodic stationary mode at k = kc. In the oscillatory
case (wave instability) the coupled complex Ginzburg-Landau equations

@tA1 = sgn(")A1 � c@xA1 + (1 + ii)@xxA1 � (1 + i↵i)|A1|
2A1 � (�r + i�i)|A2|

2A1

@tA2 = sgn(")A2 + c@xA2 + (1 + ii)@xxA2 � (1 + i↵i)|A2|
2A2 � (�r + i�i)|A1|

2A2 (4)

emerge as amplitude equation where complex amplitudes A1 and A2 correspond to left and right traveling waves, respectively.
These equations are only valid for small group velocity c (see sec. VI.E of [2], Section 7.1 of [3], Sections 1 & 2 of [4]). If this
condition is not fulfilled a nonlocal equation is derived [5]. The four described cases for systems without conservation laws are
all well covered by the Cross-Hohenberg classification (as types IIIs, IIIo, Is, Io, respectively) [1] and are widely analyzed in the
literature.

However, for systems with a conservation law there are another four basic types again distinguished based on wavenumber
and mode type at onset. They are shown in the second and fourth row of Fig. 1. The conservation law results in the existence of a
neutral mode at zero wavenumber, i.e., � = 0 at k = 0 at all values of ". Note that the instability thresholds are equivalent to the
corresponding cases without conservation law. However, the fastest growing mode above onset behaves differently. For instance,
in the case of zero marginal wavenumber at onset (kc = 0, second row of Fig. 1, Cahn-Hilliard instability), km increases with "
in contrast to the case of an Allen-Cahn instability where km = kc = 0. This implies that the instability is observed as a large-
scale instability, not a homogeneous one. The growth of a homogeneous mode is incompatible with a fully conserved dynamics.
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The corresponding amplitude equation has only recently been systematically derived [6]. It corresponds to the Cahn-Hilliard
equation (well known from other contexts)

@tB = @xx
�
�sgn(")B + ↵B2 +B3

� @xxB
�

(5)

where B(x, t) is the spatially slowly varying real amplitude of the spatially homogeneous stationary mode at k = 0. Since
the Cahn-Hilliard equation is a continuity equation the total growth, i.e., the growth integrated over the domain,

R
dx@tB,

vanishes. This confirms that conserved quantities can only be spatially redistributed within the domain but overall do not
change. Depending on the value of ↵ (and the mean value of B if not fixed to zero by an affine transformation) the resulting
bifurcation can be sub- or supercritical.1

The small-scale cases with conservation law [Fig. 1 (g,h)] are not explicitly mentioned in the Cross-Hohenberg classification
[1], but their relevance and distinct features became later more widely known [4, 7]. Here, we call the stationary and oscillatory
case conserved-Turing and conserved-wave instability, respectively. In the stationary case the corresponding amplitude equation
corresponds to a real Ginzburg-Landau equation coupled to a nonlinear diffusion equation (see [7] and Section 9.4 of [3])

@tA = sgn(")A+ @xxA � |A|
2A � AB

@tB = @xx
�
⌫B + µ|A|

2
�
. (6)

Here, A is the slowly varying complex amplitude of a spatially periodic stationary mode and B is the slowly varying real
amplitude of the spatially homogeneous stationary mode. In the oscillatory case one finds two complex Ginzburg-Landau
equations (for complex amplitudes A1 and A2 of left and right traveling waves, respectively) coupled to an equation for a real
scalar mode of amplitude B (see pg. 1034 of [4]), i.e.,

@tA1 = sgn(")A1 � c@xA1 + (1 + ii)@xxA1 � (1 + i↵i)|A1|
2A1 � (�r + i�i)|A2|

2A1 � (1 + i�i)A1B

@tA2 = sgn(")A2 + c@xA2 + (1 + ii)@xxA2 � (1 + i↵i)|A2|
2A2 � (�r + i�i)|A1|

2A2 � (1 + i�i)A2B

@tB = @xx
�
⌫B + µ(|A1|

2
� |A2|

2)
�
. (7)

Again, these are only valid for small group velocity c.
Although the presented picture might at first sight seem complete, the careful reader will have noticed that Eqs. (1) to (7)

only present the amplitude equations for seven of the eight cases of linear instabilities discussed above: we have neglected the
large-scale oscillatory instability with conservation law (conserved-Hopf instability). To our knowledge, this case has not yet
been systematically treated in the literature, and no corresponding amplitude equation has been derived yet. This is the subject
of the main text with all details given in the next section of the Supplementary Material.

II. DERIVATION OF AMPLITUDE EQUATION FOR CONSERVED-HOPF INSTABILITY

To provide the detailed derivation of the general nonreciprocal Cahn-Hilliard model as an amplitude equation for the
conserved-Hopf instability, i.e., a large-scale oscillatory instability in systems with two conservation laws, we consider a homo-
geneous reflection-symmetric system whose evolution is modeled by coupled kinetic equations for two conserved (⇢ and �) and
N nonconserved (n = (n1, . . . , nN )) scalar field variables, i.e.,

@t⇢ = � ~r ·

⇣
Q(u)~r⌘(u, ~r)

⌘

@t� = � ~r ·

⇣
R(u)~rµ(u, ~r)

⌘

@tn =F (u, ~r),

(8)

From here onwards u = (⇢,�,n) is used as abbreviation where convenient. The dynamics of the conserved quantities is
determined by the divergence of the corresponding fluxes. Each flux is the product of a mobility function (Q and R, respectively)
and the gradient of a potential (⌘ and µ, respectively). In general, these are nonequilibrium (chemical) potentials that can not be
obtained as variational derivatives from a single underlying energy functional. This renders the system active. For scalar fields,
reflection symmetry implies that Eqs. (8) are invariant under the transformation ~x ! �~x. Therefore, the individual terms within

1 The large-scale case is mentioned as type II but not further discussed in
the Cross-Hohenberg classification [1] as “type II can often be scaled to
resemble type I”. However, the different amplitude equations show that this

is actually not the case. This reflects that the existence of the conservation
law changes central features of the system.
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the potentials ⌘ and µ do either not include derivatives or an even number of them. Normally, the mobilities are assumed to be
functions of the fields, but terms with an even number of derivatives may also be easily accommodated. Furthermore, at least
one uniform steady state u0 with F (u0) = 0 shall exist. The potentially simplest example for a system (8) is a reaction diffusion
system with N + 2 species that has been rearranged to explicitly show the two conservation laws. An example with N = 1 is
considered in Section IV. However, the structure (8) also captures much more complex systems, e.g., all examples mentioned in
the main text.

We consider the case of a conserved-Hopf instability, i.e., at control parameter � = 0 the considered u0 state becomes
unstable with a dispersion relation above onset as in Eq. (1) and Fig. 1 of the main text. Note that in a system with N � 2
nonconserved quantities a standard Hopf instability is also still possible. However, then the conserved quantities do not contribute
to the corresponding linear modes, and interactions between nonconserved oscillatory and conserved real modes will only occur
nonlinearly. Here, such a setting is not considered. The conserved-Hopf instability we are here interested in always involves the
branches of the dispersion relation containing the two neutral modes at k = 0.

To perform the weakly nonlinear analysis valid in the vicinity of instability onset, i.e., for � = �2"2, we expand all fields in
the smallness parameter " ⌧ 1, i.e.,

u( ~X, ⌧, T ) = u0 + "u1( ~X, ⌧, T ) + "2u2( ~X, ⌧, T ) + . . . , (9)

take account of the scaling discussed in the main text by writing ~r~x = "~r~X and @t = "2@⌧+"4@T , and also expand all quantities
occurring on the right hand side of Eqs. (8) as

Q =Q0 + "Q1 + "2Q2 + . . .

R =R0 + "R1 + "2R2 + . . .

⌘ =⌘0 + "⌘1 + "2⌘2 + "3⌘3 + . . .

µ =µ0 + "µ1 + "2µ2 + "3µ3 + . . .

F ="F 1 + "2F 2 + "3F 3 + . . . ,

(10)

where F 0 = F (u0) = 0 was used. The various coefficients are given by corresponding Taylor expansions, e.g., Q2 =

u1 ·
1
2
@2Q
@u2

��
u0

· u1 +
@Q
@u

��
u0

· u2. Examples for these coefficients are given in Table II. All expansions and scalings are inserted
into the model equations (8), that are then considered order by order in ". Due to the scaling implied by the dispersion relation,
one needs to successively consider all orders up to O("5) to obtain evolution equations that capture dynamics effects on the slow
timescale T .

The general procedure to follow at each order i = 1, . . . , 5 is: First, determine the nonconserved fields ni as (nonlinear)
functions of the conserved fields � and ⇢, hence, consider the dynamics of the nonconserved fields that is slaved to the dynamics
of the conserved fields. Second, obtain the continuity equations to the corresponding order by inserting the expressions for ni

into the appropriate mobilities Qi, Ri and potentials ⌘i, µi. Finally, the dynamics for ⇢ and � are combined into two coupled
equations including terms up to @T ⇢1 and @T�1, respectively, that represent the sought-after amplitude equation. Now we
proceed order by order.

a. Order ": As expected, we recover the linear result at k = 0: The contributions of the two continuity equations vanish
and the remaining N equations become the algebraic system

0 = F 1 (11)

linear in N + 2 unknown quantities u1. It is solved for

n1( ~X, ⌧, T ) = n⇢⇢1( ~X, ⌧, T ) + n��1( ~X, ⌧, T ) (12)

where n⇢ and n� correspond to the zero eigenmodes (1, 0,n⇢) and (0, 1,n�), respectively, discussed in the main text.
b. Order "2: As in O("), the continuity equations are trivially fulfilled and the nonconserved dynamics give

0 = F 2 . (13)

These algebraic relations consist of a linear part similar to Eq. (12) but for the fields u2 and a nonlinear part quadratic in ⇢1
and �1 (after eliminating quadratic parts involving n1 via Eq. (12)). The nonlinearities correspond to the inhomogeneity of the
algebraic system for the u2. In consequence, n2 is now given as a sum of a part linear in the amplitudes ⇢2 and ⌘2 and the
nonlinearity, namely,

n2 = n⇢⇢2 + n��2 + n⇢⇢⇢
2
1 + n⇢�⇢1�1 + n���

2
1 . (14)

Here and in the following, the vectors of real constant coefficients n↵, n↵� , etc. depend on the specific functions F .
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c. Order "3: At the next order, the first nonvanishing contribution from the continuity equations appears, resulting in the
system

@⌧⇢1 = �~r~X ·

⇣
Q0

~r~X ⌘1
⌘

@⌧�1 = �~r~X ·

⇣
R0

~r~X µ1

⌘

@⌧n1 = F 3 ,

(15)

where ⌘1 and µ1 are linear in ⇢1, �1 and n1. For the latter we insert Eq. (12) and obtain

⌘1 = ⌘⇢⇢1 + ⌘��1

µ1 = µ⇢⇢1 + µ��1
(16)

with real constant coefficients ⌘⇢, ⌘� , µ⇢ and µ� as exemplified in Table II that also provides further coefficients appearing at
higher orders in ". Further, Q0, R0 are constants and inserting the expressions (16) we can write the first two equations in (15)
as a linear system

@⌧

 
⇢1
�1

!
= �

 
Q0⌘⇢ Q0⌘�
R0µ⇢ R0µ�

!
~r2

~X

 
⇢1
�1

!
. (17)

Applying (⇢1,�1) ⇠ exp
⇣
i~k · ~X + �⌧

⌘
, its eigenvalues are

�± = k2
Q0⌘⇢ +R0µ�

2
± k2

r
(Q0⌘⇢ � R0µ�)2

4
+Q0⌘�R0µ⇢ , (18)

where k = |~k|. Comparing to the dispersion relation (Eq. (1) of the main text) allows us to identify

� =
Q0⌘⇢ +R0µ�

2

i! =

r
(Q0⌘⇢ � R0µ�)2

4
+Q0⌘�R0µ⇢ .

(19)

At onset of the conserved-Hopf instability the growth rate � vanishes, i.e.,

Q0⌘⇢ = �R0µ� (20)

and the eigenvalues are purely imaginary, i.e.,

(Q0⌘⇢ � R0µ�)2

4
+Q0⌘�R0µ⇢ < 0 . (21)

Using (20), this implies

⌘�µ⇢ < ⌘⇢µ� < 0, (22)

and thereby defines a nonreciprocity condition for the linear coupling terms within the potentials. Since we are interested in the
dynamics closely above [below] the instability onset where � = �2"2 with �2 > 0 [�2 < 0], Eq. (20) only holds at leading order,
i.e., including the next order we have Q0⌘⇢ = �R0µ� + 2�2"2. This makes the result fully consistent with the scaling based
on Eqs. (1) of the main text, as the oscillations of leading order frequency !k2 occur on the timescale ⌧ [given that ! = O(1)]
where the growth rate vanishes. Growth only occurs on the slower time scale T . Specifically, the O("2) contribution in � is then
considered when below discussing order "5 terms. Here, at O("3), we can simply set � = 0. With this, we now reformulate
Eq. (17). Note that any linear combination of ⇢ and �, e.g.,

A( ~X, ⌧, T ) = a⇢⇢( ~X, ⌧, T ) + a��( ~X, ⌧, T ) (23)

B( ~X, ⌧, T ) = b⇢⇢( ~X, ⌧, T ) + b��( ~X, ⌧, T ) . (24)
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with coefficients a⇢, a� , b⇢ and b� results in an equivalent formulation for alternative conserved fields A and B. We use the
resulting freedom to simplify Eq. (17) by choosing

b� = �
!a⇢ +Q0⌘⇢b⇢

R0µ⇢
, a� =

!b⇢ � Q0⌘⇢a⇢
R0µ⇢

(25)

and a⇢, b⇢ are normalization constants. This reduces Eqs. (17) to

@⌧

 
A1

B1

!
=

 
0 �!

! 0

!
~r2

~X

 
A1

B1

!
, (26)

i.e., the leading order oscillation is represented by an antisymmetric dynamic coupling of A and B, that represents the lowest
order nonreciprocal coupling. The form of Eq. (26) allows one to easily show that the corresponding part of the dynamics
is not dissipative since it is equivalent to the structure of the Schrödinger equation for a free particle (similar to the complex
Ginzburg-Landau equation without the local terms).

For simplicity of notation, here, we proceed with the description using the original quantities ⇢ and �. It helps us to identify
the structure of the two continuity equations in terms of Q, R, ⌘ and µ. Still at O("3), we determine n3 via the third equation in
(15): we insert n1 from Eq. (12) and use Eqs. (17) for the time derivative to obtain

n3 =n⇢⇢3 + n��3 + n⇢⇢2⇢1⇢2 + n⇢� (⇢1�2 + ⇢2�1) + n��2�1�2

+ n⇢⇢⇢⇢
3
1 + n⇢⇢�⇢

2
1�1 + n⇢��⇢1�

2
1 + n����

3
1

+ n⇢xx
~r2

~X
⇢1 + n�xx

~r2
~X
�1 .

(27)

Similar to the expression for n2 it consists of the sum of a linear part given by Eq. (12) applied to u3 and a nonlinear part that
corresponds to an inhomogeneity.

d. Order "4: At the next order we obtain

@⌧⇢2 = �~r~X ·

⇣
Q0

~r~X⌘2
⌘

� ~r~X ·

⇣
Q1

~r~X⌘1
⌘

@⌧�2 = �~r~X ·

⇣
R0

~r~Xµ2

⌘
� ~r~X ·

⇣
R1

~r~Xµ1

⌘

@⌧n2 = F 4

(28)

where additionally to the already known Q0, R0, ⌘1 and µ1 the higher order quantities Q1, R1, ⌘2 and µ2 enter. Using Eq. (14)
for n2 we obtain

Q1 =q⇢⇢1 + q��1

R1 =r⇢⇢1 + r��1

⌘2 =⌘⇢⇢2 + ⌘��2 + ⌘⇢⇢⇢
2
1 + ⌘⇢�⇢1�1 + ⌘���

2
1

µ2 =µ⇢⇢2 + µ��2 + µ⇢⇢⇢
2
1 + µ⇢�⇢1�1 + µ���

2
1

(29)

Furthermore, at order "4 one may also determine an algebraic expression for n4. However, here, we do not present it because
it does not contribute to the relevant leading order dynamics of ⇢ and �.

e. Order "5: Finally, the fifth order gives the kinetic equations

@T ⇢1 + @⌧⇢3 = �~r~X ·

⇣
Q0

~r~X⌘3
⌘

� ~r~X ·

⇣
Q1

~r~X⌘2
⌘

� ~r~X ·

⇣
Q2

~r~X⌘1
⌘

@T�1 + @⌧�3 = �~r~X ·

⇣
R0

~r~Xµ3

⌘
� ~r~X ·

⇣
R1

~r~Xµ2

⌘
� ~r~X ·

⇣
R2

~r~Xµ1

⌘

@Tn1 + @⌧n3 = F 5 .

(30)

Using the already determined expressions for n1, n2 and n3 the complete right hand sides of the continuity Eqs. (30) can be
written as nonlinear functions of the ⇢i and �i with coefficients defined in a similar way as at lower orders:

Q2 =q⇢⇢2 + q��2 + q⇢⇢⇢
2
1 + q⇢�⇢1�1 + q���

2
1

R2 =r⇢⇢2 + r��2 + r⇢⇢⇢
2
1 + r⇢�⇢1�1 + r���

2
1

⌘3 =⌘⇢⇢3 + ⌘��3 + 2⌘⇢⇢⇢1⇢2 + ⌘⇢� (⇢1�2 + ⇢2�1) + 2⌘���1�2

+ ⌘⇢⇢⇢⇢
3
1 + ⌘⇢⇢�⇢

2
1�1 + ⌘⇢��⇢1�

2
1 + ⌘����

3
1 + ⌘⇢xx~r

2
~X
⇢1 + ⌘�xx~r

2
~X
�1

µ3 =µ⇢⇢3 + µ��3 + 2µ⇢⇢⇢1⇢2 + µ⇢� (⇢1�2 + ⇢2�1) + 2µ���1�2

+ µ⇢⇢⇢⇢
3
1 + µ⇢⇢�⇢

2
1�1 + µ⇢��⇢1�

2
1 + µ����

3
1 + µ⇢xx

~r2
~X
⇢1 + µ�xx

~r2
~X
�1

(31)
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This provides the weakly nonlinear expression for the time evolution on the timescale T . To obtain the final amplitude equations
we combine the dynamics found at the different orders. In other words, we recombine the different orders of the expansion of
the fields into the appropriate fields u as the deviations from the steady state u0. Specifically, we introduce % ⌘ ⇢ � ⇢0 and
& ⌘ � � �0, i.e., the spatial and temporal modulations in ⇢(~x, t) and �(~x, t) away from their respective mean values ⇢0 and �0.

For instance, the dynamics of % is given by

@t% ="3@⌧⇢1 + "4@⌧⇢2 + "5 (@T ⇢1 + @⌧⇢3) + O("6)

= � "3~r~X ·

⇣
Q0

~r~X⌘1
⌘

� "4~r~X ·

⇣
Q0

~r~X⌘2 +Q1
~r~X⌘1

⌘

� "5~r~X ·

⇣
Q0

~r~X⌘3 +Q1
~r~X⌘2 +Q2

~r~X⌘1
⌘
+ O("6)

= � "2~r~X ·

⇣�
Q0 + "Q1 + "2Q2

�
~r~X

�
"⌘1 + "2⌘2 + "3⌘3

�⌘
+ O("6).

(32)

Note that in the last step we have added selected terms, e.g. �"6~r~X ·

⇣
Q2

~r~X⌘2
⌘

that would naturally occur at higher orders
of the derivation. However, including them in Eq. (32) obtained through considerations up to O("5) allows us to conserve the
structure of a continuity equation (even with a flux that equals the product of a mobility and a gradient of a potential). We
emphasize that this procedure does not correspond to a further approximation. The leading order terms, i.e., terms up to O("5)
are not touched and adding terms that are smaller than O("5) does not change the validity of Eqs. (32). One may even argue that
one has to add these terms to keep the structure as a conservation law intact. See the corresponding discussion for the related
problem of a gradient dynamics structure in appendix A of [8].

Furthermore, we introduce the original scales, ~x and t and the fields % and & , e.g.

⌘⇢⇢"
2~r2

~X

�
"2⇢21 + 2"3⇢1⇢2

�
= ⌘⇢⇢"

2~r2
~X

�
"⇢1 + "2⇢2

�2
+ O("6) = ⌘⇢⇢~r

2
~x%

2 + O("6), (33)

and obtain as result the coupled amplitude equations

@t% = � ~r~x ·

h�
Q0 + q⇢%+ q�& + q⇢⇢%

2 + q⇢�%& + q��&
2
�
~r~x

⇥
⌘⇢%+ ⌘�& + ⌘⇢⇢%

2 + ⌘⇢�%& + ⌘��&
2

+⌘⇢⇢⇢%
3 + ⌘⇢⇢�%

2& + ⌘⇢��%&
2 + ⌘���&

3 + ⌘⇢xx~r
2
~x%+ ⌘�xx~r

2
~x &
ii

@t& = � ~r~x ·

h�
R0 + r⇢%+ r�& + r⇢⇢%

2 + r⇢�%& + r��&
2
�
~r~x

⇥
µ⇢%+ µ�& + µ⇢⇢%

2 + µ⇢�%& + µ��&
2

+µ⇢⇢⇢%
3 + µ⇢⇢�%

2& + µ⇢��%&
2 + µ���&

3 + µ⇢xx
~r2
~x%+ µ�xx

~r2
~x &
ii

(34)

where all coefficients are real and well defined through series expansions of Q,R, ⌘, µ, and F in Eqs. (10) (see Table II). Eq. (34)
corresponds to a general nonreciprocal Cahn-Hilliard model.

By construction the mean values of % and & vanish, i.e.,
R
dV % =

R
dV & = 0. The presence of the quadratic terms in the

potentials indicates that, in analogy to the case of the stationary large-scale instability with conservation law [Eq. (5)], subcritical
cases can also be captured. Note that the resulting effective cross-couplings in the second and fourth order terms in Eq. (34)
are generic and do not depend on specific preconditions on the studied system. They are “effective” as they may arise either
directly from any coupling (linear or nonlinear) between the conserved quantities via the local terms within the potentials ⌘
and µ. Or they can occur due to indirect coupling via couplings to nonconserved fields. For example, the cross-coupling in
the fourth order terms (that can in the case of constant mobilities be eliminated by a transformation, see below) results from
linear couplings between the conserved and nonconserved fields via their second spatial derivatives. That is, no cross-diffusion
is needed in the original Eqs. (8). See the definitions of the coefficients in Table II and the additional explanations in Section IV
of the Supplementary Material where we discuss an example.

Note that all nonreciprocal Cahn-Hilliard models studied in the literature [9–12] correspond to particular choices of relations
between parameters in the derived general nonreciprocal Cahn-Hilliard model (34). These choices are listed in Table III. Other
simplified models may be obtained for systems with specific symmetries in the space of order parameter fields. For instance,
if the inversion symmetry (%, &) ! (�%,�&) holds, all linear contributions to the mobilities and all quadratic contributions to
the nonequilibrium chemical potentials drop out. This is however, only likely to correspond to a generic case if the original
conserved fields ⇢ and � both have the mean value zero. A rotational symmetry in this space would result in a further reduction
of the numbers of parameters and could provide another interesting (nongeneric) limiting case. Finally, note that in contrast to
part of the nonreciprocal Cahn-Hilliard models in the literature the here derived general model is generic as it does not show the
spurious gradient dynamics form analyzed in Ref. [13].
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Quantities in

Eq. (10)

Q0 = Q(u0)

Q1 =
X

i

@Q
@ui

����
u0

(u1)i

Q2 =
1
2

X

i,j

@2Q
@ui@uj

����
u0

(u1)i (u1)j +
X

i

@Q
@ui

����
u0

(u2)i

Rm, ⌘m, µm, Fm for m = 0, 1, 2 analogously

⌘3 =
1
6

X

i,j,k

@3⌘
@ui@uj@uk

����
u0

(u1)i (u1)j (u1)k +
X

i

@⌘

@
⇣
~r2ui

⌘
����
u0

⇣
~r2u1

⌘

i

+
X

i,j

@2⌘
@ui@uj

����
u0

(u1)i (u2)j +
X

i

@⌘
@ui

����
u0

(u3)i

µ3, F 3 analogously

Eq. (16)

⌘⇢ =
@⌘
@⇢

����
u0

+
X

i

@⌘
@ni

����
u0

(n⇢)i

⌘� =
@⌘
@�

����
u0

+
X

i

@⌘
@ni

����
u0

(n�)i

µ⇢, µ� analogously

Eq. (29)

q⇢ =
@Q
@⇢

����
u0

+
X

i

@Q
@ni

����
u0

(n⇢)i

q� =
@Q
@�

����
u0

+
X

i

@Q
@ni

����
u0

(n�)i

r⇢, r� analogously

⌘⇢⇢ =
1
2
@2⌘
@⇢2

����
u0

+
X

i

@2⌘
@⇢@ni

����
u0

(n⇢)i +
1
2

X

i,j

@2⌘
@ni@nj

����
u0

(n⇢)i (n⇢)j +
X

i

@⌘
@ni

����
u0

(n⇢⇢)i

⌘⇢� =
@2⌘
@⇢@�

����
u0

+
X

i

@2⌘
@⇢@ni

����
u0

(n�)i +
X

i

@2⌘
@�@ni

����
u0

(n⇢)i +
X

i,j

@2⌘
@ni@nj

����
u0

(n⇢)i (n�)j +
X

i

@⌘
@ni

����
u0

(n⇢�)i

⌘�� =
1
2
@2⌘
@�2

����
u0

+
X

i

@2⌘
@�@ni

����
u0

(n�)i +
1
2

X

i,j

@2⌘
@ni@nj

����
u0

(n�)i (n�)j +
X

i

@⌘
@ni

����
u0

(n��)i

µ⇢⇢, µ⇢�, µ�� analogously

Eq. (31)

q⇢⇢ =
1
2
@2Q
@⇢2

����
u0

+
X

i

@2Q
@⇢@ni

����
u0

(n⇢)i +
1
2

X

i,j

@2Q
@ni@nj

����
u0

(n⇢)i (n⇢)j +
X

i

@Q
@ni

����
u0

(n⇢⇢)i

q⇢�, q��, r⇢⇢, r⇢�, r�� analogously

⌘⇢⇢⇢ =
1
6
@3⌘
@⇢3

����
u0

+
1
2

X

i

@3⌘
@⇢2@ni

����
u0

(n⇢)i +
1
2

X

i,j

@3⌘
@⇢@ni@nj

����
u0

(n⇢)i (n⇢)j +
1
6

X

i,j,k

@3⌘
@ni@nj@nk

����
u0

(n⇢)i (n⇢)j (n⇢)k

+
X

i

@2⌘
@⇢@ni

����
u0

(n⇢⇢)i +
X

i,j

@2⌘
@ni@nj

����
u0

(n⇢⇢)i (n⇢)j +
X

i

@⌘
@ni

����
u0

(n⇢⇢⇢)i

⌘⇢⇢� =
1
2

@3⌘
@⇢2@�

����
u0

+
1
2

X

i

@3⌘
@⇢2@ni

����
u0

(n�)i +
X

i

@3⌘
@⇢@�@ni

����
u0

(n⇢)i +
X

i,j

@3⌘
@⇢@ni@nj

����
u0

(n⇢)i (n�)j

+
1
2

X

i,j

@3⌘
@�@ni@nj

����
u0

(n⇢)i (n⇢)j +
1
2

X

i,j,k

@3⌘
@ni@nj@nk

����
u0

(n⇢)i (n⇢)j (n�)k +
X

i

@2⌘
@⇢@ni

����
u0

(n⇢�)i

+
X

i

@2⌘
@�@ni

����
u0

(n⇢⇢)i +
X

i,j

@2⌘
@ni@nj

����
u0

(n⇢�)i (n�)j +
X

i

@⌘
@ni

����
u0

(n⇢⇢�)i

⌘⇢��, ⌘���, µ⇢⇢⇢, µ⇢⇢�, µ⇢��, µ��� analogously

⌘⇢xx =
@⌘

@
⇣
~r2⇢

⌘
����
u0

+
X

i

@⌘

@
⇣
~r2ni

⌘
����
u0

(n⇢)i +
X

i

@⌘
@ni

����
u0

(n⇢xx)i

µ�xx =
@µ

@
⇣
~r2�

⌘
����
u0

+
X

i

@µ

@
⇣
~r2ni

⌘
����
u0

(n�)i +
X

i

@µ
@ni

����
u0

(n�xx)i

⌘�xx, µ⇢xx analogously

TABLE II. Relations between the quantities in the original equation (8) and the various coefficients appearing in equations (10), (16), (29), and
(31) at the different orders in ".
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Model field variables zero coefficients nonzero coefficients

Nonreciprocal Cahn-Hilliard, linear coupling
You et al. [11] and Frohoff-Hülsmann et al. [12]

@t�µ = ~r2
h
��µ~r2�µ + �µ�µ + 1

3�
3
µ + µ⌫�⌫

i

with 1
|V |

R
V
dV �µ = �0

µ µ = A,B , ⌫ 6= µ

% = �A � �0
A

& = �B � �0
B

⌘⇢�, ⌘��

µ⇢⇢, µ⇢�

⌘⇢⇢�, ⌘⇢��, ⌘���

µ⇢⇢⇢, µ⇢⇢� , µ⇢��

⌘�xx

µ⇢xx

⌘⇢ = ��A �
�
�0
A

�2

µ� = ��B �
�
�0
B

�2

⌘� = �AB

µ⇢ = �BA

⌘⇢⇢ = ��0
A

µ�� = ��0
B

⌘⇢⇢⇢ = µ��� = � 1
3

⌘⇢xx = �A
µ�xx = �B

Nonreciprocal Cahn-Hilliard, nonlinear reciprocal,
and linear nonreciprocal coupling: Saha et al. [10]

@t�1 = ~r2


� ~r2�1 + 2(c1,1 + c1,2)

2�1 � 6(c1,1 + c1,2)�
2
1

+4�3
1 + (�+ ↵)�2 + 2�0�1�

2
2

�

@t�2 = ~r2


� ~r2�2 + 2(c2,1 + c2,2)

2�2 � 6(c2,1 + c2,2)�
2
2

+4�3
2 + (�� ↵)�1 + 2�0�2�

2
1

�

with 1
|V |

R
V
dV �i = �̄i i = 1, 2

% = �1 � �̄1

& = �2 � �̄2

⌘⇢⇢�, ⌘���

µ⇢⇢⇢, µ⇢��

⌘�xx

µ⇢xx

⌘⇢ = �2(c1,1 + c1,2)
2 � 12�̄2

1 � 2�0�̄2
2

µ� = �2(c2,1 + c2,2)
2 � 12�̄2

2 � 2�0�̄2
1

⌘� = ��� ↵� 4�0�̄1�̄2

µ⇢ = ��+ ↵� 4�0�̄1�̄2

⌘⇢⇢ = 6(c1,1 + c1,2)� 12�̄1

µ�� = 6(c2,1 + c2,2)� 12�̄2

⌘�� = �2�0�̄1

⌘⇢� = �4�0�̄2

µ⇢⇢ = �2�0�̄2

µ⇢� = �4�0�̄1

⌘⇢�� = µ⇢⇢� = �2�0

⌘⇢⇢⇢ = µ��� = �4
⌘⇢xx = µ�xx = 

Complex Cahn-Hilliard
Zimmermann [9]

@tA = �G~r2
h
"+ (1 + ib)~r2 � (1 + ic)|A|2

i
A

with A = Ar + iAi

% = Ar

& = Ai

⌘�, µ⇢

⌘⇢⇢, ⌘⇢�, ⌘��

µ⇢⇢, µ⇢�, µ��

⌘⇢ = µ� = G"
⌘⇢�� = ⌘⇢⇢⇢ = µ⇢⇢� = µ��� = �G

µ⇢�� = µ⇢⇢⇢ = �⌘⇢⇢� = �⌘��� = Gc
⌘�xx = �µ⇢xx = �Gb

⌘⇢xx = µ�xx = G

Reciprocal Cahn-Hilliard [variational structure]
@�i = ~r2 �F

��i

with F =
P

i Fi + Fcoup

Fi =
P

i

R
dV

⇣
i
2 (~r�i)

2 + ↵i
2 �2

i +
�i
3 �3

i +
�i
4 �4

i

⌘

Fcoup =
R
dV


K ~r�1

~r�2 + a�1�2 + b1�
2
1�2 + b2�1�

2
2

+c1�
3
1�2 + c2�

2
1�

2
2 + c3�1�

3
2

�

1
|V |

R
V
dV �i = 0

% = �1

& = �2
–

⌘⇢ = �↵1

µ� = �↵2

⌘⇢⇢ = ��1

µ�� = ��2

⌘⇢⇢⇢ = ��1
µ��� = ��2
⌘⇢xx = 1

µ�xx = 2

⌘� = µ⇢ = �a
⌘�xx = µ⇢xx = K
⌘⇢� = 2µ⇢⇢ = �2b1
2⌘�� = µ⇢� = �2b2
⌘⇢⇢� = 3µ⇢⇢⇢ = �3c1
⌘⇢�� = µ⇢⇢� = �2c2
3⌘��� = µ⇢�� = �3c3

TABLE III. Identification of models studied in the literature [9–12] as special cases of the here derived general nonreciprocal Cahn-Hilliard
model in the form of Eq. (34). All listed models only consider constant mobilities Q = Q0 = 1 and R = R0 = 1, i.e., q⇢ = q� = q⇢⇢ =
q⇢� = q�� = 0 and r⇢ = r� = r⇢⇢ = r⇢� = r�� = 0. Furthermore the relation to the reciprocal limiting case is given.
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In matrix form Eq. (34) reads

@t

 
%

&

!
= �~r ·

"
M(%, &)~r

 
L

 
%

&

!
+

 
N⇢(%, &)

N�(%, &)

!
+D~r2

 
%

&

!!#
(35)

where M(%, &) is a non-constant diagonal mobility matrix, and L and D are fully occupied constant matrices that describe the
terms within the potentials that are linear in the fields and linear in their second spatial derivatives, respectively. All nonlinearities
within the potentials are contained in the general cubic functions N⇢(%, &) and N�(%, &). The matrix form clearly shows that the
system of coupled nonlinear equations features linear and nonlinear second order and linear fourth order cross-coupling terms
(see discussion at Eqs. (34)). One may distinguish dynamic cross-coupling (via M) and energetic cross-coupling (via L, D and
the nonlinearities).

If we linearize Eqs. (35) we obtain

@t

 
%

&

!
= � ~r ·

"
M(0, 0)~r

 
L

 
%

&

!
+D~r2

 
%

&

!!#
,

i.e., @t

 
%

&

!
= �

 
Q0⌘⇢ Q0⌘�
R0µ⇢ R0µ�

!
~r2

 
%

&

!
�

 
Q0⌘⇢xx Q0⌘�xx
R0µ⇢xx R0µ�xx

!
~r4

 
%

&

!
. (36)

Determining the eigenvalues we recover the original dispersion relation (see Eq. (1) of the main text) as it should be. In particular,
the coefficients in Eq. (36) are related to the ones of Eq. (1) of the main text as

�̃ = �
Q0⌘⇢xx +R0µ�xx

2
(37)

i!̃ =
⌘⇢⌘⇢xxQ2

0 + (2⌘�xxµ⇢ + 2⌘�µ⇢xx � ⌘⇢xxµ� � ⌘⇢µ�xx)Q0R0 + µ�µ�xxR2
0

2
q
⌘2⇢Q

2
0 � 2⌘⇢µ�Q0R0 +R0(4⌘�µ⇢Q0 + µ2

�R0)
(38)

together with the already known relations for �2 and ! from Eqs. (19). Note that in contrast to the dynamics on the timescale ⌧ ,
here, we take the deviation from the onset of instability into account, i.e., (Q0⌘⇢ +R0µ�)/2 = �2"2.

Finally, we may remove certain terms by formulating Eqs. (35) in alternative conserved amplitudes

 
A

B

!
⌘ T

 
%

&

!

where T is the corresponding transformation matrix. Multiplying Eqs. (35) with T we rewrite it in the new field variables as

@t

 
A

B

!
= �~r ·

"
TfM(A,B)T�1~r

 
TLT�1

 
A

B

!
+T

 
eN⇢(A,B)
eN�(A,B)

!
+TDT�1~r2

 
A

B

!!#
(39)

where the quantities with tilde are obtained by, e.g., M(%, &) = M(%(A,B), &(A,B)) = fM(A,B).
If we employ a transformation matrix T such that TDT�1 is diagonal we can eliminate the linear (energetic) cross-coupling

in the fourth order derivative terms. However, in general, the resulting mobility matrix TfMT�1 will not be diagonal, i.e., one
replaces the energetic cross-coupling by a dynamic one. This is different if the mobility matrix is constant, i.e., M = M0. Then,
M0 can be moved behind the gradient operator allowing one to employ a transformation matrix T that diagonalizes the product
M0 D. In this case, the cross-coupling in the highest order terms can be eliminated completely. The resulting equation is

@t

 
A

B

!
= ~r2

"
eL
 

A

B

!
+

 
NA(A,B)

NB(A,B)

!
�

 
DA 0

0 DB

!
~r2

 
A

B

!#
(40)

where eL = �TM0 LT�1 and (NA, NB)T = �TM0( eN⇢, eN�)T . These are the coupled equations given in the main text.

III. AMPLITUDE EQUATION FOR CODIMENSION-2 CAHN-HILLIARD INSTABILITY

Up to here we have considered the conserved-Hopf instability as one of eight basic codimension-1 instabilities and have
derived the nonreciprocal Cahn-Hilliard model as a corresponding generic amplitude equation. Next, we furthermore show
that they also correspond to the amplitude equation for a stationary large-scale codimension-2 instability that involves two
conservation laws, i.e., for two simultaneously occurring Cahn-Hilliard instabilities.
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FIG. 2. Dispersion relations (41) below (blue lines), at (purple line) and above (red line) the threshold of a codimension-2 Cahn-Hilliard
instability where two Cahn-Hilliard modes simultaneously become unstable. Labeled dotted lines and solid bars indicate typical quantities and
scalings above onset.

In particular, we consider the dispersion relation for two Cahn-Hilliard modes, i.e., characterized by two real eigenvalues
given by

�±(k) = �±k
2

� �̃±k
4 + O(k6) . (41)

Considering the codimension-2 instability where both real modes become simultaneously unstable at control parameter " = 0,
both leading order growth rates are small, i.e., �± = �±,2"2. Fig. 2 illustrates the dispersion relations below, at and above the
onset. The indicated scalings of the band of unstable wavenumbers and of the maximal growth rate are as in Fig. 1 of the main
text.

Again we consider the general multi-component model (8), use the same ansatz (9) and only discuss the differences for the
current case as compared to the analysis done in Section II of the Supplementary Material. First, all terms at order " and "2

are unchanged. We also find the same linear system (17) at order "3. However, in contrast to the case of the conserved-Hopf
instability, the resulting eigenvalues are real, i.e., the inequality (21) is reversed and we identify

Q0⌘⇢ +R0µ�

2
±

r
(Q0⌘⇢ � R0µ�)2

4
+Q0⌘�R0µ⇢ = �± . (42)

Now we demand that both �+ and �� are O("2) and, thus, we can set them to zero at this order. In consequence, there is no
dynamics on timescale ⌧ which is as expected since there is no oscillation in contrast to the conserved-Hopf case. In other
words, while for the case of a conserved-Hopf instability the leading order frequency is !k2 with ! = O(1), here ! is O("2)
and imaginary, i.e., is simply part of the growth rate.

Proceeding to orders "4 and "5, equations (28)-(31) are recovered and using the same recombination as in Eq. (32), again
we obtain amplitude equations that correspond to the generalized nonreciprocal Cahn-Hilliard model (34). Linearization yields
Eq. (36), and calculating the eigenvalues, again we recover the original dispersion relation, i.e., we identify

Q0⌘⇢xx +R0µ�xx

2
±

⌘⇢⌘⇢xxQ2
0 + (2⌘�xxµ⇢ + 2⌘�µ⇢xx � ⌘⇢xxµ� � ⌘⇢µ�xx)Q0R0 + µ�µ�xxR2

0

2
q
⌘2⇢Q

2
0 � 2⌘⇢µ�Q0R0 +R0(4⌘�µ⇢Q0 + µ2

�R0)
= ��̃± . (43)

We conclude that beside the conserved-Hopf instability the generalized nonreciprocal Cahn-Hilliard model also describes the
generic behavior close to the simultaneous onset of two large-scale stationary instabilities with conservation laws, i.e., two Cahn-
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Hilliard instabilities. It is valid when the inequality (21) is reversed, i.e., when the imaginary part of the eigenvalues vanishes,
and the resulting additional contributions to the growth rates are still small, i.e., O("2).

Note that, in general, there are no further emerging conditions on the coefficients of the nonlinear terms in Eq. (34), i.e.,
despite the stationary character of the considered codimension-2 instability, the resulting amplitude equations are normally
still nonreciprocal, i.e., nonvariational, if the original model is nonvariational. In practice, this implies that nonlinear states
resulting from secondary, tertiary, etc. instabilities may exhibit time-dependent (periodic or irregular) behavior. In contrast, if
the original model is itself variational the resulting amplitude equations will directly inherit the variational structure. i.e., the
parameters of the nonreciprocal Cahn-Hilliard model acquire mutual relations that render it a reciprocal Cahn-Hilliard model.
The corresponding conditions for the various parameters are given in the final row of Table III. This occurs, for instance, in the
case of dewetting isothermal two-layer liquid films on solid substrates [14, 15] and decomposing ternary mixtures [16, 17].

The presented derivation indicates that the generalized nonreciprocal Cahn-Hilliard model is not only an amplitude equation
for the conserved-Hopf instability but represents an amplitude equations for a bifurcation of higher codimension. In other words,
it belongs to a higher level of a hierarchy of amplitude equations obtained in the vicinity of bifurcations of successively higher
codimension. One may say that the eight codimension-1 cases discussed in Section I of the Supplementary Material form the
base layer of the hierarchy. The two derivations of the nonreciprocal Cahn-Hilliard model presented in the Supplementary
Material imply that it is (at least) the amplitude equation for the higher codimension point where conserved-Hopf instability and
the codimension-2 Cahn-Hilliard instability transform into each other. This, in hindsight explains why the nonreciprocal Cahn-
Hilliard models analyzed in Refs. [10–12, 18] show such a rich and varied behavior. Note that a further reduction to an amplitude
equation that only describes the conserved-Hopf instability is a nontrivial technical challenge and remains a task for the future.
Such a reduced equation would feature fewer parameters, solely focus on the behavior that is universal for the conserved-Hopf
instability and not include any other instability. Note that the relations between amplitude equations on different hierarchy level
is not trivial [19].

IV. EXAMPLE: THREE-SPECIES REACTION-DIFFUSION SYSTEM WITH TWO CONSERVATION LAWS

Here, we exemplarily derive the amplitude equation for a specific system and check the agreement of its solutions with the
solutions of the original system. In particular, we use a three-component reaction diffusion system with two local conservation
laws. Its general form is

@tu =Du
~r2u+ ↵f(u, v, w),

@tv =Dv
~r2v + �f(u, v, w),

@tw =Dw
~r2w + �f(u, v, w).

(44)

Here, we use the cubic expression f(u, v, w) = au+ bv+ cw+ d(u� v)2 �w3. The stability of the homogeneous steady state
(u0, v0, w0) = (0, 0, 0) is determined by the Jacobian

J(k2) =

0

B@
�Duk2 + ↵a ↵b ↵c

�a �Dvk2 + �b �c

�a �b �Dwk2 + �c

1

CA (45)

that exhibits two neutral modes (�c, 0, a) and (�b, a, 0) for k = 0. Applying a Taylor expansion we can write the corresponding
two dispersion relations as Eq. (1) of the main text with

�(k) = �
k2

2(a↵+ b� + c�)
(a(Dv +Dw)↵+ b(Du +Dw)� + c(Du +Dv)�) + O(k4),

⌦(k) =
k2
p
4(a↵+ b� + c�)(aDvDw↵+ bDuDw� + cDuDv�) � (a(Dv +Dw)↵+ b(Du +Dw)� + c(Du +Dv)�)2

2(a↵+ b� + c�)
+ O(k4).

(46)

We identify the critical value for a as

ac = �
b(Du +Dw)� + c(Du +Dv)�

(Dv +Dw)↵
, (47)
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and the leading order frequency is given by

⌦(k) =!k2 + O(k4) (48)

with ! =

s
b�D2

w(Du � Dv) + c�D2
v(Du � Dw)

b�(Dv � Du) + c�(Dw � Du)
. (49)

This defines the onset of the conserved-Hopf instability. In the following we set a = ac + "2a2. The conserved quantities are
⇢ = ��u+ ↵w and � = ��u+ ↵v. Note that any linear combination for both, the neutral modes and the conserved quantities,
result in equivalent descriptions. Rewriting Eqs. (44) in the two conserved quantities ⇢, � and simply using n = ↵w as the
remaining nonconserved quantity gives

@t⇢ =~r2 (Du⇢+ (Dw � Du)n)

@t� =~r2

✓
Dv� +

�

�
(Du � Dv)(⇢ � n)

◆

@tn =Dw
~r2n+ (a↵+ b� + c�)n � (↵a+ �b)⇢+ �b� +

((� � ↵)n+ (↵ � �)⇢+ ��)2

↵�
�

�

↵2
n3

(50)

Eqs. (50) is a special case of Eqs. (8) characterized by constant mobilities, i.e., Q = R = 1, and by potentials ⌘, µ that are linear
in the order parameters. Note that Eqs. (50) do not contain any fourth order derivatives.

Now, performing the weakly nonlinear analysis as explained in Section II of the Supplementary Material, we can relate all
coefficients of the original example model (50) with the coefficients that occur in the course of the calculation in Section II and
in the finally obtained amplitude equation (34). First, the coefficients that determine the nonconserved field n as a (nonlinear)
function of the conserved quantities ⇢ and � at the different orders in " are

Eq. (12) : n⇢ =
↵a+ �b

a↵+ b� + c�
, n� = �

�b

a↵+ b� + c�
,

Eq. (14) : n⇢⇢ = �
c2�d(↵ � �)2

↵(a↵+ b� + c�)3
, n⇢� = �

2c�d(↵ � �)(a↵+ ↵b+ c�)

↵(a↵+ b� + c�)3
, n�� = �

�d(a↵+ ↵b+ c�)2

↵(a↵+ b� + c�)3
,

Eq. (27) : n⇢⇢⇢ = �
�
�
2c3d2(↵ � �)4 � (a↵+ b�)3(a↵+ b� + c�)

�

↵2(a↵+ b� + c�)5
,

n⇢⇢� = 6 �
3�
�
2c2d2(↵ � �)3(↵(a+ b) + c�) + b�(a↵+ b�)2(a↵+ b� + c�)

�

↵2(a↵+ b� + c�)5
,

n⇢�� = 6 �
3�
�
2cd2(↵ � �)2(↵(a+ b) + c�)2 � b2�2(a↵+ b�)(a↵+ b� + c�)

�

↵2(a↵+ b� + c�)5
,

n��� = �
�
�
b3�3(a↵+ b� + c�) + 2d2(↵ � �)(↵(a+ b) + c�)3

�

↵2(a↵+ b� + c�)5
,

n⇢xx =
c�(a↵(Du � Dw) + b�(Dv � Dw))

(a↵+ b� + c�)3
, n�xx =

b�(a↵(Du � Dv) + c�(Dw � Dv))

(a↵+ b� + c�)3
.

(51)

For our specific example the continuity equations (the first two equations of (50)) are purely linear. Therefore, all nonlinear
terms in the final amplitude equation (34) are a direct result of the coupling to the nonconserved field. Namely, the coefficients
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in (34) result as

⌘⇢ =(Du � Dw)n⇢ � Du , ⌘� = (Du � Dw)n� ,

⌘⇢⇢ =(Du � Dw)n⇢⇢ , ⌘⇢� = (Du � Dw)n⇢� , ⌘�� = (Du � Dw)n�� ,

⌘⇢⇢⇢ =(Du � Dw)n⇢⇢⇢ , ⌘⇢⇢� = (Du � Dw)n⇢⇢� , ⌘⇢�� = (Du � Dw)n⇢�� , ⌘��� = (Du � Dw)n��� ,

⌘⇢xx =(Du � Dw)n⇢xx , ⌘�xx = (Du � Dw)n�xx ,

µ⇢ =
�

�
(Du � Dv)(n⇢ � 1) , µ� =

�

�
(Du � Dv)n� � Dv ,

µ⇢⇢ =
�

�
(Du � Dv)n⇢⇢ , µ⇢� =

�

�
(Du � Dv)n⇢� , µ�� =

�

�
(Du � Dv)n�� ,

µ⇢⇢⇢ =
�

�
(Du � Dv)n⇢⇢⇢ , µ⇢⇢� =

�

�
(Du � Dv)n⇢⇢� , µ⇢�� =

�

�
(Du � Dv)n⇢�� , µ��� =

�

�
(Du � Dv)n��� ,

µ⇢xx =
�

�
(Du � Dv)n⇢xx , µ�xx =

�

�
(Du � Dv)n�xx .

(52)

Since the mobilities in the original model equations are constant (Q0 = R0 = 1) all coefficients qi and ri in Eq. (34) are identical
zero. Note that in the amplitude equation all fourth order derivatives occur including the two cross-coupling terms represented
by ⌘�xx and µ⇢xx, respectively. This occurs even though fourth order derivatives are absent in the original model (50). Here,
they arise as an effective coupling via the nonconserved field similar to the nonlinear terms. Finally, note that the parameter a
occurs in all coefficients (51), although its critical value would mostly be sufficient to leading order. Only in the coefficients of
the linear terms, i.e., ⌘⇢, ⌘� , µ⇢, and µ� the smallness parameter " has to be considered. However, for simplicity and without the
need of making any further approximations, we can equally use the exact value a. See the main text for a similar discussion.

Finally, we check the validity of the derived amplitude equation. To do so we perform numerical path continuation [20, 21]
on the one hand for the original reaction-diffusion system (50) and on the other hand for the derived amplitude equation (34)
employing the coefficients of Eq. (51). Finally, we compare the results. We use a as control parameter and consider the deviation
from its critical value ac (Eq. (47)) that defines the onset of the conserved-Hopf instability. For the chosen parameters the trivial
state is unstable for a < ac. Numerical continuation is employed on a one-dimensional domain of length L = 100⇡ with
Neumann boundary conditions. As a consequence only modes with wavenumbers kn = n⇡/L = n/100 are selected. Fig. 3 (a)
shows the resulting bifurcation diagram in the vicinity of the first three primary Hopf bifurcations that are indicated by diamond
symbols, i.e., the parameter region where the trivial state (black dot-dashed line) subsequently becomes unstable with respect to
the modes k1, k2 and k3. As a solution measure we employ the time-averaged norm

||�u|| =
1

T

Z T

0
dt

s
1

L

Z L

0
(⇢(x, t)2 + �(x, t)2) dx , (53)

where T is the period of the corresponding time-periodic state. The emerging branches of standing waves are illustrated by
dashed and solid lines for the amplitude and reaction-diffusion equations, respectively. It shows that the amplitude equation
provides quite a good quantitative approximation of the reaction-diffusion system close to the onset of the conserved-Hopf
instability. The approximation becomes exact at a = ac where the band of linear growing modes occur at zero wavenumber.
In consequence, for the employed finite system the primary bifurcations related to the mode of wavenumber k1 in the full and
approximated system are very close to each other (a small deviation in Fig. 3 (a) is not visible to the eye). The deviation is
larger for the second and third primary bifurcations. Similarly, the deviations between the corresponding branches increase
with the distance to a = ac. Panels (e)-(g) respectively illustrate via space-time plots the qualitatively different standing waves
on the three branches at the parameter values indicated by the bold plus symbols in panel (a). Note that we only show the
standing waves exhibited by the amplitude equation, the corresponding states of the reaction-diffusion system are very similar.
The three states in (e)-(g) differ by their spatial periodicity and by their temporal period T . The former is a consequence of the
large-scale property of the instability, hence, the nonlinear states inherit the spatial periodicity of the linear modes k1 to k3 that
gain a positive growth rate at the respective primary bifurcation. The period is directly related to the behavior of the frequency,
⌦(k) ⇠ k2, in the linear stability regime for k ! 0. That is, the time period close to the bifurcation behaves as T ⇠ 1/k2, the
qualitative behavior is inherited by the nonlinear states. This is illustrated in panels (b)-(d) where T is plotted as a function of
ac � a for the full and approximated model - a good agreement is found for ac � a  0.02.

Overall, Fig. 3 shows that the amplitude equation provides a rather good quantitative estimate of the full dynamics. In
other words, the presented example verifies that the general nonreciprocal Cahn-Hilliard model can be employed as a faithful
amplitude equation close to a conserved-Hopf instability. In particular, for the supercritically emerging branches considered
here, the amplitude equation correctly predicts the regular oscillations of low amplitude that would also be observed as the final
oscillatory state in a time simulation of the original model. For subcritical cases one might need to go to higher orders in the
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FIG. 3. Quantitative comparison of the linear and nonlinear behavior exhibited by the three-component reaction-diffusion system (50) (solid
lines in (a)-(d)) and the nonreciprocal Cahn-Hilliard equations (34) with the derived coefficients given by Eq. (51) (dashed lines in (a)-(d)). The
bifurcation diagram in panel (a) shows the time-averaged norm ||�u|| (53) as a function of ac � a. The horizontal dot-dashed line represents
the trivial uniform state that becomes unstable in three primary Hopf bifurcations indicated by diamond symbols. There, branches of nonlinear
standing waves of respective spatial wavenumber k1, k2 and k3 emerge (starting from the left). Respective examples of ⇢(x, t) are shown as
space-time plots in panels (e)-(g) at parameters indicated by plus symbols in (a). Panels (b)-(d) compare the period T of these states in a larger
a-range.

weakly nonlinear expansion to faithfully predict the developing large-amplitude oscillations, although the local quadratic terms
in the potentials in the derived Cahn-Hilliard model can, in principle, account for this. This is similar to other linear instabilities
and the corresponding amplitude equations. However, the power of the description via amplitude equations lies in predicting
qualitative changes in the weakly nonlinear behavior, such as the occurrence of secondary bifurcations, which are paradigmatic
for models with a conserved-Hopf instability. Further note that for our present example the two conservation laws reduce the
local phase space (defined as in Ref. [22]) to solely one dimension. Therefore, the emerging behavior will be less complex than
expected for more complicated cases, e.g., the Min oscillations modeled in Ref. [23] by a reaction-diffusion system with two
conservation laws or the liquid layer covered by active surfactants modeled in Ref. [24] by a coupled thin-film and Smoluchowski
equation also with two conservation laws. More complex systems with conserved and nonconserved order parameter fields may
exhibit both, conserved-Hopf and Hopf instabilities. Their nonlinear interaction may result in intricate chaotic behavior which
may not be captured by the derived amplitude equation. Nevertheless, it is still likely that properties of secondary instabilities
captured by the nonreciprocal Cahn-Hilliard equation will indicate how chaotic behavior can arise. However, here, we have not
considered the stability properties of the emerging standing wave states obtained with the amplitude equation and leave further
studies of the qualitative behavior for the future.
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