
PHYSICAL REVIEW E 103, 042602 (2021)

Suppression of coarsening and emergence of oscillatory behavior in a Cahn-Hilliard
model with nonvariational coupling
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We investigate a generic two-field Cahn-Hilliard model with variational and nonvariational coupling. It
describes, for instance, passive and active ternary mixtures, respectively. Already a linear stability analysis of
the homogeneous mixed state shows that activity not only allows for the usual large-scale stationary (Cahn-
Hilliard) instability of the well-known passive case but also for small-scale stationary (Turing) and large-scale
oscillatory (Hopf) instabilities. In consequence of the Turing instability, activity may completely suppress the
usual coarsening dynamics. In a fully nonlinear analysis, we first briefly discuss the passive case before focusing
on the active case. Bifurcation diagrams and selected direct time simulations are presented that allow us to
establish that nonvariational coupling (i) can partially or completely suppress coarsening and (ii) may lead to the
emergence of drifting and oscillatory states. Throughout, we emphasize the relevance of conservation laws and
related symmetries for the encountered intricate bifurcation behavior.
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I. INTRODUCTION

Phase separation, also called demixing, unmixing, or
decomposition, is a universal process occurring in many ex-
perimental systems where an initially homogeneous mixed
state decomposes into different phases [1–3]. If quenched into
a linearly unstable state, phase heterogeneities develop on a
typical length scale determined by the quench. Over time, the
developing structures continuously coarsen, i.e., their average
size increases and their number decreases [1]. The simplest
dynamical model for such processes is the Cahn-Hilliard (CH)
equation, a nonlinear, dissipative model originally proposed to
describe the dynamics of demixing of isotropic solid or fluid
binary solutions [4,5]. Extensions to decomposing mixtures
of multiple components are also available [6,7]. In the clas-
sification of Hohenberg and Halperin, the class of models is
referred to as model A [8]. Already in the case of a binary mix-
ture, the generic CH model captures many qualitative features
of demixing and thus is widely applied from material science
to soft matter. Variants and extensions are also increasingly
used in biophysical contexts. Examples include descriptions
of protein patterns near membranes of living cells [9,10],
of the motility-induced phase separation of active Brownian
particles [11–14], and of the suppression of Ostwald ripening
in active emulsions relevant for centrosome dynamics in bio-
logical cells [15–17].

A common feature of most variants of CH models outside
the biophysical context is that the described dynamics of a
concentration or density field φ(x, t ) conserves a masslike
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quantity and results in the decrease of an underlying energy
F[φ]. Spatial derivatives only enter through a squared-
gradient term representing the energetic cost of interfaces.
These physical properties directly determine the form of the
equation: a conservation law with a variational form. In other
words, the CH model represents a mass-conserving gradi-
ent dynamics that describes the transition from an (unstable)
initial state to a (stable or metastable) equilibrium state that
minimizes F . The final state is not necessarily the global
energy minimum. If it is the global minimum, it corresponds
to the thermodynamic equilibrium only in the thermodynamic
limit, i.e., for diverging system size. For a discussion of
how this limit is approached with increasing system size, see
Ref. [18].

If the system boundaries do not sustain any throughflow
and no energy is fed into the system in other ways, e.g., by
chemical reactions, we call the system passive. This, together
with the variational form, implies that no sustained drift or
time-periodic behavior can occur and, in particular, all linear
modes are stationary. However, there exist several settings
where the system becomes driven or active. One option is
the addition of a lateral driving force in combination with
a corresponding flux of material across the system bound-
aries. The resulting convective CH equation is studied, e.g.,
in Refs. [19–22]. In this case, the driving term breaks the
parity symmetry of the CH equation, i.e., in a one-dimensional
system the left-right symmetry. This case shall not concern us
here.

Another option is to add activity, normally, corresponding
to additional terms that do not break the parity symme-
try but are nevertheless nonvariational, i.e., they break the
gradient dynamics structure of the equation. Often, such con-
tributions result from a chemomechanical coupling, e.g., for
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self-propelled constituents, and indicate that the system ac-
quires energy from outside that is then dissipated within.
An example is an active CH-type equation that describes
phase separation processes in nonequilibrium systems. It
models aspects of the so-called active phase separation in
suspensions of self-propelled particles [12,23,24] and is also
relevant in the context of cell polarization and chemotac-
tic aggregation [25,26]. Close to the corresponding critical
point, it can be systematically derived as leading (passive
CH equation) and next-to-leading order (active extensions)
dynamics [14,24]. Despite its nonvariational character, gen-
eralized thermodynamic quantities can be defined, such as
nonequilibrium pressure and chemical potential, which result
in nonequilibrium coexistence conditions and an uncommon
tangent (Maxwell) construction [11,27]. Other active CH-type
equations do not allow for the definition of such generalized
thermodynamic quantities. For systems of more than one di-
mension, a term can be added that supports self-sustained
circulating currents [28].

In the context of applications, biophysical and other, of-
ten several degrees of freedom are involved, i.e., dynamic
models describe the coupled evolution of several density- or
concentrationlike order parameter fields that each may fol-
low a conserved or nonconserved dynamics. Again, models
can be variational or nonvariational. In the former case, such
models describe, e.g., phase separation in ternary [6,7] and
multicomponent [29–31] mixtures including membranes (see
model I in Ref. [10]). Also, thin-film models for layers of
solutions and suspensions [32,33] belong to the same class
of equations. In the nonvariational case, typical examples are
models for phase separation in ternary mixtures with chemical
reactions [34,35], membrane models that include chemical
reactions [10,36], and thin-film models for active liquids [37].
Such membrane models consist, e.g., of reaction-diffusion
(RD) equations for three fields with one conservation law
(see model II in Refs. [10,38]), and of four fields with CH
or RD dynamics with two conservation laws [36]. A five-field
model with two conservation laws is considered in Ref. [39]
where a simpler conceptual model is also analyzed, consisting
of a two-field RD system with one conservation law. An
active emulsion model describing, e.g., centrosome dynamics
in biological cells, employs a reactive coupling of two CH
equations, keeping only one overall conservation law [15,17].
A characterizing property of multicomponent systems are the
coupling terms. A so-called nonreciprocal coupling breaks the
action-reaction symmetry (Newton’s third law) and always
renders the dynamics nonvariational. In biophysical applica-
tions, such couplings are often based on effective interactions
between two species that are meditated by a nonequilibrium
environment [40] but can also describe predator-prey inter-
actions [41]. The statistical and thermodynamic properties of
nonreciprocal systems are treated in Refs. [40,42]. A non-
reciprocal CH model consisting of two CH equations with
nonvariational coupling is investigated in Refs. [43,44] as a
description of interacting scalar active particles where both
species are individually conserved. It shows demixing at small
nonreciprocal coupling which transitions to oscillatory behav-
ior at high activity, e.g., resulting in self-propelled globally
ordered bands. In another conceptual model, two CH equa-
tions, i.e., two conservation laws, are coupled in a way that

breaks both conservation laws and the variational structure
[45]. It is found that the coupling can suppress the coarsen-
ing process typical for CH dynamics and may even result in
oscillatory dynamics.

A central feature of phase separation as modeled by the
CH model is the already mentioned coarsening that results in
a continuous increase of typical sizes of the developing phase-
separated regions, i.e., drops (clusters), holes, or labyrinthine
structures [1]. Coarsening proceeds through the two main
modes of volume transfer (known as Ostwald ripening) and
by translation (known as coalescence). The volume transfer
mode moves material between structures without moving their
centers, i.e., their sizes change. In contrast, the translation
mode moves the structures without changing their sizes. More
details on coarsening behavior in the CH equation and related
thin-film equations are, e.g., given in Refs. [3,46–49].

Coarsening may be suppressed by heterogeneities in the
(still variational) system, e.g., for drops on a substrate with
wettability patterns [50] or phase separation in a spatially
modulated temperature profile [51]. In diblock copolymer
melts described by a single CH equation with long-range
interactions (Oono-Shiwa model) the system is stabilized at
a certain length scales, i.e., coarsening is partially suppressed
[52]. Such an arrest of coarsening was recently discussed
for RD systems with weakly broken mass conservation [53].
Coarsening can also be suppressed by driving or activity.
Studies of the convective CH equation [19,54] show that an
increase in the lateral driving force results in a transition
toward chaotic wave patterns. This implies that there exist
parameter regions where driving suppresses coarsening [55].
Aspects of the underlying bifurcation structure are presented
in Ref. [22].

In most active one-field CH models employed to describe
motility-induced phase separation, coarsening is not sup-
pressed but closely resembles its counterpart in the standard
passive model [12]. However, reverse Ostwald ripening for
vapor bubbles and liquid clusters is described for a one-field
active CH model in two dimensions with two types of non-
variational contributions: a nonequilibrium chemical potential
and a nonequilibrium flux, itself related to a nonlocal chemical
potential [28]. The latter’s specific vectorial character allows
for self-sustained circulating currents and is responsible for
the suppression of coarsening that occurs if the system is
at least two-dimensional. Suppression of coarsening is also
observed for active models involving coupled CH equations.
Reference [45] shows that suppression already occurs at weak
nonvariational coupling between the two concentration fields.
It is argued that each structured field acts as heterogeneity
for the other one and the resulting pinning arrests coarsening.
Linear stability analysis and direct time simulations show that
besides the arrest of coarsening, the nonvariational coupling
may also induce the structures to drift or oscillate. In other
words, the chosen coupling dramatically changes central fea-
tures of the phase separation model. Similar phenomena are
also observed in more complex models for reactive decompo-
sition [17,35,36].

Motivated by these rich phenomena in active phase-
separating systems, we study a system of generic kinetic
equations consisting of two coupled CH equations. The
coupling maintains both conservation laws and consists of
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separated variational (reciprocal) and nonvariational (non-
reciprocal) contributions. This allows us to analyze the
qualitative transitions in the dynamics of two conserved
quantities that occur when going from a variational to a non-
variational model. In this way, we can clearly relate occurring
qualitative changes to the imposed changes in the variational
character and avoid a potential interference with effects due to
a changing conservation character.

In a nongeneric limiting case of our model, the nonvari-
ational case is studied in Ref. [43] and with some further
simplification in Ref. [44] with a focus on the emergence
of traveling states. Here, we systematically show that the
nonvariationally coupled CH model exhibits a much richer
selection of phenomena. Especially, our analysis allows for a
deeper understanding of similarities and differences between
Ref. [43] and the study in Ref. [45], where the coupling does
not maintain the conservation properties and is purely nonva-
riational. As a result, it shall be possible to identify features
of related system-specific models in the literature as generic
features resulting from conservation laws. In particular, we
show that for such systems a nonvariational coupling can
(i) partially or completely suppress coarsening and (ii) may
lead to the emergence of drifting and oscillatory states. Fur-
ther, we discuss why in the simplified models studied in
Refs. [43,44], coarsening can not be suppressed.

Our work is structured as follows. In Sec. II, we introduce
the model and discuss our numerical approach. Subsequently,
Sec. III provides a linear stability analysis of the uniform state
in the variational and the nonvariational case. For the latter,
we discuss the transition from a large-scale stationary (CH)
to a small-scale stationary (Turing) instability and the occur-
rence of a large-scale oscillatory (Hopf) instability. Section IV
briefly discusses coarsening dynamics and the corresponding
bifurcation structure in the variational case. This provides a
reference for the subsequent analysis of the nonvariational
case: In Secs. V and VI, we investigate how an increase in
the nonvariational coupling suppresses coarsening and results
in the emergence of persistent drift and oscillatory behavior,
respectively. Section VII concludes with a summary and out-
look. Note that data sets for all figures as well as examples of
MATLAB codes for the employed numerical path continuation
and PYTHON codes for time simulations are provided on the
open source platform ZENODO [56].

II. GOVERNING EQUATIONS

The classic CH model describes the dynamics of diffusive
phase decomposition processes in various (solid-solid, liquid-
liquid, liquid-gas) demixing processes of binary systems. For
a scalar order parameter field φ(x, t ), the corresponding con-
served gradient dynamics reads

∂φ

∂t
= ∇ ·

[
Q(φ) ∇ δF[φ]

δφ

]
, (1)

where Q(φ) is a positive definite mobility function (or con-
stant) and

F[φ(x, t )] =
∫

V

[
κ

2
|∇φ|2 + f (φ)

]
dx (2)

is the underlying free energy: a square-gradient interface con-
tribution with interface stiffness κ > 0 is combined with the
simple bulk contribution:

f (φ) = a

2
φ2 + b

4
φ4. (3)

Here, b > 0 and either a > 0 (case of single minimum) or a <

0 (double-well potential). Note that Eq. (1) is parity and field-
inversion symmetric, i.e., it does not change its form for x →
−x and φ → −φ, respectively.

The variation of the energy δF/δφ corresponds to a
chemical potential μ and Eq. (1) can compactly be writ-
ten as continuity equation ∂tφ + ∇ · j = 0 with the flux j =
−Q∇μ. The energy monotonically decreases in time (see,
e.g., Ref. [57]), i.e., it is a passive system.

For a < 0, there exists a φ range of unstable uniform
states that develop into a fully phase-separated state. In the
thermodynamic limit of an infinite system, the interface con-
tribution in Eq. (2) can be neglected and the two coexisting
phases (obtained by a Maxwell construction) correspond to
the minima of f (φ) as they have identical chemical potential
and pressure. For a detailed discussion of how this relates to
bifurcation diagrams of steady states for finite-size systems,
see Ref. [18].

After revising the classic CH model, we next introduce the
coupled system of two CH equations studied here. Without
coupling, each of the two equations corresponds to Eq. (1),
though with different constants, and the simple coupling is
chosen in such a way that it respects the field inversion
symmetry (φ1, φ2) → (−φ1,−φ2) of the equations. After re-
striction to one spatial dimension and nondimensionalization
(see Appendix A), the kinetic equations are

∂φ1

∂t
= 1

�2

∂2

∂x2

[
− 1

�2

∂2φ1

∂x2
+ f ′

1(φ1) − (ρ + α)φ2

]
,

∂φ2

∂t
= Q

�2

∂2

∂x2

[
− κ

�2

∂2φ2

∂x2
+ f ′

2(φ2) − (ρ − α)φ1

]
,

(4)

with f1 = aφ2
1/2 + φ4

1/4 and f2 = (a + a	)φ2
2/2 + φ4

2/4.
Both fields have a conserved dynamics, i.e., at all times∫ 1/2

−1/2
dxφ1 = φ̄1 and

∫ 1/2

−1/2
dxφ2 = φ̄2, (5)

where the φ̄i are parameters set by the initial conditions. Note
that the field inversion symmetry does not normally hold for
the deviations φi − φ̄i that are often the relevant quantities
to consider. The other parameters are the nondimensional
domain size �, mobility ratio Q, effective temperature a,
temperature shift a	, and ratio of interface rigidities κ . The
respective final terms in Eqs. (4) represent the coupling. It
is linear and contains a variational part of strength ρ and a
nonvariational part of strength α. Increasing or decreasing
α from the passive reference case (α = 0), one can investi-
gate the system behavior with increasing activity. Equations
(4) represent a generic model for passive and active ternary
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mixtures.1 In the passive case (α = 0), the governing Eqs. (4)
are of simple gradient dynamics form ∂tφi = ∂x(Qi∂xδF/δφi )
with i = 1, 2. The energy

F (φ1, φ2) = F1(φ1) + F2(φ2) + Fc(φ1, φ2) (6)

is the sum of the two energies F1 and F2 for the decoupled
fields, that are of the form (2) and the coupling contribu-
tion Fc = − ∫

V ρφ1φ2dx. The coupling in the passive case
is purely energetic. Note that we do not consider dynamic
coupling as encoded in a mobility matrix, e.g., we exclude
cross-diffusion. For a discussion of some such systems see
Ref. [33]. The chosen active coupling represents possibly the
simplest way to break the variational form of the passive case
while keeping both conservation laws intact. Other options
are possible, for a tentative classification of nonvariational
amendments of one-field systems see the introduction of
Ref. [58].

We mainly investigate steady states and time-periodic
states in a spatial domain with periodic boundaries employ-
ing numerical path continuation accompanied by selected
time simulations. Numerical path continuation—we use the
MATLAB package PDE2PATH [58,59]—allows us to track lin-
early stable and unstable steady and time-periodic states while
varying a primary control parameter. Beginning with a known
starting state at some parameter value, PDE2PATH applies tan-
gent predictors and Newton correctors to converge to a state
at neighboring parameter values. Especially, pseudo-arclength
continuation is a parametrization which allows for reversals in
the direction of control parameter steps—a feature essential to
track solution branches through folds.

For steady states without mean flow, we can integrate
Eqs. (4) twice to obtain

0 = − 1

�2

∂2φ1

∂x2
+ f ′

1(φ1) − (ρ + α)φ2 − μ1,

0 = − κ

�2

∂2φ2

∂x2
+ f ′

2(φ2) − (ρ − α)φ1 − μ2, (7)

where the integration constants μi are nonequilibrium chem-
ical potentials. To impose the conservation of both fields,
we expand Eqs. (7) by adding the constraints (5) and using
the μi as secondary control parameters.2 Furthermore, linear
stability of steady states is determined and, hence, all kinds of
local bifurcations are detected. This allows one to switch to
other steady state branches. Branches of time-periodic states
are also continued [60]. To present the resulting bifurcation

1Sometimes two-field models are also referred to as binary systems.
Then the naming focuses on the demixing of two molecular species
and neglects the third option for the occupation of a volume element,
namely, the absence of both molecule types. In our naming conven-
tion, the part-per-volume concentrations of all species have to add up
to unity. Therefore, a ternary system may consist of three molecular
species that together fill the entire volume, or of two molecular
species and vacancies.

2Alternatively, directly using Eqs. (4) with ∂tφi = 0 in the contin-
uation, the role is taken by the strengths of additional virtual source
terms, that are automatically kept at zero.

behavior, the norm

||δφ|| ≡
√√√√∫ 1/2

−1/2

∑
i=1,2

(φi − φ̄i )
2dx (8)

is employed as a solution measure.

III. LINEAR STABILITY OF HOMOGENEOUS STATE

A. Hopf, Turing, and Cahn-Hilliard instability

First, we analyze the linear stability of homogeneous
steady states φ(x) ≡ (φ1(x), φ2(x)) = (φ̄1, φ̄2) = φ̄ that, due
to mass conservation, all solve Eqs. (4). For the perturbation,
we introduce the harmonic ansatz

φ(x, t ) = φ̄ + δ˜φeikx+λt (9)

into Eqs. (4), linearize in δ � 1, and obtain the linear alge-
braic system

λ˜φ = −
(

k

�

)2
( (

k
�

)2 + f ′′
1 −(ρ + α)

−Q(ρ − α) Q
(
κ
(

k
�

)2 + f ′′
2

))˜φ

≡ −
(

k

�

)2

B ˜φ. (10)

Rewriting as

λ̃˜φ = −B˜φ (11)

with λ̃ = λ/q2 and q = k/�, the resulting dispersion relations
are

λ̃± = 1
2

[−trB ±
√

(trB)2 − 4 det B
]

with trB = q2(1 + Qκ ) + f ′′
1 + Q f ′′

2 and (12)

det B = Q[q2 + f ′′
1 ][κq2 + f ′′

2 ] + Q	.

Here we defined the difference in coupling strengths 	 ≡
α2 − ρ2. The rescaled eigenvalues λ̃± are of exactly the same
form as those obtained for two coupled RD equations, i.e.,
the classical Turing system [61]. The original eigenvalues λ

are obtained by multiplying Eq. (12) with k2/�2 reflecting the
conservation of both fields.

In the following, we use f ′′
1 and f ′′

2 as primary and sec-
ondary control parameters, respectively. Analyzing Eq. (12)
gives us conditions for three different primary instabilities:
(i) large-scale oscillatory (Hopf) instability, (ii) small-scale
stationary (Turing) instability, and (iii) large-scale stationary
(CH) instability. In the Cross-Hohenberg classification, they
are termed (i) type-IIo, (ii) type-Is, and (iii) type-IIs insta-
bilities [62]. Large-scale [small-scale] instabilities are also
commonly termed long-wave [short-wave] instabilities. Note
that only instability (iii) occurs in the decoupled CH equa-
tions. We will show that |α| > |ρ| is a necessary condition for
instabilities (i) and (ii).

(i) First, we consider the Hopf instability. The onset of an
oscillatory instability is characterized by λ±,c = ±iωc, i.e.,
with Eq. (12) this requires

trB = 0 ⇒ f ′′
1 = −(1 + Qκ )q2 − Q f ′′

2 . (13)

Since Q, κ > 0, the largest f ′′
1 always occurs at q2 = q2

c = 0,
i.e., here, the oscillatory instability is always large-scale (Hopf
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FIG. 1. Linear stability diagrams in the ( f ′′
2 , f ′′

1 ) plane show thresholds of Hopf [Eq. (14)], Turing [Eq. (19)] and CH instabilities [Eq. (20)]
with blue, orange, and green lines, respectively, for different values of κ and 	 = α2 − ρ2 at fixed Q = 1. The boundary of the linearly stable
region (upper right corner) is marked by heavy solid lines. The thin solid lines indicate where further instabilities set in beyond the dominating
one. The dotted orange line indicates where the minimum of a dispersion relation of Turing type passes zero. The black dashed lines indicate
the stability boundary of a decoupled system (or for identical coupling strengths, i.e., for 	 = 0). Panel (a) is for positive 	 = 0.25 and
κ = 0.14 < 1/Q, panel (b) is for κ = 3.82 > 1/Q and 	 = 0.25 > 0. The square symbol marks the codimension-2 point [Eq. (21)] where
Hopf and Turing instabilities occur simultaneously. Panel (c) represents the case of |ρ| > |α| with 	 = −0.25 and κ = 3.82 where only the
CH instability exists.

instability). Therefore, the Hopf threshold is

f ′′
1

H = −Q f ′′
2 . (14)

However, both eigenvalues of the original linear system
[Eq. (10)] remain real and zero at exactly k = 0 due to the
conservation properties, i.e., the critical frequency is

ωc = q2
c ω̃c = 0,

with ω̃c = √
det B|q=qc =

√
Q

√
−Q f ′′

2
2 + 	. (15)

In summary, the Hopf instability occurs if 	 > Q f ′′
2

2 at f ′′
1 =

f ′′
1

H . In particular, if the two coupled subsystems are identical
( f ′′

1 = f ′′
2 ), the Hopf threshold is at f ′′

1
H = 0. This implies that

for identical subsystems with purely nonvariational coupling
(ρ = 0), oscillatory behavior occurs at arbitrarily small non-
variational coupling α. Appendix E focuses on this special
case. However, a stronger contrast between the two coupled
systems implies that a larger coupling |α| is needed to obtain
oscillatory behavior.

(ii) Next we consider the Turing instability related to pat-
tern formation. It occurs if λ̃+,c = 0 at qc �= 0 and requires

det B = 0 ⇒ f ′′
1 = − 	

f ′′
2 + κq2

− q2. (16)

The maximum of f ′′
1 (q2) is obtained via d f ′′

1 /dq2 = 0 and
yields the critical wavelength

q2
c = 1

κ
[±

√
κ	 − f ′′

2 ]. (17)

For κ > 1/Q [κ < 1/Q] the plus [minus] sign in Eq. (17) cor-
responds to a maximum, the minus [plus] sign to a minimum
in the dispersion relation, the latter not being relevant for the
onset of instability. That is, for a Turing instability we demand

q2
c > 0 ⇒ f ′′

2 < ±
√

κ	 for κ ≷ 1/Q. (18)

In particular, it requires nonvariational coupling stronger than
the variational one, i.e., |α| > |ρ|, otherwise the root becomes
complex. For comparison with other studies (see Conclusion),
it is important to note that for Qκ = 1 and κ = 0 no Turing
instability is possible. Inserting qc in Eq. (16) gives the Turing
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a
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unstable

(b) ρ =1.0
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FIG. 2. Linear stability behavior of homogeneous states for two
passively coupled CH equations, i.e., in the variational case (α =
0). Panel (a) shows the dispersion relations λ±(k) [Eq. (B1)] at
variational coupling strength ρ = 0.5 beyond the onset of the CH
instability, i.e., here for a = −0.55 < aCH [Eq. (B6)]. The respective
critical wave numbers k± [Eq. (B8)] are indicated by vertical gray
lines. Panel (b) shows the stability borders a+(k) [Eq. (B5)] for
three different coupling strengths ρ = 0, 0.5, and 1.0. In our scaling,
the selected wave numbers are kn = 2nπ . They are indicated by
filled black circles in (a) and by vertical dotted lines in (b). The
remaining parameters are a	 = −0.38, κ = 3.82, φ̄1 = 0.0, φ̄2 =
0.0, � = 4π , and Q = 1.

instability threshold

f ′′
1

T = 1

κ
[ f ′′

2 ∓ 2
√

κ	] for κ ≷ 1/Q, (19)

relevant for the related pitchfork bifurcations.
(iii) Finally, we consider the CH instability, i.e., the only

instability occurring for the classical CH equation. It is char-
acterized by λ̃+,c = 0 at qc = 0 and occurs at

f ′′
1

CH = − 	

f ′′
2

. (20)

The related bifurcations are again pitchfork bifurcations.
We see that the three parameters mobility ratio Q, rigidity

ratio κ , and the difference in coupling strengths 	 determine
the three instability thresholds [cf. Eqs. (14), (19), (20)]. Fig-
ure 1 provides a qualitative overview of the linear stability
behavior in the ( f ′′

2 , f ′′
1 ) plane. Hopf (14), Turing (19), and

CH (20) instability thresholds are given by blue, orange, and
green lines, respectively. The linearly stable region is in the
upper right corner. Its boundary is marked by heavy colored
lines that represent the onset of the different instabilities. For
reference, dashed black lines indicate the instability thresh-
olds for the CH instability of a decoupled system (also valid
at 	 = 0).

Figures 1(a) and 1(b) show stability diagrams for positive
	, where Hopf, Turing, and CH instabilities occur while,
in Fig. 1(c), for 	 < 0 only CH instabilities exist. Further
comparison reveals that the stable region widens [shrinks]
for increasing [decreasing] 	. Hence, especially the purely
variational coupling ρ always acts destabilizing. The CH in-
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k+k−

0 n=1 n=2 n=3

k

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

a

stable

unstable

(b)α =1.4
α =1.5
α =1.6

FIG. 3. Linear stability behavior of homogeneous states for two
actively coupled CH equations, i.e., in the nonvariational case (α �=
0). Panel (a) shows the dispersion relations λ±(k) [Eq. (B1)] at
nonvariational coupling strength α = 1.6 beyond the onset of the
Turing instability, i.e., here for a = 1.44 < aT [Eq. (B7)]. The re-
spective critical wave numbers k± [Eq. (B8)] are indicated by vertical
gray lines. Panel (b) shows stability borders a+(k) [Eq. (B5)] for
three different coupling strengths α = 1.4, 1.5, and 1.6. Param-
eters are ρ = 1.35, a	 = −1.9, κ = 0.14, φ̄1 = 0, φ̄2 = 0, � =
4π , and Q = 1. The remaining symbols and lines are as in Fig. 2.

stability thresholds (green lines) are hyperbolas [cf. Eq. (20)]
which flip quadrants when 	 changes sign. There are two
Turing instability thresholds (orange lines) resulting from the
two signs in Eq. (19). For κ < 1/Q [panel (a)] the upper line
corresponding to the plus sign refers to a maximum in the
dispersion relation, thus, is relevant for the stability boundary
(heavy orange line), whereas the lower line is related to a
minimum (dotted orange line). In contrast for κ > 1/Q [panel
(b)], the lower orange line matters. In both cases, the relevant
Turing line crosses the Hopf line. The crossing point (black
filled square) marks a codimension-2 point where both in-
stabilities have their onset at the same value of the primary
control parameter f ′′

1 . This requires adjustment of a second
control parameter, here

f ′′
2

cd2 = 2
±√

κ	

1 + Qκ
= − f ′′

1
cd2

Q
. (21)

The Turing lines terminate where they tangentially approach
the CH lines at f ′′

2
Tend = ±√

κ	 and the critical wavenumber
reaches zero. The Hopf lines also end on the CH lines where

ω̃c becomes zero at f ′′
2

Hend = ±
√

	
Q . The two end points mark

the transition from Turing and Hopf instability to CH instabil-
ity, respectively. They do not correspond to a coexistence of
different linear instabilities as does the codimension-2 point.
Especially, in the nongeneric case κ = 1/Q one has

f ′′
2

cd2 = f ′′
2

Tend = f ′′
2

Hend , (22)

and all three special points coincide. It is remarkable that
in this case the Turing lines completely disappear since the
eigenvalues become complex at the threshold, implying that
no Turing instability occurs (not shown).
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FIG. 4. The occurrence of oscillatory linear instability modes for two actively coupled CH equations (α �= 0). Panels (a) and (c) give
dispersion relations [Eq. (B1)] and panels (b) and (d) the respective associated stability boundaries [Eqs. (B5) and (B3)] for two qualitatively
different cases. In (a) and (b), complex eigenvalues occur in a band starting at k = 0 while in (c) and (d) they occur in a wave-number band
away from zero [cf. Eq. (B10)]. Only the real part of the eigenvalues is shown, indicating complex [real] eigenvalues by dashed [solid] lines.
Panel (b) illustrates the transition from a CH instability (α = 1.3) via a Turing instability (α = 1.439) to a Hopf instability (α = 1.5). The
dispersion relation in panel (a) corresponds to α = 1.5 at a = −0.585 < aT [Eq. (B7)] < aH [Eq. (B4)]. The remaining parameters for panels
(a) and (b) are ρ = 1.35 , a	 = 1 , κ = 3.82 , φ̄1 = 0 , φ̄2 = 0 , � = 8π , and Q = 1. In panel (d), a band of complex eigenvalues appears for
α = ρ = 1.35 (red line) at k ≈ kn=1 = 2π and widens with increasing α until its left limit reaches k = 0 at α = 1.44 (blue line). The dispersion
relation in panel (c) corresponds to α = 1.4 at a = −1.6 < aCH [Eq. (B6)]. The remaining parameters for panels (c) and (d) are ρ = 1.35 ,
a	 = −1 , κ = 3.82 , φ̄1 = 0 , φ̄2 = 0 , � = 4π , and Q = 1. For both dispersion relations, the respective critical wave numbers k± [Eq. (B8)]
of real and ko [Eq. (B9)] of complex roots are indicated by vertical gray lines. The remaining symbols and lines are as in Fig. 2.

Up to here, we have discussed the linear stability behavior
of the model Eqs. (4) for arbitrary f ′′

1 and f ′′
2 . In the follow-

ing, we focus on our specific case with f ′′
1 = a + 3φ̄2

1 , f ′′
2 =

a + a	 + 3φ̄2
2 , and Q = 1. We discuss the resulting dispersion

relations and stability boundaries for the passive (Sec. III B)
and active (Sec. III C) cases. The effective temperature a
is employed as the main control parameter, corresponding
to diagonal cuts through the stability diagrams in Fig. 1.
Some further details of our specific case are presented in
Appendix B.

B. Passive system

In the variational case [α = 0 in Eqs. (4)], the free energy
is a Lyapunov functional, the discriminant in Eqs. (12) is
always positive, all eigenvalues are real, and instabilities are
always stationary as for all gradient dynamics systems. A
typical dispersion relation where both eigenvalues show bands
of unstable wave numbers is given in Fig. 2(a).

Stability borders a+(k) [see Eq. (B5)] for various varia-
tional coupling strengths ρ are given in Fig. 2(b). They always
show a single maximum at zero wave number, i.e., the critical
wave number is kc = 0. This shows that the variationally
coupled system only exhibits CH instabilities as already con-
cluded in the previous section. An increase in the coupling
strength acts destabilizing as it moves the instability onset aCH

[Eq. (B6)] to higher temperatures and broadens the band of
unstable wave numbers.

The sign of ρ does not influence the range and strength of
instability, however, it influences the character of the result-
ing structures as it determines whether in-phase (ρ > 0) or
antiphase (ρ < 0) modulations of the two fields are favored.
Overall, in the case of passive coupling, the CH instability

of the one-field CH equation also characterizes the two-field
case.

C. Active system

In the nonvariational case, i.e., at α �= 0 no Lyapunov
functional exists, i.e., no energy minimization guides the
dynamics. As a result, oscillatory behavior can occur, as
indicated by complex eigenvalues. We will also see that, fur-
thermore, one encounters a linear complete suppression of
coarsening, i.e., already the linear results can indicate that no
coarsening at all may occur.

As discussed in Sec. III, the linear behavior for weak non-
variational coupling |α| < |ρ| is qualitatively equal to the CH
instability of the variational case (Fig. 2). The emergence of
the maximum at finite k = kc �= 0 in the stability border a+(k)
[cf. Eq. (17)] marks the transition from CH to a Turing insta-
bility, see Fig. 3(b). For α = 1.4 (red line), the linear behavior
is a CH instability. Increasing the nonvariational coupling to
α = 1.5 (green line), one observes a wide k-range where the
stability border is nearly horizontal marking the transition to
the Turing instability. A maximum at kc �= 0 is fully formed
for α = 1.6 (blue line). Figure 3(a) presents a corresponding
dispersion relation for a = 1.44. There, only a band of wave
numbers bound away from k = 0 shows positive growth rates.
This linear transition can result in a suppression of coarsening.
We will investigate it in Sec. V in its relation to the fully
nonlinear dynamic behavior and the resulting steady states.

Besides the described transition from CH to Turing insta-
bility, the nonvariational coupling can also cause oscillatory
behavior if |α| > |ρ|. Figure 4 shows two qualitatively
different cases: Figures 4(a) and 4(b) give a dispersion re-
lation and stability boundaries, respectively, when complex
eigenvalues appear in a band starting at zero wave number.
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In particular, Fig. 4(b) shows how with increasing nonvaria-
tional coupling, first, a transition occurs from a CH instability
(α = 1.3) as in Fig. 2 to a Turing instability (α = 1.439) as
in Fig. 3. Then, a further increase in α results in the appear-
ance of a band of oscillatory modes at k = 0 that extends
toward larger k and always represents a large-scale instability
(α = 1.5). Depending on the specific value of a, the Hopf or
the Turing instability can be dominant, i.e., have the larger
maximal growth rate. The dispersion relation for α = 1.5
and a = −0.585 in Fig. 4(a) illustrates the latter case with
dominant Turing instability. Note that the Turing instability at
intermediate α in Fig. 4(b) is not always part of the transition
scenario from CH to Hopf instability.

Figures 4(c) and 4(d) illustrate the second way how oscilla-
tory modes can appear, namely, in a wave-number band bound
away from k = 0. In Fig. 4(d), the red line for α = ρ = 1.35
shows the stability border when all modes are still real and
the CH instability occurs. As soon as α > ρ, e.g., at α = 1.4
(green line), a band of oscillatory modes occurs. Since the
maximum of the stability boundary remains at k = 0 and the
eigenvalues at small wave numbers remain real, at onset (at
a ≈ 0.8) one still has a CH instability. If we consider the
dispersion relation in Fig. 4(c) for α = 1.4 and a = −1.6 (far
above onset), we see that although the global maximum of
the growth rate corresponds to a stationary mode, the band of
oscillatory modes begins nearby and contains another (though
lower) maximum. This can indicate that oscillatory behavior
influences the long-time nonlinear behavior. Furthermore, the
band of complex eigenvalues with positive real parts causes
both real eigenvalues λ±(k) to be positive at small k.

Further increasing α, the band of complex eigenvalues
widens. Its lower border reaches k = 0 when 3(φ̄2

1 − φ̄2
2 ) −

a	 < 2
√

	 and the CH instability becomes a Hopf instability
[cf. Eqs. (B11), (B12)]. The impact of complex eigenvalues
and the onset of time-periodic behavior in the fully nonlinear
regime is discussed in Sec. VI.

IV. VARIATIONAL CASE: COARSENING

We begin the nonlinear study with a brief overview of
typical coarsening dynamics and steady states behavior in the
variational case (α = 0). Along the lines of Ref. [18], the
behavior in finite domains presented here can be linked to the
phase behavior in the thermodynamic limit, i.e., in an infinite
domain, as considered in Appendix C. In particular, Fig. 14
presents phase diagrams in the (φ1, φ2) and (μ1, μ2) planes
and relates them to bifurcation diagrams. Here, we focus on
a as main control parameter due to its importance in the
nonvariational case studied below. The bifurcation diagrams
in Figs. 5(a) and 5(b) show the norm [Eq. (8)] as a function of
a at fixed domain size � = 10π and φ̄i. Figure 5(a) considers
the case φ̄1 = φ̄2 = 0 where all primary branches emerge su-
percritically. It represents the simplest conceivable bifurcation
behavior for the system. As for the one-field model [18], with
decreasing a the uniform state becomes unstable at about
a = 1.3 where the completely phase-separated, i.e., fully
coarsened, state emerges. Decreasing a further, the uniform
state becomes successively unstable with respect to higher
order modes and corresponding branches emerge in pitchfork
bifurcations. We label the different branches by the spatial

periodicity n of the corresponding states. All states with n >

1 are unstable and in time will coarsen into n = 1 states.
Figure 5(b) illustrates that φ̄i �= 0 can result in subcritical be-
havior: In the shown case, the n = 1 to n = 3 branches emerge
toward larger a before turning back at respective saddle-node
bifurcations. In particular, the n = 1 branch emerges with un-
stable profiles (nucleation thresholds, analog to Refs. [63,64])
and stabilizes at the saddle-node bifurcation at a ≈ 0.2. The
resulting stable n = 1 states first show a coexistence of two
phases related to the binodals discussed in Appendix C. The
time simulation at a = −0.5 in Fig. 5(d) illustrates how such
a phase-separated state is reached dynamically when starting
with a homogeneous state with added white noise of small
amplitude 5 × 10−3. The two-phase n = 1 state develops after
coarsening via volume modes from an n = 3 state. Comparing
with the phase diagram in Fig. 14(c), the fully phase-separated
state is identified as a coexistence of high-φ1, high-φ2 phase I,
and the high-φ1, low-φ2 phase IV.

Further following the n = 1 branch with decreasing a,
it eventually undergoes another pair of saddle-node bifurca-
tions, thereby passing through a short sub-branch of unstable
states (−1.1 < a < −0.6) before stabilizing again. The cor-
responding hysteresis loop is related to the nucleation of a
third phase (here, phase III: low φ1, low φ2) that emerges at
the center of the phase IV plateau. The remaining part of the
n = 1 branch shows well-developed three-phase coexistence
of phases I, III, and IV, illustrated by the solution profiles in
Fig. 5(c) for a = −1.5. Here, after coarsening, an n = 1 three-
phase state emerges as the system is in the parameter region
corresponding to the triple point [Fig. 14(c)]. We note that the
plateau concentrations are already relatively close to the cor-
responding values in the thermodynamic limit. An increase in
domain size will result in full convergence. The unstable state
existing in the hysteresis range corresponds to a threshold
state that has to be overcome to switch between the two- and
three-phase coexistence. The existence of such a hysteresis
loop depends on the other parameters, e.g., decreasing the
domain size, it eventually vanishes in a hysteresis bifurcation.

V. NONVARIATIONAL CASE: SUPPRESSION
OF COARSENING

Next, we increase the strength of nonvariational coupling α

from zero and investigate how breaking the gradient dynamics
structure changes the coarsening behavior. For clarity, we first
define the three different types of suppression of coarsening
that are discussed in this section:

Linear complete suppression of coarsening: The linear sta-
bility analysis (Sec. III) already indicates that stable patterns
of finite wavelengths emerge and no coarsening takes place.
This occurs if only certain modes with n > 1 are present in
the band of unstable wave numbers of a Turing instability.

Nonlinear complete suppression of coarsening: The lin-
early fastest growing mode is of finite wavelength and dynam-
ically develops into a stable pattern of the same spatial peri-
odicity without any coarsening (n �= 1). This occurs in regions
of multistability where several steady states are linearly stable
including the fully phase-separated (n = 1) state. It can be
observed for both Turing and CH instabilities. Ultimately, the
behavior can only be predicted in a fully nonlinear analysis.
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FIG. 5. Panels (a) and (b) show bifurcation diagrams of steady states for the ternary system in the variational case employing the effective
temperature a as control parameter at fixed � = 10π , κ = 1 , a	 = −0.5 , ρ = 1, and Q = 1. Panel (a) represents the supercritical case for
mean concentrations φ̄1 = φ̄2 = 0, panel (b) the subcritical one for φ̄1 = 1 , φ̄2 = −0.5. Solid (dashed) lines indicate linearly stable (unstable)
states. The black horizontal line represents the homogeneous state. The various blue lines represent phase-separated states with different
numbers of phase-separated structures, i.e., periods. Panel (c) gives the profiles of the linearly stable state indicated by a cross symbol in (b) at
a = −1.5. Panel (d) is a space-time plot illustrating the coarsening dynamics which finally results in a fully phase-separated state indicated by
a cross symbol in (b) at a = −0.5.

Nonlinear partial suppression of coarsening: Here, the
linearly fastest growing mode develops but is unstable with
respect to (w.r.t.) coarsening. However, coarsening is arrested
before reaching the n = 1 state. The conditions of multistabil-
ity and stable n = 1 state are as in the second case. Again, the
behavior can only be predicted in a fully nonlinear analysis.

These three types stand for three different mechanisms that
can transform perpetual coarsening into pattern formation.

Our analyses reveal that most qualitative changes as com-
pared to the variational case occur for a nonvariational
coupling stronger than the variational one.3 Therefore, we
now focus on |α| > |ρ|, i.e., 	 > 0. In Appendix E, we
consider the instructive limiting case without variational cou-
pling, i.e., ρ = 0 and α �= 0.

3For |α| < |ρ| one is actually able to reformulate Eqs. (4) as a gra-
dient dynamics with a redefined energy that monotonically decreases
in time [77].

The linear analysis in Sec. III C shows that the nonvaria-
tional coupling in a two-field CH model can induce a Turing
instability that does neither occur for variational CH mod-
els nor for the studied nonvariational one-field CH models.
Next, we employ time simulations and a bifurcation analysis
to explore the resulting consequences for the fully nonlinear
regime. As super- and subcritical behaviors at primary bifur-
cations differ in their influence on the coarsening behavior,
we consider these cases separately in Secs. V A and V B,
respectively. In passing, we show that subcritical primary
bifurcations may occur even without quadratic nonlinearity,
i.e., here at mean concentrations φ̄1 = φ̄2 = 0. Such behavior
is unknown for the classical one-field CH equation. Interest-
ingly, we find that subcritical behavior acts as a stepping stone
to time-periodic behavior discussed below in Sec. VI B.

A. The supercritical case

It is instructive to first consider the bifurcation behavior
of steady states in the purely CH and Turing cases in Figs. 2
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FIG. 6. Bifurcation diagrams related to the suppression of coarsening for the nonvariationally coupled CH model [Eq. (4) with α �= 0].
Shown is the norm [Eq. (8)] as a function of the parameter a in the supercritical case. The nonvariational coupling strengths (a) α = 1.5 and
(b) α = 1.6 are larger than the variational one ρ = 1.35. In (b), only the fully phase-separated state (n = 1, blue line) and the two-period state
(n = 2, green line) are shown while in (a) states up to n = 5 are included. Selected side branches are also given. Circle symbols mark primary
and secondary pitchfork bifurcations. The remaining line styles and parameters are as in Fig. 3. The lower panels show profiles of (c) stable
and (d), (e) unstable steady states at loci marked by crosses in panel (a).

and 3, respectively. In both cases, we use α > 0 and consider
parameter values where both eigenvalues are still real.

The resulting bifurcation behavior for two values of α

is presented in Fig. 6 again using a as control parameter.
Figure 6(a) with α = 1.5 is for parameters correspond-
ing to the green line in Fig. 3(b), and Fig. 6(b) with
α = 1.6 belongs to the dispersion curve in Fig. 3(a) and
the blue line in Fig. 3(b). Branches emerging at primary
bifurcations from the uniform state are named by the period-
icity n of the corresponding decomposition pattern as before.

As expected based on the linear result, when decreasing a
in Fig. 6(a) the n = 1 state bifurcates first, corresponding to
a CH instability. The bifurcation is a supercritical pitchfork
as all other considered primary bifurcations. In consequence,
the shown n = 2 (green line) to n = 5 (purple line) states
inherit two to eight unstable eigenvalues from the uniform
state since the eigenvalues of the uniform state are all dou-
ble (note that there is no translation mode as the uniform
state itself is translational invariant). Then, when an inho-
mogeneous state emerges, a double eigenvalue crosses zero
and the emerging branch acquires a zero eigenvalue (due
to translation symmetry) beside the inherited negative (su-
percritical) or positive (subcritical) one. In contrast to the
variational case, where no secondary bifurcations exist and
all n > 1 states are always unstable, here, they eventually
stabilize at secondary pitchfork bifurcations. In the weakly

nonvariational case, which we define as |α| < |ρ|, we do
observe secondary bifurcations (not shown). They always
occur in pairs of one destabilizing and one stabilizing bi-
furcation related to higher order modes and do not result
in the appearance of further stable states as observed for
|α| > |ρ|.

In particular, the n = 2 state [cf. Fig. 6(c)] stabilizes
through a degenerate pitchfork bifurcation where two real
eigenvalues cross zero and two distinct subcritical branches
(brown and gray lines) simultaneously emerge towards
smaller values of a. Note that on the scale of Fig. 6(a), the
two curves can not be distinguished by eye. Also, each branch
corresponds to four states related by symmetry (see below).
Example profiles on the two secondary branches are given in
Figs. 6(d) and 6(e), respectively. Both states break the discrete
translational symmetry of the primary n = 2 branch, i.e., they
correspond to a spatial period doubling. The bifurcation struc-
ture can be understood considering reflection symmetries:
States on the n = 2 primary branch have two independent
reflection symmetries, one with respect to their minima and
another one with respect to their maxima. For nonzero mean
concentrations, two distinct pitchfork bifurcations correspond
to the respective breaking of these symmetries (not shown).
In Fig. 6(a), φ̄1 = φ̄2 = 0 ensures inversion symmetry and the
two reflection symmetries can be identified via an inversion.
That is, they are always broken together in a degenerate pitch-
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fork (also termed Z2 × Z2 bifurcation [65]) with normal form

ẋ1 = μx1 − b1x3
1 − b2x2

2x1,

ẋ2 = μx2 − b1x3
2 − b2x2

1x2.

Here x1 and x2 refer to the two modes of symmetry breaking,
e.g., x1 [x2] breaks the reflection symmetry w.r.t. the minima
[maxima]. The primary n = 2 branch (green line) is repre-
sented by (x1, x2) = (0, 0), see example profile in Fig. 6(c).
Then, there are two pairs of branches which keep either the
reflection symmetry w.r.t. the minima or w.r.t. to the maxima

with representations (0,±
√

μ

b1
) and (±

√
μ

b1
, 0). One of these

pairs corresponds to the profile in Fig. 6(d) and the other
one to its inversion. In Fig. 6(a), these states correspond to
the brown line. Furthermore, there are four branches which
break both reflection symmetries, however keep full inversion
symmetry, i.e., (x, φi ) → (−x,−φi ), see example profile in

Fig. 6(e). Their representations are (±
√

μ

b1+b2
,±

√
μ

b1+b2
) and

they correspond to the gray line in Fig. 6(a). In total, there are
eight simultaneously emerging secondary branches, i.e., each
of the two distinct secondary branches in Fig. 6(a) is fourfold
and can be unfolded choosing adequate parameters and model
amendments.

We note that a consequence of the degenerate pitchfork bi-
furcation is the simultaneous stabilization of both coarsening
modes (volume transfer and translation). Similar stabilizations
are observed for the branches of larger n where, however,
a sequence of several bifurcations is needed. Namely, two,
three, and four degenerate pitchfork bifurcations on the n = 3,
4, and 5 branches, respectively, ensure that for a � −0.6 all
n � 5 branches are linearly stable. It is intriguing that the si-
multaneous stabilization of translation and volume coarsening
modes is generic in a wide range of parameters. Again, this
is a consequence of the choice φ̄1 = φ̄2 = 0. Note that none
of the studied emerging secondary branches reconnects to the
primary branch.

Comparing Fig. 6(a) at α = 1.5 and (b) at α = 1.6 we
see that with the increase of α the first two primary bifur-
cations have swapped position reflecting the transition from
CH to Turing instability [cf. Sec. III]. As a consequence, at
the first primary bifurcation the (now linearly stable) n = 2
state emerges supercritically. Thus, in accordance with the
linear result only the patterned n = 2 state exists. This cor-
responds to the linear complete suppression of coarsening.
The fully phase-separated (n = 1) state only emerges at the
second primary bifurcation, supercritical but twice unstable.
There, coarsening is still suppressed, expanding the concept
of linear complete suppression to the case where the fully
phase-separated (n = 1) state exists but is linearly unstable.
This enables reverse coarsening of the n = 1 state into the
n = 2 state. This extended a range of linear complete suppres-
sion ends where the n = 1 state gains stability at secondary
bifurcations.

It is noteworthy that when the primary bifurcations switch
places, the above-discussed secondary bifurcations move
from the n = 2 branch onto the n = 1 branch [Fig. 6(b)]. As a
consequence, the two primary and two secondary bifurcations
all coincide at the crossover. Four parameters, α, a and both
mean concentrations φ̄1, φ̄2 need to be adjusted to pinpoint

the corresponding codimension-4 bifurcation point. However,
when the two secondary pitchfork bifurcations have switched
onto the n = 1 branch, they do not coincide anymore. The
reason is that one cannot anymore independently break
the reflection symmetries with respect to the minimum and
the maximum. As a result, the breakings of the reflection and
the full inversion symmetry occur independently. Hence, the
degeneration of the secondary bifurcations is lifted. The first
[second] pitchfork bifurcation breaks reflection [full inver-
sion] symmetry and pairs of branches with solutions similar
to Fig. 6(e) [Fig. 6(d)] emerge. For any nonzero mean con-
centration, the inversion symmetry is broken for all patterned
states, and the second pitchfork bifurcation unfolds into a
saddle-node bifurcation and a continuous branch (not shown).

As explained above, the linear suppression of coarsening
in Fig. 6(b) is only valid until the n = 1 branch stabilizes
via the two secondary pitchfork bifurcations at a ≈ 1.416 and
a ≈ 1.412. Before this occurs, the n = 1 branch is unstable
to the n = 2 mode resulting in splitting of the fully phase-
separated state (see Fig. 7(a) as explained below). One may
call the dynamical process reverse coarsening in analogy to
the reverse Ostwald ripening in Ref. [28]. A similar process
is called mesa splitting in Ref. [53]. At lower a � 1.412,
multistability with higher-n states arises as before resulting
in nonlinear partial or complete suppression.

Figure 7 uses space-time plots to illustrate the discussed
consequences of multistability for the coarsening dynamics.
Figure 7(a) focuses on a region in Fig. 6(b) where n = 1 and
n = 2 state both exist, but only the patterned n = 2 state is
stable. The chosen a = 1.413 lies between the two secondary
bifurcations, i.e., the n = 1 state has one unstable eigenvalue.
Starting with the n = 1 state with added noise, we observe
reverse coarsening via the mass transfer mode converging
to the patterned n = 2 state. This clearly illustrates that the
nonvariational coupling can reverse the original coarsening
process of a phase separating system. It is a direct result
of the linear complete suppression of coarsening discussed
above because the stability of the relevant branches is a direct
consequence of the linear stability of the uniform state.

Next, we consider a time evolution in the multistable a-
range of Fig. 6(a). Figures 7(b) and 7(c) present results for
a = 1.12 and a = 1.11, respectively. In both cases, first an
n = 3 state develops corresponding to the fastest growing
linear mode. As at a = 1.12 the n = 3 state is still unstable,
a single coarsening step occurs in Fig. 7(b). It results in the
linearly stable n = 2 state where coarsening is arrested. This
corresponds to the nonlinear partial suppression of coarsen-
ing.4 In contrast, at the slightly smaller a = 1.11 [Fig. 7(c)]
the now linearly stable n = 3 state forms and no coarsening
occurs. This corresponds to nonlinear complete suppression
of coarsening as it depends on the sequence of secondary
bifurcations. In contrast to the linear suppression, it cannot
be deduced from a linear analysis of the homogeneous state
and does not cause reverse coarsening.

4Note that at the parameters of Fig. 7(b) one may also start with
a large-amplitude n = 1 mode. Then the system evolves into the
linearly stable n = 1 state (not shown) as expected in a multistable
region.
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FIG. 7. Space-time plots obtained by direct numerical simulation of structuring processes in the nonvariational case. They illustrate three
qualitatively different behaviors that replace the classical coarsening of the variational case: (a) splitting of the fully phase-separated state
due to linear complete suppression of coarsening at α = 1.6 and a = 1.413 [cf. Fig. 6(b)], (b) nonlinear partial suppression of coarsening at
α = 1.5 and a = 1.12 [cf. Fig. 6(a)], and (c) nonlinear complete suppression of coarsening at α = 1.5 and a = 1.11 [cf. Fig. 6(a)]. For details,
see main text.

To summarize, the bifurcation diagram and simulation re-
sults show that partial or complete suppression of coarsening
can occur even if the dispersion relation for the uniform state
indicates a CH instability and one would naturally predict
coarsening. The underlying mechanism is nonlinear and can
be characterized as follows: In the common coarsening pro-
cess in the variational system, clusters of the same phase
merge over time minimizing the overall interface energy.
Their number successively decreases until the fully phase-
separated state is reached. This implies that the eigenvalues
of all coarsening modes become very small for states with
a small number of clusters, but they always remain positive.
Here, the nonvariational coupling disrupts the coarsening be-
fore the n = 1 state is reached because all relevant eigenvalues
have become negative. Thus, the onset of multistability marks
the partial or complete suppression of coarsening depending
on the fastest growing linear mode.

The same mechanism also acts for large-n states. In
Fig. 6(a), we observe it up to the n = 5 branch where the
fourth degenerate secondary pitchfork bifurcation marks the
arrest of coarsening at the state with five peaks. Note that
below in Sec. VI A we discuss more intricate, time-periodic
behavior. Then our simple explanation how coarsening is
suppressed is not valid anymore. However, next we focus on
another interesting system property related to the behavior
of the primary bifurcations that forms a stepping stone to
time-periodic behavior. The considerations in Sec. V A have
focused on situations where all primary bifurcations are su-
percritical. For phase separation phenomena, this is often not
the case. Therefore, we next consider how the suppression of
coarsening is amended if primary bifurcations are subcritical.

B. The subcritical case

In the passive one-field CH equation, subcritical primary
bifurcations at a = −1 occur for mean concentrations |φ| >

1/
√

5 [63] (for details, use D = 0 in the derivation in the Ap-
pendix of Ref. [22] or consider Appendix D). In general, it is
known that quadratic nonlinearities (in general, nonlinearities
of even power) break the field inversion symmetry and lead to
subcritical behavior [62]. In the CH case, moving at least one

mean concentration away from zero indeed breaks the field
inversion symmetry and facilitates the occurrence of subcrit-
ical bifurcations. This can be clearly seen when transforming
Eqs. (4) using shifted concentration fields such that the new
homogeneous state is always at zero. The original mean con-
centrations then appear as parameters and the original purely
cubic nonlinearities unfold into a cubic polynomial containing
quadratic and linear terms.

If the quadratic term passes a certain threshold, e.g., for a
range of nonzero φ̄2, primary bifurcations can become sub-
critical. Here, we choose φ̄2 = 0.4 and accordingly adapt α to
investigate the transition from CH to Turing instability. The
linear behavior is similar to the case discussed at Fig. 3 in
Sec. III C. Bifurcation diagrams characterizing the nonlinear
behavior near the transition are shown in Fig. 8. Figures 8(a)
and 8(b) give results for α = 1.45 and α = 1.5, respectively,
showing all branches that eventually connect to the homoge-
neous state at the first or second primary bifurcation. Between
the two panels a transition occurs analog to the one between
Figs. 6(a) and 6(b) for the supercritical case.

In Fig. 8(a), the n = 1 branch (blue line) bifurcates first
and coarsening can proceed unhindered as all other states
are unstable in a large a-range (CH instability). The branch
bifurcates subcritically and gains stability at a saddle-node
bifurcation at about a ∼ 1.41. At the second primary insta-
bility, the n = 2 state (green line) emerges subcritically with
three unstable eigenvalues. They are stabilized through two
secondary pitchfork bifurcations and a saddle-node bifurca-
tion, finally resulting in linear stability for a � 0.4. At the two
well-separated secondary bifurcations, the n = 2 state is stabi-
lized with respect to the two coarsening modes. The secondary
branch which emerges in Fig. 8(a) at the first secondary bifur-
cation very close to the second primary bifurcation (see inset)
emerges due to the stabilization of the volume mode of the
primary branch.

In contrast, Fig. 8(b) at α = 1.5 illustrates a case be-
yond the transition where the linear analysis of the uniform
state indicates the occurrence of a Turing instability. Al-
though, overall the appearance and stability are rather similar
to Fig. 8(a), inspection of the inset shows that the lo-
cal bifurcation behavior has strongly changed: At the first
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FIG. 8. Subcritical bifurcation behavior of steady states for the nonvariationally coupled CH model. Panels (a) and (b) show for ρ = 1.35
cases of CH and Turing instability at α = 1.45 and α = 1.5, respectively. Mean concentrations are φ̄1 = 0 and φ̄2 = 0.4 �= 0, with remaining
parameters as in Figs. 3 and 6. Panel (c) gives more intricate behavior at ρ = 1.4 and α = 1.8, parameters otherwise as (a) and (b). Relevant
branches are labeled by their periodicity n and a subscript S if they emerge in a secondary pitchfork bifurcation. Panel (d) shows that subcritical
behavior may for κ = 1 and α = 1.65 even arise at φ̄1 = φ̄2 = 0; other parameters are as in (a) and (b). In (d) the superscript + or − indicates
which eigenvalue [λ+ or λ− in Eq. (12)] crosses zero at the corresponding primary bifurcation. Circles, triangles, and diamonds indicate
pitchfork, drift pitchfork, and Hopf bifurcations, respectively. In (a)–(c) all linearly unstable steady states are indicated by dotted lines, in (d)
unstable traveling and steady states emerging in secondary bifurcations are indicated by dashed lines. Solid lines always represent linearly
stable states.

primary bifurcation, now the n = 2 state subcritically emerges
carrying one unstable eigenvalue. Shortly after, a secondary
supercritical pitchfork bifurcation occurs, where the blue n =
1S branch supercritically emerges inheriting the one unsta-
ble eigenvalue. Comparing to Fig. 8(a), we still consider it
as the fully phase-separated n = 1 state but indicate by the
subscript S the qualitative different emergence in a secondary
instead of a primary bifurcation. Nevertheless, as before, the
n = 1S branch fully stabilizes at the saddle-node bifurcation
and in a wide a-range it is the only stable state. In the second
primary bifurcation, the n = 1 branch (brown line) emerges
supercritically carrying two and, after a nearby saddle-node
bifurcation, three unstable eigenvalues, i.e., it has similar
properties as in Fig. 8(a) where it emerges at the first sec-
ondary bifurcation of the n = 2 state. One may say that the
primary n = 1 bifurcation and the first secondary bifurcation
on the n = 2 branch exchange their roles at the transition from
CH to Turing instability. Only two parameters (α and a) are
adjusted to reach the transition point that displays properties
of a higher codimension point as two primary and one sec-
ondary bifurcations coincide. However, since the latter breaks
the reflection symmetry of the states, an additional restriction
is provided by the reflection symmetry of the model. Here,

the particular choice φ̄1 = 0 does not qualitatively influence
the described transition. It does not make the case nongeneric
since φ̄2 �= 0. However, adding a symmetry-breaking term to
the model lifts the degeneracy and decreases the codimension
(not shown).

We see that the merely local changes at the transition are
largely overshadowed by mainly undisturbed global behavior
related to the subcriticality. Hence, due to the branches which
emerge from secondary bifurcations no linear complete sup-
pression of coarsening occurs. Only for supercritical primary
bifurcations, a switch from CH to Turing instability directly
results in the linear complete suppression of coarsening. In
contrast, the nonlinear effects of partial and complete sup-
pression of coarsening are unaffected by the subcriticality as
they depend on secondary bifurcations. For instance, the final
secondary bifurcation of the n = 2 branch (where it becomes
linearly stable) still marks the onset of the nonlinear partial
or complete suppression of coarsening as in the supercritical
case.

Figure 8(c) illustrates more extensive reordering of the
primary bifurcations. Increasing ρ and α as compared to
Figs. 8(a) and 8(b), now at the first primary bifurcation the
n = 3 branch emerges subcritically. It carries a secondary
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FIG. 9. Illustration of criteria for subcriticality [cf. Eq. (D19)]
and Hopf instability [cf. Eq. (B2)] in the plane spanned by 
 and
	 at φ̄1 = φ̄2 = 0. Shown is the special case of equal mobilities and
rigidities, Q = κ = 1, and M = −a	 = 1.9. Blue [orange] regions
imply subcriticality of n+[n−] branches. The hatched region indi-
cates the occurrence of a Hopf instability, i.e., where 	 > a2

	/4 [cf.
Eq. (B2)]. The dashed and dotted lines indicate how the parameter
plane is crossed when changing α at fixed ρ (as given in the legend).
The left inset suggests that subcriticality can be observed even in the
immediate vicinity of α ≈ −ρ. The right inset shows that the colored
regions do not overlap and only without variational coupling, i.e., for
ρ = 0 (blue dotted line), subcritical behavior does not occur.

degenerate bifurcation where the n = 1S branch emerges as
well as another branch that connects to the first secondary
branch of the second primary branch. The latter is actually the
n = 4 branch from which the n = 2S branch emerges. How-
ever, when crossing the stable parts at large norm the branches
are still well ordered: from right to left n = 1S, 2S, 3, 4, . . . .

It is remarkable that in the present nonvariationally cou-
pled system subcritical behavior can even occur at zero mean
concentrations, i.e., where the above argument regarding
the quadratic nonlinearity does not hold. This is shown in
Fig. 8(d) and mathematically illuminated by weakly nonlinear
analysis in Appendix D. The derived amplitude equations [see
Eq. (D12)] define the parameter ranges illustrated in Fig. 9
where this unexpected behavior occurs. At the core of the
argument is a projection that is performed when applying
the Fredholm alternative. If the necessary criterion 	 > 0 is
fulfilled, this projection can produce nonlinearities that act
destabilizing to leading order and result in subcritical behavior
(even if the nonlinearities in the original equations appear
stabilizing). Such projections can only occur if the model
couples at least two fields.

The bifurcation diagram in Fig. 8(d) for κ = 1 and φ̄1 =
φ̄2 = 0 shows six primary bifurcations, three being subcriti-
cal. The various branches are marked by their periodicity n
and a superscript + or – that indicates which eigenvalue [λ+ or
λ− in Eq. (B1)] crosses zero at the corresponding primary bi-
furcation. In previous diagrams the distinction was not needed
since all n− branches emerged far away from the instability
onset and were not further considered. Here, however, for each
n a supercritical n− and a subcritical n+ branch emerge close
to each other. Since λ+ > λ− for all real eigenvalues, the first
bifurcation of each pair is always the n+ state.

Since the necessary conditions for subcritical behavior
and for primary Hopf bifurcations are identical, 	 > 0 (see

Sec. III), it is not surprising that pairs of structured states
emerge close together. To create a primary Hopf bifurcation
two pitchfork bifurcations belonging to the same n (i.e., n+
and n−) have to collide. For all ρ �= 0, one of these two
branches displays subcritical behavior right before collision.
Note that Fig. 8(d) shows the particular case κ = 1. Then the
onset of subcritical behavior as well as the creation of the pri-
mary Hopf bifurcations is independent of n [cf. discussion in
Appendix D and Eq. (B2)]. Although all primary bifurcations
are still stationary, we already observe time-periodic behavior
at secondary and tertiary bifurcations. The inset shows two
secondary bifurcations on the n = 1− branch which are con-
nected to one degenerated pitchfork bifurcation on the n = 2+
branch. Again the degeneracy is caused by additional symme-
tries resulting from zero mean concentrations [cf. discussion
of Fig. 6(a)]. On both connecting branches (brown dashed
lines), Hopf bifurcations marked by filled diamonds occur.
Similar bifurcation structures are found on all branches which
connect an n− branch with an (n + 1)+ branch (see, e.g.,
connecting branches between n = 2− and n = 3+ branch).
Furthermore, on the n = 1− branch, a drift pitchfork bifur-
cation marked by a triangle occurs. The emerging branch
(gray dashed line) represents stationary drifting states. All
of these time-dependent states are unstable, at least in the
vicinity of their emergence. Summarized, Fig. 8(d) implies
that time-periodic behavior can arise in various ways when the
nonvariational coupling strength is increased. Interestingly,
the subcritical behavior observed at stationary bifurcations
provides us with two different scenarios for the emergence
of time-dependent states close to the Hopf instability. This is
further investigated in Sec. VI B.

First, we return to the subcritical primary branches for
zero mean concentrations and consider in Fig. 9 the param-
eter plane spanned by 
 = (ρ + α)2 and 	 = α2 − ρ2. The
orange [blue] shaded region indicates where the n− [n+]
branch shows subcritical behavior. At large 	, both regions
are limited by the horizontal Hopf threshold [Eq. (B2)], oth-
erwise their shape only depends on the composed parameter

Mn = k2
n

�2 (1 − κ ) − a	.6 For the special case κ = 1 presented
in Fig. 9, simply Mn = M = −a	, i.e., it is independent of
the periodicity of the linear mode. Then, for a	 < 0, all n+
branches in Fig. 8(d) emerge subcritically.

The analysis in Appendix D reveals two further remarkable
features: First, at M = 0, i.e., for identical subsystems, no
subcritical regions exist. Second, for purely nonvariational
coupling (i.e., ρ = 0) no subcritical behavior precedes the
appearance of primary Hopf bifurcations. This is indicated by
the dotted blue line in Fig. 9 which passes the Hopf threshold
without crossing the shaded regions. This emphasizes the
nongeneric character of systems with purely nonvariational
coupling. For any fixed ρ and increasing |α| the system fol-
lows curves in Fig. 9 given by

	(
) = ∓2ρ
√


 + 
 for α ≷ −ρ. (23)

6For general functions f1(φ1) and f2(φ2), the relevant parameter

is Mn = k2
n

�2 (1 − κ ) + f ′′
1 − f ′′

2 . It is similarly valid for the present
coupled CH equations, as for coupled Swift-Hohenberg and coupled
conserved Swift-Hohenberg equations.
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FIG. 10. (a) Bifurcation diagram showing the trivial state (black horizontal line) and seven primary branches (n = 1 . . . 7) for a large
a-range at parameters identical to Fig. 6(a). Pitchfork and Hopf bifurcations are marked by circles and filled diamonds, respectively. Solid
[dotted] lines indicate stable [unstable] states. The inset magnifies the region where the first four Hopf bifurcations occur. Panel (b) presents a
space-time plot of a simulation at a = −2.3, i.e., between the two stable regions of the n = 5 state. It is initialized with white noise and after a
transient steady state converges to a drifting oscillatory state.

For instance, the dashed black lines at fixed ρ = 0.3 demon-
strate that either the orange (for α < −ρ) or the blue (for
α > ρ) shaded region is crossed before passing the Hopf
threshold. These pathways represent two different scenarios.
We call them subminus and subplus as passing the orange
and blue regions indicates subcritical n− and n+ branches,
respectively. The scenarios occur if

subminus: Mn ≷ 0 and α passes ∓ ρ,

subplus: Mn ≷ 0 and α passes ± ρ. (24)

These scenarios are of great importance for the time-
dependent behavior of the fully phase-separated (i.e., n = 1)
states focused on in Sec. VI B.

VI. NONVARIATIONAL CASE: EMERGENCE
OF TIME-PERIODIC STATES

A. Hopf bifurcations in the strongly nonlinear regime

After having discussed suppression of coarsening due
to nonvariational coupling, we next analyze under which
conditions such coupling causes time-periodic behavior like
traveling and standing waves. Again, we normally consider
situations with variational and nonvariational coupling both
present. As before, we employ numerical path continuation
and direct time simulation to characterize the fully nonlinear
behavior. In addition to path continuation for steady states
employed before, here, we also track time-periodic states. For
a description of these techniques, see Ref. [58].

The linear considerations in Sec. III and Appendix B have
shown that 	 > 0 is a necessary condition for a Hopf insta-
bility of the uniform state and that oscillatory modes may
occur in a wave-number band [ko

−, ko
+] with ko

− either zero or
nonzero. However, the Hopf instability is always large scale
and occurs at f ′′

1
H = −Q f ′′

2 given that 	 > Q f ′′
2

2 [Eqs. (14)
and (15)]. In general, we find that also in the nonlinear regime
time-periodic behavior only occurs for 	 > 0. However, non-

linearly it can emerge at lower activity than in the linear
regime.

First, we revise the case in Fig. 6(a) where we have
found nonlinear suppression of coarsening. We explained that
all steady n > 1 states are stabilized by n − 1 secondary
degenerate pitchfork bifurcations. This is the complete picture
for a > −0.6, the range presented in Fig. 6(a). In contrast,
Fig. 10(a) presents a much larger a-range down to a ≈ −23.
Shown are the branches of homogeneous states and of struc-
tured states with n = 1 to n = 7. We note that a number of
Hopf bifurcations (marked by filled diamonds) exist on the
n = 5, 6, and 7 branches. This implies that the simplified
picture of successively extended multistability and related
nonlinear partial or complete suppression of coarsening has
to be amended as time-periodic behavior occurs for structured
states of larger n.

The inset of Fig. 10(a) magnifies the a range where the
first four Hopf bifurcations occur. We focus on the n = 5
branch (purple line). Starting at the primary bifurcation where
it emerges, subsequently four stabilizing degenerate pitchfork
bifurcations occur that eventually stabilize the branch in full
accordance with Sec. V A. Then, after a small range of stabil-
ity a window of oscillatory instability occurs framed by two
Hopf bifurcation. Beyond the stabilizing Hopf bifurcation, the
branch remains stable. The time-periodic behavior found in
the unstable window is illustrated in Fig. 10(b). Initialized
at a = −2.3 with white noise of small amplitude, first, the
fastest linear mode grows and the steady n = 6 state develops
[barely visible in Fig. 10(b)]. Being unstable, it remains a tran-
sient and coarsens into the steady n = 5 state (t ≈ 0.1 × 102).
There, the spatial coarsening is arrested. However, as also the
steady n = 5 state is linearly unstable, temporal oscillations
in the form of a standing wave develop (t = 2 × 102). Then,
even the standing wave turns out to be only a transient and
at t ≈ 3 × 102 an additional slow drift develops. Finally, a
drifting oscillating n = 5 state develops that represents a mod-
ulated wave. This shows that even for parameters where the
linear analysis of the uniform state only shows a CH instability
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FIG. 11. Panels (a)–(e) show a sequence of bifurcation diagrams for scenario subminus of the emergence of subcriticality and time-
dependent behavior for increasing nonvariational coupling α = 1.295, 1.3, 1.301, 1.31, and 1.315 at ρ = 1.3 and Mn < 0. Solid [dotted]
lines represent linearly stable [unstable] states. Pitchfork, drift pitchfork, and Hopf bifurcations are marked by circle, triangle, and filled
diamond symbols, respectively. The saddle node bifurcations referred to in the main text are indicated in the insets in (b) and (c) by cross
symbols. The inset in (c) further marks by small plus symbols states emerging in time simulations, see, e.g., Fig. 12. The remaining parameters
are � = 4π , a	 = −0.38 , φ̄1 = φ̄2 = 0 , κ = 3.82, and Q = 1. Panel (f) displays in the (a, α) plane the loci of all five local secondary
bifurcations that emerge from the high codimension bifurcation marked by the square symbol in (b). The used colors correspond to the ones in
(c).

[cf. green line in Fig. 3(b) and remember that changing the
value of a cannot render the eigenvalues complex], oscillatory
instabilities of nonlinear states may occur that result in stable
time-dependent patterned states.

B. Onset of a large-scale time-periodic behavior

Next we scrutinize the onset of such time-dependent be-
havior focusing on the fully phase-separated (n = 1) state.
In particular, we consider the case of zero mean concentra-
tions at parameter values where the instability of the uniform

state changes from stationary (CH) to oscillatory (Hopf) [cf.
Fig. 4]. The two scenarios described next also occur in the
general case of nonzero mean concentrations (not shown).

As explained in Sec. V B, the onset of primary time-
periodic behavior is for all ρ �= 0 preceded by the occurrence
of subcritical primary bifurcations. Namely, before two
primary pitchfork bifurcations can collide to form a Hopf
bifurcation, one of them has to become subcritical. Sequences
of bifurcation diagrams for increasing nonvariational coupling
(passing 	 = 0) that detail the intricacies of this transition
are shown for the n = 1 branch in Figs. 11 and 13 in the two
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FIG. 12. Space-time plots illustrating selected time-periodic behavior emerging in certain a ranges for the bifurcation diagram of Fig. 11(c).
We find (a) a stationary traveling wave at a = −0.57 [i.e., on solid part of gray branch in Fig. 11(c)]; (b) a modulated traveling wave at
a = −0.585 [i.e., on light blue branch in Fig. 11(c)]; and (c) a standing wave at a = −0.59 [i.e., on solid part of red branch in Fig. 11(c)].

qualitatively different cases of scenario subminus (subcritical-
ity of the n− branch) and scenario subplus (subcriticality of
the n+ branch), respectively [cf. Fig. 9 and Eqs. (24)].

We begin with scenario subminus shown in Fig. 11 where
Mn < 0 for all n � 1, and α is increased from Fig. 11(a)
(α < ρ) to Fig. 11(e) (α > ρ). To better understand the bi-
furcation behavior, we first develop an argument from the
linear analysis at approximately equal coupling strengths: For
α ≈ ρ, the coupling term in the φ2 equation approaches zero,
i.e., φ2 decouples from φ1 (but not φ1 from φ2). Hence, one
eigenfunction of the uniform state has amplitudes (1,0) and
the linear regime within this subspace is equivalent to the
one for a one-field CH equation for φ1 with eigenvalue λ1.
The other is λ2, the eigenvalue of the decoupled CH equa-
tion for φ2, with eigenvector (−2k2ρ/(�2λ1), 1). That is, both
eigenvalues correspond to decoupled CH equations, but one
of the eigenvectors is not decoupled if ρ �= 0. For the present
Mn < 0, then λ+ = λ1 and λ− = λ2.

In Fig. 11(a), for α = 1.295 < ρ = 1.3 the steady n = 1+
and n = 1− branches both emerge at supercritical pitchfork
bifurcations at a values where the real λ+ and λ− cross zero at
k = kn=1 = 2π [cf. Eq. (B1)], respectively. The stable n = 1+
branch features fully phase-separated states dominated by
field φ1, while the unstable n = 1− branch consists of states
where both fields have similar amplitudes. At first sight, the
behavior is qualitatively similar to phase separation in the
purely variational case although α is already quite large. Note,
however, that at the chosen concentration values, the passive
system would separate into phases I and III [not shown, cf.
Fig. 14(c)]. Here, this is not the case as the nonvariational
coupling effectively decouples φ2 from φ1 as discussed above.
However, no oscillatory states appear.

Increasing α, the two primary bifurcations slowly move
toward each other, while the n = 1+ branch develops a bulge
that extends towards the n = 1− branch, that itself increases
the curvature of its leftward bend. Eventually, at α = ρ the
n = 1+ bulge touches the n = 1− bend and a bifurcation
of higher codimension forms at the point of contact, see
Fig. 11(b). It is noteworthy that the second primary bifurcation
occurs at exactly the same value of a as the high-codimension
point. Caused by the complete decoupling at 	 = 0, φ2 is
exactly zero on the complete n = 1+ branch. Furthermore the

eigenvalue λ− = λ2 does not depend on the φ1 component
of the corresponding steady state, i.e., it does not make any
difference whether φ1 is uniformly zero (black branch) or
structured (blue branch). In consequence, the second primary
bifurcation and the first secondary bifurcation occur at iden-
tical a. This implies that at smaller a there will exist many
further pairs and even groups of simultaneous bifurcations.
The inset of Fig. 11(b) shows that the dotted line connecting
the two bifurcations is not exact vertical. Instead it bifurcates
supercritically (i.e., to the left) and folds to the right in a
saddle-node bifurcation before becoming vertical again at the
crossing point that coincides with its second saddle-node bi-
furcation.

Slightly increasing α further, we obtain the diagram in
Fig. 11(c) that shows very rich behavior in the region of
the crossing point in Fig. 11(b). Now, the two primary bi-
furcations are directly linked by an n = 1 branch of steady
states. The n = 1+ part emerges supercritically and becomes
unstable via a secondary drift pitchfork bifurcation exactly at
the apex of the branch. Following Ref. [66], one can derive a
condition, 0 = ∫

(φ2
1 + ρ+α

ρ−α
φ2

2 )dx, for drift pitchfork bifurca-
tions to occur. The n = 1− part emerges subcritically since the
chosen parameters qualitatively correspond to a locus inside
the orange shaded region of Fig. 9. When comparing, note
that different parameters were used in Fig. 9, in particular,
there Mn > 0 unlike Fig. 11. In addition, the branch features
a secondary Hopf bifurcation.

The branch of traveling n = 1 states that emerges at
the drift pitchfork bifurcation is first linearly stable [cf.
Fig. 12(a)], then destabilizes in a Hopf bifurcation before
finally ending in another drift pitchfork bifurcation on the un-
stable part of the “upper left part” of the steady n = 1 branch
(green dotted line). The latter then stabilizes in a saddle-node
bifurcation at a ≈ −0.591 (green solid line).

Tracking the branches of time-periodic states emerging at
the Hopf bifurcations until their termination is numerically
rather challenging. Therefore, we accompany the continuation
results with results of direct time simulations [marked by bold
+ symbols in the inset of panel Fig. 11(c)]. Figure 12 shows
a selection of space-time plots which illustrate the various
qualitatively different behaviors at different values of a. All
time evolutions are initialized with a noisy homogeneous
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FIG. 13. Panels (a)–(c) show a sequence of bifurcation diagrams that illustrates scenario subplus of the emergence of subcriticality and
subsequent time-periodic behavior in the fully nonlinear regime for increasingly negative nonvariational coupling α = −1.3, −1.31 and
−1.315 at ρ = 1.3 and Mn < 0. Linestyles, symbols, and remaining parameters are as in Fig. 11.

state. Drawing on both sets of results proposes the following
bifurcation behavior: At the Hopf bifurcation on the stationary
n = 1 branch (blue line), a branch of standing waves (red
dotted line) emerges supercritically, i.e., toward smaller a,
and carries one unstable eigenvalue. A branch of modulated
waves (light blue line) emerges supercritically at the Hopf
bifurcation of the traveling wave state (gray line) and is at
first stable. An example of such a state is given in Fig. 12(b).
The magnification in Fig. 11(c) focuses on the region where
both branches of time-periodic states approach each other.
Taking results from continuation and time simulations into
account one can discern that the branch of modulated waves
terminate on the branch of standing waves at a ≈ −0.588. At
the corresponding drift bifurcation, the standing waves gain
stability [transition from dotted to solid line, cf. Fig. 12(c)].
The corresponding branch continues toward a global homo-
clinic bifurcation on the unstable part of the n = 1 branch
of steady states (green dotted line). In particular, we find a
narrow window of multistability of standing waves and steady
states.

A further increase of α gives Fig. 11(d), where the half-
loop of n = 1 states connected to the primary bifurcations has
shrunk. Note that we do not include the time-periodic states
but only the drifting ones (gray line). With further increasing
α, the two primary pitchfork bifurcations move closer together
and eventually fuse into a primary Hopf bifurcation when the

two eigenvalues form a complex conjugate pair. The result
is a bifurcation diagram as in Fig. 11(e), where the branch
of traveling states directly emerges in a primary Hopf bifur-
cation. Note that at the transition between the structure of
primary bifurcations in Figs. 11(d) and 11(e), more than two
bifurcations fuse to become the Hopf bifurcation.

Finally, we briefly discuss the high codimension point
in Fig. 11(b): If the structure described for Fig. 11(c)
emerges at the high codimension point of Fig. 11(b), only
considering secondary bifurcations, this point contains one
Bogdanov-Takens bifurcations, a double drift pitchfork bi-
furcation and an inverse necking bifurcation, i.e., three
standard codimension-2 bifurcations. To test this, we present
in Fig. 11(f) the loci of all local secondary bifurcations visible
in Fig. 11(c) in the (a, α) plane. They are obtained by two-
parameter continuations. Indeed, the picture indicates that all
five tracked bifurcations emerge from the single point of high
codimension marked by the square symbol in Fig. 11(b). Note
that this seemingly strongly nongeneric behavior is also ob-
served for nonzero mean concentrations (not shown) and is a
consequence of the decoupling at 	 = 0. Replacing the linear
coupling by a nonlinear one incorporates further parameters
and decreases the nongenericity.

The second scenario for the onset of primary time-periodic
behavior is subplus: In agreement with conditions (24), we
need to change the sign of Mn or of α: In Fig. 13, we use
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Mn < 0 for all n � 1 and decrease the nonvariational coupling
in two steps from α > −ρ to α < −ρ while keeping the
remaining parameters as in Fig. 11. We find that in contrast
to the rich transition behavior in scenario subminus, scenario
subplus is less intricate.

In Fig. 13(a), for α = −ρ = −1.3 the systems shows a
CH instability and both n = 1+ and n = 1− branches emerge
supercritically. As 	 = 0, again one field is decoupled, here
it is φ1 (due to the switched sign of α). In contrast to scenario
subminus, where the n+ branch is characterized by φ2 = 0,
here the n− branch features a zero φ1 field. Thus, the argu-
ment for the simultaneous occurrence of a pair of bifurcations
on the trivial branch and the n = 1+ branch does not apply.
Instead, the n = 1+ branch stays stable and no point of higher
codimension appears. Decreasing α, the primary bifurcations
approach each other, see Fig. 13(b). Furthermore, the n = 1+
branch becomes subcritical, i.e., a parameter range is reached
that is similar to the blue shaded region in Fig. 9.

Finally, the two primary bifurcations collide at the Hopf
threshold [see Eq. (B2)] and with further decreasing α a
branch of time-dependent states emerges, not unlike a zipper.
It connects the primary Hopf bifurcation via a branch of sta-
tionary traveling states with a drift pitchfork bifurcation on
the unstable part of the branch of steady n = 1 states. There
exists a further Hopf bifurcation where a branch of modulated
traveling states emerges (not shown).

In summary, in scenario, subplus stable time-periodic be-
havior only arises when the primary pitchfork bifurcations
collide at the onset of a Hopf instability and the appearance
of the related Hopf bifurcation. In contrast, in the earlier con-
sidered scenario subminus, stable time-periodic states directly
emerge nonlinearly when the nonvariational coupling dom-
inates the variational one (|α| > |ρ|). Then they determine
the behavior for a wide parameter range even before a Hopf
instability occurs.

It is remarkable that in the case of a purely nonvariational
coupling, time-periodic behavior may occur at arbitrarily
small nonvariational coupling. This is analyzed in Ap-
pendix E.

VII. CONCLUSION

We have systematically analyzed the influence of nonva-
riational (or active, or nonreciprocal) coupling in a generic
two-field CH model describing, e.g., phase separation in a
ternary mixture by the coupled evolution of two concentration
fields. This has shed light on activity-induced transitions from
large-scale phase decomposition (mediated by coarsening) to
the formation of steady patterns with finite typical length
scales on the one hand and to time-periodic and drifting be-
havior on the other hand. We particularly emphasize that the
chosen coupling does not affect the conservation properties,
i.e., both fields stay conserved in the passive and the active
case. This qualitatively differs from Ref. [45] where the cou-
pling breaks both conservation laws.

The employed linear coupling between the two species
corresponds to cross diffusion and has a symmetric (vari-
ational) and an antisymmetric (nonvariational) contribution.
The variational part corresponds to simple thermodynamic
Fickian cross diffusion. The antisymmetric part represents the

active element of the model as it breaks the gradient dynamics
structure of the passive case. The corresponding interspecies
interaction is nonreciprocal as it breaks the third law of New-
tonian mechanics [40].

On the one hand, we have studied the active two-field
CH model as a generic model for the influence of activity
on structure formation when the full conservation properties
are kept. This contrasts most other active models in the lit-
erature. For instance, RD models normally do not feature
conserved quantities [61,62,67]. Recently, the role of con-
servation laws in such systems attracted increasing attention
[36,39,68–70]—normally, one conservation law was consid-
ered in a multispecies model. On the other hand, the model
shall allow one to discuss the behavior of particular active sys-
tems where all relevant species are conserved and (molecular)
interactions may result in phase decomposition. For instance,
the model is well suited to describe the dynamics of differ-
ent chemical or biological species that show nonreciprocal
interactions but do not transform into each other or other-
wise change their number on the considered timescales. This
includes catalytic species whose chemical interaction is me-
diated via other species not explicitly described by the model,
or bacteria and/or cell populations with a predator-prey type
attraction-repulsion pattern, e.g., mediated via chemicals. At
sufficiently large densities, attractive and repulsive interac-
tions may occur, e.g., as in active emulsions [17].

In the case of catalytic reactions, it is found that enzyme
clustering can increase the efficiency of a two-step RD system
where two enzymes are involved and one of them processes
a substance into an unstable intermediate and the other one
transforms the intermediate into a product [71]. Interestingly,
optimal separation distance and size of clusters where both
enzymes are colocated are predicted which are similarly found
in nature [72]. Such patterns of species location optimize
the so-called proximity channeling (two catalysts positioned
sufficiently close to each other) [71]. In this context, our
results suggest that the colocation in large coarsening clus-
ters could be obtained via the (thermodynamic) reciprocal
coupling. However, an effective nonreciprocal couplings will
then favor patterns of clusters preventing coarsening toward
the fully phase-separated state. In the case of populations
of bacteria or cells, see Ref. [73] for a discussion of phase
separation in a microscopic model of two species of interact-
ing particles (of conserved numbers) where nonreciprocity is
established via nonequilibrium chemical interactions. Mean-
field models such as the one studied here may then be derived
by coarse graining, as done, for example, for mixtures of
active and passive Brownian particles (see SI Sec. VI.B in
Ref. [44]) or in mixtures of colloids with competing repulsive
and attractive interactions (see SI Sec. VI.A in Ref. [44]).
An alternative model describes self-propulsion of active fluids
modeled by two conserved scalar fields which represent the
interior (exterior) of the droplet and the amount of active
material, respectively [74]. Their dynamics is determined by
CH-type free-energy functionals, (passive) linear coupling,
and advection. In contrast to the present case, there, activity
enters via an active stress in the Stokes description of the
hydrodynamic flow velocity.

Already the linear stability analysis of the uniform state
in Sec. III has uncovered a surprisingly rich behavior. In
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particular, we have shown that Turing and Hopf instabilities
may occur if the nonvariational coupling dominates the vari-
ational one (|α| > |ρ|). Notably, we could establish a direct
relation to the linear stability analysis of the classical Turing
system of two coupled RD equations [61]. In consequence,
parallels are drawn between the respective parameters. Most
importantly, the product of the ratio of rigidities κ and the
ratio of mobilities Q in our case takes the important role of
the ratio of diffusion constants in the RD system. This directly
implies that much of the more intricate behavior is only found
if Qκ �= 1 (and finite). This is important as, for simplicity,
sometimes such ratios are set to one or zero [43,44].

In particular, Qκ �= 1 is a necessary condition for a Turing
instability. It cannot be found otherwise. Here, one focus has
been on the transition from CH to Turing instability and the
resulting changes in coarsening behavior. We have provided
an analysis based on the bifurcation behavior for relatively
small systems. For larger systems, an occurring Turing insta-
bility implies that further features can be expected like the
existence of localized states with their slanted snakes-and-
ladders bifurcation structure [75,76]. This aspect is pursued
in Ref. [77].

After a brief discussion of coarsening dynamics and the
corresponding bifurcation structure in the variational case,
Sec. V has presented our first main results, namely, the dra-
matic effects of nonvariational coupling on the coarsening
dynamics. We have uncovered three different mechanisms of
suppression of coarsening, which we termed (i) linear com-
plete suppression, (ii) nonlinear complete suppression, and
(iii) nonlinear partial suppression of coarsening. We have
shown how the linear complete suppression relates to the
Turing instability and have explained why it only occurs for
supercritical primary bifurcations. In consequence, it may re-
sult in reverse coarsening dynamics. Further, we have related
the nonlinear complete and partial suppression to secondary
bifurcations where particular patterns stabilize. This may oc-
cur in the case of supercritical as well as subcritical primary
bifurcations.

Suppression of coarsening is also found in two-field CH
type models where the coupling breaks the conservation
property [45,52]. Similarly, coarsening is suppressed in a
general two-component RD system with one conservation
law when the conservation property is relaxed [53]. Non-
massconserving bacterial proliferation terms have a similar
effect in a one-field CH type model [78], a behavior also found
for a standard CH model with a linear nonconserved term
[52]. A similar transition is described by a thin-film model
of a Rayleigh-Taylor unstable heated evaporating liquid film
[79]–another model of CH type. There, one may call the term
that drives the transition nonvariational evaporation. Several
studies consider active phase separation employing models for
active media that obey a conservation law where the species
show coarsening dynamics [11–13,24,25]. We emphasize that
in contrast to all these cases, we have shown that activity can
suppress coarsening without relaxation of mass conservation.

Our analysis has further highlighted that subtle simplifica-
tions as employed in Refs. [43,44] can already have dramatic
consequences. Reference [43] considers the case of equal
rigidities (κ = 1) and mobilities (Q = 1). This has turned
out to be a nongeneric case where the Turing instability and

all stabilizing stationary secondary pitchfork bifurcations are
absent. Reference [44] mostly investigates a limiting case
where one rigidity is set to zero (κ = 0) and also includes a
few results for κ = Q = 1. In consequence, no suppression of
coarsening is observed. Future work should investigate if there
are qualitative differences between the various cases of coars-
ening suppression in dependence of variational and conserva-
tion properties of the models. The differences could concern
the prevalence of linear versus nonlinear mechanisms of the
suppression of coarsening or systematic changes to underly-
ing scaling laws [46,49]. An analysis of the case of subcritical
primary bifurcations has revealed another intriguing feature
of the model. The standard scenario for phase separation
modeled by the CH equation is the occurrence of subcritical-
ity only beyond a certain nonzero mean concentration [63].
However, here we have shown based on a weakly nonlinear
analysis that, surprisingly, in a two-field model a nonvaria-
tional coupling can cause subcriticality even at zero mean
concentrations. This indicates that common symmetry argu-
ments indicating supercritical behavior have to be amended.

Our second main result concerns the emergence of time-
periodic and drifting states. For simplicity, in this point we
have focused on the case of zero mean concentrations, how-
ever, the described behavior also occurs for nonzero mean
concentrations. First, we have found that in the strongly non-
linear regime where multistability of many different steady
patterns occurs, one may also find stable time-periodic states.
This is not indicated by the linear analysis of uniform states
as in the corresponding parameter range it only shows a sta-
tionary instability. The time-periodic behavior emerges via the
appearance of windows of oscillatory patterns on the primary
branches via secondary Hopf bifurcations. Second, we have
focused on the parameter range where the Hopf instability
of the uniform state is approached. There, two distinguished
scenarios for the emergence of time-dependent fully phase-
separated states occur. In one scenario (subplus), branches
of traveling and standing waves directly emerge from the
uniform state when its instability changes from stationary
(CH) to oscillatory (Hopf). In the other scenario (subminus),
time-periodic states already occur when the uniform state is
still unstable with respect to a stationary mode related to
the emergence of an inhomogeneous steady state. This state
then starts to move triggered by a secondary drift-pitchfork
bifurcation. Similar behavior is also found for other active
models, e.g., an active phase-field-crystal model [66]. At the
drift-pitchfork bifurcation, the parity symmetry of the steady
state is broken and the newly emerging state drifts with a
velocity that shows the typical square-root behavior. This
agrees with the result of a one-mode approximation done
for the simplified coupled CH model in Ref. [44]. Further
secondary Hopf and drift-pitchfork bifurcations create a rich
variety of time-dependent states. Time-dependent states are
reported in the related models studied in Refs. [43–45] based
on linear analyses and time simulations. However, to compare
the emergence of time-periodic behavior to our cases, one first
needs to supplement the literature studies by investigations of
the underlying bifurcation structure.

Our model features a simple linear coupling of the two
fields. It is chosen as a simple and transparent option
natural for weakly coupled systems. However, this surely
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corresponds to a limitation that should be lifted when con-
sidering strong (variational and/or nonvariational) coupling.
In the future, it might then be interesting to study how the
interplay of nonlinear variational and nonvariational cou-
plings alters the observed behavior when for instance general
cubic polynomials in both fields are used. First results for a
nonlinear variational coupling are given in the linear analysis
in Ref. [43]. We conclude from their results that nonlinear
coupling may suppress the Hopf instability. However, local
nonlinear coupling terms alone cannot cause instabilities qual-
itatively different from the case of linear coupling.

Note, finally, that our results are relevant for a wider class
of CH-type systems. This includes thin-film models (long-
wave hydrodynamics) [80] for two-layer films of nonvolatile
immiscible liquids on heated or cooled substrates [81,82].
There, the heating takes the role of the nonvariational coupling
and the passive CH type dynamics results from an interplay of
interfacial tensions and wettability. Notably, in this case vari-
ational and nonvariational coupling are both highly nonlinear.
There are as well matrices of nonlinear mobilities replacing
the present constant diagonal matrix. Our results suggest that
this system will also exhibits a small-scale stationary insta-
bility not yet reported in the literature. The investigation of
other nonvariational contributions as known from one-field
models is also an option, see, e.g., the classification in the
introduction of Ref. [58]. Further, the bifurcation structure of
the presented generic model should also be investigated for
two-dimensional systems.

The data that support the findings of this study and selected
computer codes are openly available [56].
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APPENDIX A: NONDIMENSIONALIZATION

This Appendix discusses our nondimensionalization of the
coupled CH model and thereby elucidates the physical mean-
ing of the various nondimensional parameters of the model
(4). We start with the dimensional coupled system

∂φ1

∂t
= Q1

∂2

∂x2

(
−κ1

∂2φ1

∂x2
+ ζ1 f ′

1(φ1) − γ1φ2

)
,

∂φ2

∂t
= Q2

∂2

∂x2

(
−κ2

∂2φ2

∂x2
+ ζ2 f ′

2(φ2) − γ2φ1

)
, (A1)

and express the dimensional fields as φ1 = φ̂1φ̃1 and φ2 =
φ̂2φ̃2, where a hat indicates a fixed scale (to be determined)
and a tilde the nondimensional quantity. Furthermore, we in-
troduce energy scales via fi = f̂i f̃i, and time and length scales
τ via t = τ t̃ and L via x = Lx̃, respectively. Here L is the
dimensional physical domain size, i.e., the scaled domain size
that corresponds to our computational domain size is fixed to
one. However, as we want to discuss heterogeneous states of
different mode numbers n, we write L = �L0 where L0 is a
typical length scale, e.g., given by the critical wavelength for

a one-field CH equation at a reference temperature and � re-
mains as a nondimensional parameter named nondimensional
domain size. Then, choosing it as � = 2πnmax allows one to
consider the interaction of different numbers of modes as at
the reference state only modes with n = 1 . . . nmax occur. After
introducing the scales and regrouping parameters, the system
of nondimensional equations is

∂
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)
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It contains nondimensional combinations of physical parame-
ters and of the scales τ, φ̂1, and φ̂2 that still need to be chosen.
We define

Q ≡ Q2

Q1
, γ̃1 ≡ φ̂2γ1L2

0

φ̂1κ1
, γ̃2 ≡ φ̂1γ2L2

0

φ̂2κ1
,
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2
1
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0

κ1φ̂
2
2

, (A3)

set τ = L4
0/(Q1κ1), and obtain
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We assume the bulk energies to be double-well potentials, i.e.,
fi(φi ) = ai

2 φ2
i + bi

4 φ4
i . We use f̂i = biφ̂

4
i and obtain
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Furthermore, we demand b̃i = ζi f̂iL2
0
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and obtain
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The parameter a in the linear term of f ′ for the one-field CH
equation is often referred to as effective temperature. Here,
we define ã2 = ã1 + a	 ≡ a + a	. The effective temperature
a is used as a main control parameter and a	 represents the
shift in critical temperature between the two decoupled CH
equations. Furthermore, the two coupling parameters γi are
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split into symmetric (ρ) and antisymmetric (α) contributions:

ρ ≡ γ̃1 + γ̃2

2
, α ≡ γ̃1 − γ̃2

2
.

They represent variational (reciprocal) and nonvariational
(nonreciprocal) coupling of the two fields, respectively. Drop-
ping the tildes, one obtains the nondimensional system

∂

∂t
φ1 = 1

�2

∂2

∂x2

(
− 1

�2

∂2φ1

∂x2
+ f ′

1(φ1) − (ρ + α)φ2

)
,

∂

∂t
φ2 = Q

�2

∂2

∂x2

(
− κ

�2

∂2φ2

∂x2
+ f ′

2(φ2) − (ρ − α)φ1

)
,

(A8)

with f ′
1(φ1) = aφ1 + φ3

1 and f ′
2(φ2) = (a + a	)φ2 + φ3

2 . It
corresponds to Eqs. (4) of the main text.

APPENDIX B: LINEAR STABILITY RESULTS
FOR SPECIFIC fi

In Sec. III, we have analyzed the linear stability of homo-
geneous states for the model (4). The stability diagrams in
Fig. 1 summarize the linear results for general local energies
fi. Here, we specify the discussion for our case where f ′′

1 =
a + 3φ̄2

1 , f ′′
2 = a + a	 + 3φ̄2

2 , Q = 1 and use the effective
temperature a as main control parameter. The dispersion re-
lations (12) become

λ±(q) =1

2
q2

(
− [

q2(1 + κ ) + 2a + a	 + 3
(
φ̄2

1 + φ̄2
2

)]
±

√[
q2(1 − κ ) + 3

(
φ̄2

1 − φ̄2
2

) − a	

]2 − 4	
)
.

(B1)

Note that we use the abbreviation q = k/� throughout the
Appendix. Since the discriminant is independent of a, the
occurrence of complex eigenvalues does not depend on a. In
contrast, the coupling strengths ρ and α only appear in the
combination 	 = α2 − ρ2 and only enter the discriminant.
Complex eigenvalues occur if

	 > 1
4

[
q2(1 − κ ) + 3

(
φ̄2

1 − φ̄2
2

) − a	

]2
. (B2)

Then, Hopf bifurcations of modes with wave number q occur
at [cf. (13)]

ao(q) = − 1
2

[
q2(1 + κ ) + a	 + 3

(
φ̄2

1 + φ̄2
2

)]
, (B3)

independently of both coupling strengths. In consequence, the
onset of the Hopf instability occurs at

aH = ao(0) = − 1
2

[
a	 + 3

(
φ̄2

1 + φ̄2
2

)]
. (B4)

For stationary instabilities we use Eq. (16) to obtain the criti-
cal values

a±(q) =1

2

(
− [

q2(1 + κ ) + a	 + 3
(
φ̄2

1 + φ̄2
2

)]
±

√[
q2(1 − κ ) + 3

(
φ̄2

1 − φ̄2
2

) − a	

]2 − 4	
)
.

(B5)

Since the dispersion relation has two branches, λ±(q), we
obtain two critical a. The stability border in the (q, a) plane

is then represented by the a+(q) curve where λ+(q) changes
signs. In particular, the onset of a CH instability is at

aCH = a+(qc = 0)

= 1

2

(
− [

a	 + 3
(
φ̄2

1 + φ̄2
2

)]
+

√[
3
(
φ̄2

1 − φ̄2
2

) − a	

]2 − 4	
)
. (B6)

For a Turing instability, the onset is at nonzero qc [cf. Eq. (17)]
at

aT ≡ a+(qc) = 1

κ − 1

[
a	 + 3

(
φ̄2

2 − κφ̄2
1

) ∓ 2
√

κ	
]

(B7)

[cf. Eq. (19)]. Stability borders ao(q) [Eq. (B3)] for oscillatory
and a+(q) [Eq. (B5)] for stationary instabilities are plotted for
different cases in Figs. 2– 4.

An alternative approach is to consider the shape of the
dispersion relations [Eq. (B1)] at fixed parameters. For q = 0,
both eigenvalues λ± are always zero as expected for two
conservation laws. Setting λ± = 0, we can determine other
real roots. Due to parity, the dispersion relation crosses zero
at 0, 1, or 2 nonzero and positive wave numbers

q± =
√

− f ′′
2 − κ f ′′

1 ± √
( f ′′

2 − κ f ′′
1 )2 − 4κ	

2κ
, (B8)

with f ′′
2 and f ′′

1 as given above. If q+ becomes real it cor-
responds to a nontrivial root of λ+ (note that λ+ > λ−). If
both, q+ and q− are real, two nontrivial roots exist. Again
q+ corresponds to a root of λ+. The second root q− can
correspond to a root of λ− or to a second root of λ+. The latter
case corresponds to the appearance of a Turing instability. An
oscillatory instability has its threshold when the real part of
λ±(q) is zero. This gives 0 or 1 nonzero and positive wave-
number values

qo =
√

−2a + a	 + 3
(
φ̄2

1 + φ̄2
2

)
1 + κ

, (B9)

implying that it is always a large-scale oscillatory (Hopf)
instability.

Independently of the onset of instabilities, we can deter-
mine the band of wave numbers [qo

−, qo
+] where complex

eigenvalues occur by setting the discriminant in Eq. (B1) to
zero. This yields

qo
± =

√
±2

√
	 − 3

(
φ̄2

1 − φ̄2
2

) + a	

1 − κ
. (B10)

Requesting that the limiting values qo
± have to be real implies

that for ⎛⎝ 3
(
φ̄2

1 − φ̄2
2

) − a	 >2
√

	∣∣3(
φ̄2

1 − φ̄2
2

) − a	

∣∣ <2
√

	

3
(
φ̄2

1 − φ̄2
2

) − a	 < − 2
√

	

⎞⎠ (B11)

complex eigenvalues occur in the bands⎛⎝[qo
−, qo

+] if κ > 1
[0, qo

∓] if κ ≷ 1
[qo

−, qo
+] if κ < 1

⎞⎠. (B12)
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In the special case of identical interface rigidities κ1 = κ2

(i.e., κ = 1), the occurrence of complex eigenvalues does not
depend on the wave number as qo

± → ∞ for κ → 1. Then, for∣∣3(
φ̄2

1 − φ̄2
2

) − a	

∣∣ < 2
√

	, (B13)

eigenvalues are complex at any q.

APPENDIX C: PHASE BEHAVIOR IN VARIATIONAL CASE

Here, we briefly review the phase behavior of the coupled
CH model in the variational case (α = 0). It can be applied to
describe passive phase separation of a ternary mixture, e.g., in
a liquid-liquid-gas system [83]. In particular, we discuss the
phase diagram in the thermodynamic limit, i.e., for an infinite
domain where interfaces between phases can be neglected.
The phase behavior is then related to bifurcation diagrams
determined for finite systems.

To calculate uniform steady states in the thermodynamic
limit, all spatial derivatives in Eqs. (7) are set to zero to obtain

0 = f ′
1(φ1) − ρφ2 − μ1,

0 = f ′
2(φ2) − ρφ1 − μ2. (C1)

Next, we consider two uniform states in different boxes A
and B with concentrations φA

1 , φA
2 and φB

1 , φB
2 , respectively.

At coexistence, the two boxes are at equal temperature (by
definition for our isothermal system), at identical chemical
potentials μ1 and μ2 and at identical pressure p, i.e., equal
grand potential density,

ω = −p = f1 + f2 − ρφ1φ2 − μ1φ1 − μ2φ2. (C2)

As a result, we have the three conditions

μA
1 = μB

1 ,

μA
2 = μB

2 , (C3)

pA = pB

to determine the four unknown concentrations at coexistence
leaving one of them a free parameter. Figure 14 gives resulting
phase diagrams in planes spanned by the mean concentrations
and the chemical potentials, respectively. For details on the
employed continuation procedure see Ref. [84].

For a	 = 0, the steady equations (C1) and the pressure
(C2) are symmetric w.r.t. an exchange of the two fields and
chemical potentials (φ1, μ1, φ2, μ2) → (φ2, μ2, φ1, μ1)
and also w.r.t. the inversion (φ1, μ1, φ2, μ2) →
(−φ1,−μ1,−φ2,−μ2). These symmetries are inherited
by the phase diagrams in Figs. 14(a) and 14(b), namely,
they are reflection symmetric w.r.t. both diagonals (exchange
symmetry) and w.r.t. the origin (inversion symmetry). In
contrast, for a	 �= 0 as in Figs. 14(c) and 14(d), the reflection
symmetry w.r.t. both diagonals is broken.

In the four corners of Figs. 14(a) and 14(c), one finds the
four phases I to IV with various extended coexistence regions
in between. The four phases may be called (I) high-φ1, high-
φ2 phase, (II) low-φ1, high-φ2 phase, (III) low-φ1, low-φ2

phase, and (IV) high-φ1, low-φ2 phase.
For the present ρ > 0 case, all phases with the exception of

II and IV can pairwise coexist (for ρ < 0, the excluded com-
bination will be I–III). This is best seen in the (μ1, μ2) plane
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FIG. 14. The phase behavior of the ternary system modeled by
two variationally coupled CH equations [Eq. (C1)] represented in
planes spanned by (a), (c) the mean concentrations and (b), (d) the
chemical potentials. Panels (a) and (b) display the fully symmet-
ric case a	 = 0 while (c) and (d) give an asymmetric case with
a	 = −0.5. Phases I–IV are described in the main text. The heavy
solid lines in (a), (c) [(b), (d)] represent the various binodals [phase
boundaries], i.e., the states at coexistence. The thin solid and dotted
lines give coexisting metastable and unstable states, respectively,
while the straight dashed lines in (a), (c) are tie lines connecting par-
ticular coexisting stable states. The triangular green shaded regions in
(a), (c) indicate three-phase coexistence and correspond to the triple
points (green triangle symbols) in (b), (d). The remaining parameters
are a = −1.5 and ρ = 1.

[Figs. 14(b) and 14(d)]. There heavy solid lines [green triangle
symbols] indicate phase boundaries [triple points] where two
[three] phases coexist. In the (φ1, φ2) plane [Figs. 14(a) and
14(c)] two coexisting states lie on binodal lines (heavy solid
lines) and are connected by tie lines (thin dashed lines) that
represent the Maxwell construction in the ternary system.
States between binodals are unstable w.r.t. phase decompo-
sition and decompose along the tie lines. In Figs. 14(a) and
14(c), triple points become extended (green shaded) regions.
States within such a region decompose into the three coexist-
ing states at the corners of the triangle.

Note that for large |φ1| or |φ2|, the two fields practically
decouple. For instance, for |φ1| � 1, to leading order φ1 is
uniform, and φ2 separates into states ≈1.25 and ≈ −1.25.
This is already well visible in Fig. 14(a), even at φ1 = ±2.5
and can also be seen in the concentration profiles discussed
below. Actually, in the slightly artificial limit ρ → 0 the two
fields entirely decouple and the (φ1, φ2)-phase diagram con-
verges to vertical and horizontal binodal lines at ±√−a.7

7Note, that for a	 �= 0 the binodals converge to horizontal lines at
±√−a − a	 and vertical lines at ±√−a which reflects the broken
exchange symmetry, see, e.g., Fig. 14(c).
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Their crossing points define a square that contains a four-
phase coexistence region. In the (μ1, μ2) plane, vertical and
horizontal lines at zero chemical potential cross at the origin
that corresponds to a quadruple point of four-phase coexis-
tence.

Now we come back to the case of ρ > 0 in Fig. 14 to
discuss the remaining features. The concept of coexistence
can be extended beyond the thermodynamic limit of a globally
stable coexistence: Two coexisting phases may still exist even
if the resulting state is only metastable (thin solid lines in
Fig. 14). Such metastable binodals exist for a small parameter
range after the binodals cross a triple point. Mathematically,
one or both of the coexisting states can even be linearly
unstable (dotted lines)—such unstable binodals are important
for the understanding of the topology of the phase diagrams:
In the exchange symmetric case [Fig. 14(a)] each unstable
binodal (except the purple line) connects the ends of two
metastable binodals and represents a threshold state that has
to be overcome when going from a metastable coexistence
to a stable one. The purple dotted ellipse in Fig. 14(a) and
the corresponding purple dotted line in Fig. 14(b) represent
unstable coexistences of phases II and IV. These states are
remnants of the discussed four-phase coexistence in the lim-
iting case ρ → 0. When the sign of ρ changes, the blue and
purple ellipses exchange their roles.

The phase diagrams in Figs. 14(c) and 14(d) present the
more generic case of a broken field exchange symmetry (at
a	 = −0.5). Although the symmetry w.r.t. the diagonals is
broken, qualitatively the stable two- and three-phase coex-
istences are unchanged. However, a qualitative difference is
observed for metastable and unstable coexistence lines: They
connect differently, e.g., the blue ellipse in Fig. 14(a) is broken
in Fig. 14(c). Also, in Fig. 14(a), metastable and unstable
binodals connect stable phase coexistences I–IV [II and III]
and III and IV [I and II], in Fig. 14(c) they connect the
stable phase coexistences I–IV via I–III to II and III (visible
through the different respective line colors). Knowledge of
such metastable and linearly unstable states is particularly
important when the dynamics of phase transitions is con-
sidered, e.g., when considering the motion of fronts [85,86].
For more extensive analyses of the phase behavior of ternary
mixtures including the dependency on a third parameter, e.g.,
the temperature, see Refs. [87,88].

Next, we consider phase coexistence in finite systems,
where energies of interfaces between coexisting phases be-
come important. Then, transitions between phases can be
described by bifurcation diagrams giving a property of states
as a function of a control parameter. Increasing the system
size, one can systematically study how coexistence in the
thermodynamic limit emerges from the bifurcation diagrams.
See Ref. [18] for the case of a one-field CH equation.

In Fig. 15(a), we use the mean concentration φ̄2 as control
parameter, keep φ̄1 = 0 fixed, and employ a suitable norm as
solution measure [see Eq. (8)]. That is, we consider a straight
vertical cut through the phase diagram in Fig. 14(a). At small
φ̄2, we start in the coexistence region of phases III and IV,
i.e., the low-φ1, low-φ2 phase and the high-φ1, low-φ2 phase
coexist, see Fig. 15(d) for an example profile.

Increasing φ̄2, the triple point region in Fig. 14(a) is
crossed, before reaching the I–III coexistence region. In the

FIG. 15. (a) Bifurcation diagram with control parameter φ̄2 at
fixed φ̄1 = 0 for a	 = 0 [i.e., straight vertical central cut through
Fig. 14(a)] and finite domain size � = 10π (and κ = Q = 1). Panels
(b)–(d) give examples of concentration profiles at points marked by
plus symbols in (a). The remaining parameters are as in Fig. 14.

bifurcation diagram, the branch undergoes two saddle-node
bifurcations where the state looses and regains linear stability,
respectively. This is related to the nucleation of a third phase
within the profile, namely, the high-φ1, high-φ2 phase (i.e.,
phase I). It appears at the center of the phase-IV plateau
[see Fig. 15(c)]. Phase IV is still visible as two shoulderlike
plateaus between the expanding phase I and phase III. Further
increasing φ̄2, the plateaus of phase IV shrink and are replaced
by phase I [see Fig. 15(b)]. Beyond the maximum at φ̄2 = 0,
the two concentration fields exactly reverse roles due to the
inversion symmetry and phase III is replaced by phase II in a
similar sequence of events (not shown).

APPENDIX D: WEAKLY NONLINEAR ANALYSIS

To better characterize primary pitchfork bifurcations and to
identify parameter values where subcritical behavior occurs,
we use a weakly nonlinear analysis to derive amplitude equa-
tions. Although our main interest is in the onset of subcritical
behavior in the case of zero mean concentrations, the theory
is developed for the general case, employing the ansatz

φ = φ̄ +
√

|ε|Aeiqn�x + |ε|Ce2iqn�x + c.c., (D1)

with A = vA0 + |ε|A1. (D2)

The smallness parameter ε gives the distance to the primary
bifurcation at ε = εc = 0 and qn = 2nπ

�
is the discretized

rescaled wave number. All amplitudes are constants, i.e., we
only consider homogeneous steady patterns. Then, as the
mean concentrations are fixed at φ̄, the perturbation does not
contain a mean or neutral mode ∼e0. The bifurcations of inter-
est are simple codimension-1 points, i.e., they are represented
by lines in the ( f ′′

2 , f ′′
1 ) plane (see Fig. 1) where f ′′

1 and f ′′
2

directly depend on φ̄1 and φ̄2, respectively. However, to keep
results general, we use f ′′

1 and f ′′
2 as control parameters. In

Fig. 1, the colored lines represent the onset of linear instabil-
ity, i.e., the first mode to become unstable. If one considers the
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onset of linear instability in a Turing bifurcation for arbitrary
f ′′
2 , then f ′′

1,c = f ′′
1

T [Eq. (19)] and qn = kc/� [Eq. (17)].
However, our calculations hold for any stationary primary

bifurcation at fixed wave number qn even far away from the
onset of linear instability. Hence, the critical parameters de-
pend on qn, i.e., f ′′

i,c = f ′′
i,c(qn)—this is not explicitly indicated

in the following. Starting from a bifurcation at a particular
( f ′′

2,c, f ′′
1,c) we consider an arbitrary direction in the ( f ′′

2 , f ′′
1 )-

plane characterized by an angle ϑ ∈ [0, π [. The bifurcation is
then crossed on a line defined by

f ′′
1 = f ′′

1,c + ε sin ϑ, f ′′
2 = f ′′

2,c + ε cos ϑ. (D3)

At the bifurcation, the eigenvector v of the critical mode
solves the linear equation

B
∣∣
qn,εc

v =
(

q2
n + f ′′

1,c −(ρ + α)
−Q(ρ − α) Q

(
κq2

n + f ′′
2,c

))v = 0. (D4)

The resulting eigenvector v and adjoint eigenvector v† are

v =
(

ρ + α

q2
n + f ′′

1,c

)
, v† =

(
Q(ρ − α)
q2

n + f ′′
1,c

)
. (D5)

The latter is in the kernel of the adjoint linear operator B†|qn,εc

and is needed when applying the Fredholm alternative. We
insert ansatz (D1) into the model Eqs. (4), compare Fourier
coefficients and sort in orders in |ε|. At O(|ε|) from the coef-
ficients of e2iqn�x we obtain

B
∣∣
2qn,εc

C = − 1

2!

(
f ′′′
1 v2

1

Q f ′′′
2 v2

2

)
A2

0, (D6)

⇒ C1 = −
(
4κq2

n + f ′′
2,c

)
f ′′′
1 v2

1 + (ρ + α) f ′′′
2 v2

2
2
Q det B

∣∣
2qn,εc

A2
0 ≡ γ1A2

0,

C2 = −
(
4q2

n + f ′′
1,c

)
f ′′′
2 v2

2 + (ρ − α) f ′′′
1 v2

1
2
Q det B

∣∣
2qn,εc

A2
0 ≡ γ2A2

0,

(D7)

with C1 [C2] and v1 [v2] being the first [second] component of
C and v, respectively. Furthermore, det B|2qn,εc

is the determi-
nant of B taken at q = 2qn and ε = εc. Both components Ci

of the higher harmonic mode are determined by A0 (slaving
principle) via Eqs. (D7). They are independent of the mobility
ratio Q (since det B carries a factor Q). For brevity, we define
the proportionality constants as γi.

At order O(|ε|3/2), the coefficients of eiqn�x give

B
∣∣
qn,εc

A1 + ∂

∂ε
B

∣∣
qn,εc

v A0 +
(

f ′′′
1 v1C1

Q f ′′′
2 v2C2

)
A∗

0

+ 1

2

(
f ′′′′
1 v3

1

Q f ′′′′
2 v3

2

)
|A0|2A0 = 0. (D8)

To apply the Fredholm alternative, we multiply Eq. (D8) from
the left by v† [Eq. (D5)]. Then, the first term vanishes. We
insert the expressions for amplitudes C1 and C2 [Eqs. (D7)],
we reincorporate the smallness parameter into the ampli-

tude A0 and finally with ∂
∂ε

B|qn,εc
v = ( v1 sin ϑ

Qv2 cos ϑ ) we obtain the

stationary amplitude equation

ε(v1v
†
1 sin ϑ + Qv2v

†
2 cos ϑ )A0

+ ( f ′′′
1 v1v

†
1γ1 + Q f ′′′

2 v2v
†
2γ2)|A0|2A0

+ 1
2

(
f ′′′′
1 v3

1v
†
1 + Q f ′′′′

2 v3
2v

†
2

)|A0|2A0 = 0. (D9)

Next, it is used to characterize the branches emerging at
primary bifurcations. As v

†
1 ∼ Q, the amplitude equation is

independent of the mobility ratio Q (as expected for steady
states).

First, we reproduce the result for the one-field CH equation
as obtained in the decoupled limit (ρ = α = 0): One finds
the simple expressions v1 = v

†
1 = γ1 = 0, v2 = v

†
2 = 1 and

γ2 = − f ′′′
2

2(4κq2
n+ f ′′

2,c ) , here in the case of an instability related

to the second CH equation. As the second control parameter,
here f ′′

1 , does not enter, the only possible direction in the
( f ′′

2 , f ′′
1 ) plane is ϑ = 0 and the linear stability threshold is

f ′′
2,c = −κq2

n. The amplitude equation [Eq. (D9)] reduces to

εA0 + 1

2

[
f ′′′′
2 − f ′′′

2
2

3κq2
n

]
|A0|2A0 = 0. (D10)

For the particular energy f2 = a
2φ2

2 + 1
4φ4

2 , this further reduces
to

εA0 +
(

3 − 6φ̄2
2

κq2
n

)
|A0|2A0 = 0, (D11)

i.e., the transition from supercritical to subcritical pitchfork

bifurcation occurs at φ̄2
2 = κq2

n
2 as expected [63].8 Alterna-

tively, for fixed a the bifurcation corresponds to a modulation

with wavenumber q =
√

− 1
κ

[a + 3φ̄2
2 ] and becomes subcriti-

cal if |φ̄2| >
√− a

5 .
Second, we discuss the case of coupled fields with

zero mean concentrations, i.e., φ̄ = (0, 0). With the stan-
dard double-well potentials fi ∼ φ2

i + φ4
i , the third derivatives

taken at φ̄ vanish and the mode ∼e2iqn�x is not excited, i.e.,
γ1,2 = 0 and the amplitude equation (D9) reduces to

ε(v1v
†
1 sin ϑ + Qv2v

†
2 cos ϑ )A0

+ 1
2

(
f ′′′′
1 v3

1v
†
1 + Q f ′′′′

2 v3
2v

†
2

)|A0|2A0 = 0. (D12)

Inserting the components of the eigenvectors [Eqs. (D5)], we
obtain

ε
( − 	 sin ϑ + (

q2
n + f ′′

1,c

)2
cos ϑ

)
A0

+ 1
2

( − f ′′′′
1 	
 + f ′′′′

2

(
q2

n + f ′′
1,c

)4)|A0|2A0 = 0, (D13)

with 	 = α2 − ρ2 and 
 = (α + ρ)2. We can choose the
amplitude A0 to be real and positive (since we use periodic
boundary conditions). Solving (D13) yields

A0 = 0 and A0 =
√

2ε
	 sin ϑ − ξn cos ϑ

− f ′′′′
1 	
 + f ′′′′

2 ξ 2
n

, (D14)

with

ξn = (
q2

n + f ′′
1,c

)2
. (D15)

8Note that in Ref. [63] a different scaling is used. There, the
transition for a critical wavelength k = 1 occurs at B2 = 4.5. In our
scaling, B2 = 9φ̄2

2 and κ = qn = 1.
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Our bifurcation diagrams use a as control parameter, i.e., for
φ̄i = 0 correspond to diagonal cuts through the ( f ′′

2 , f ′′
1 ) plane,

i.e.,

ϑ = π/4 and f ′′
1 = a, f ′′

2 = a + a	, f ′′′′
1 = f ′′′′

2 = 6,

(D16)

⇒ A0 =
√

ε

3
√

2

	 − ξn

−	
 + ξ 2
n

. (D17)

Then the critical parameter at given wave number qn is given
by f ′′

1,c = a±(qn) [Eq. (B5) with φ̄i = 0] where + [−] refers
to the eigenvalue λ+ [λ−]. Furthermore,

ξn,± = (
q2

n + a±(qn)
)2 =

(
Mn

2
±

√
M2

n

4
− 	

)2

with

Mn = q2
n(1 − κ ) − a	. (D18)

The trivial state (A0 = 0) looses stability for decreasing a, i.e.,
for ε < 0. Then the corresponding bifurcation is subcritical if

	 − ξn,±
−	
 + ξ 2

n,±
> 0

⇒ min

(
ξn,±,

ξ 2
n,±



)
< 	 < max

(
ξn,±,

ξ 2
n,±



)
. (D19)

This can only occur if 	 > 0, i.e., |α| > |ρ|. As ξn,+(Mn) =
ξn,−(−Mn) [see Eq. (D18)], branches of the same periodicity n
related to λ+ and λ− exchange sub- and supercritical behavior
when Mn switches signs. In particular, for κ = 1 the parameter

ξn,± = ξ± = (− a	

2 ±
√

a2
	

4 − 	)
2

is independent of n. Then,
the inequality (D19) gives the same threshold for subcriticality
for all stationary primary bifurcations [cf. Fig. 8(d)].

There exist two nongeneric cases where subcritical be-
havior cannot occur for any stationary primary bifurcation,
namely, for identical subsystems (κ = 1 and a	 = 0, i.e.,
M = 0 and ξn,± = |	|), and for vanishing variational cou-
pling (ρ = 0, i.e., 
 = 	). The criterion (D19) is illustrated in
Fig. 9 of the main text. Its impact on the onset of time-periodic
behavior is discussed in Sec. VI B.

APPENDIX E: TIME-PERIODIC BEHAVIOR
ARBITRARILY CLOSE TO EQUILIBRIUM

In Sec. VI B, two generic scenarios are discussed for the
emergence of time-periodic behavior of the fully phase sep-
arated state. Here, we highlight the particular case of purely
nonvariational coupling (ρ = 0, α �= 0). In this special sit-
uation, the necessary condition for time-periodic behavior
|α| > |ρ| is fulfilled at arbitrarily small α, and oscillatory be-
havior can be expected arbitrarily close to a classical gradient
dynamics describing systems evolving toward thermodynamic
equilibrium. In the nongeneric case of identical decoupled
subsystems, i.e., for f ′′

1 = f ′′
2 and κ = 1, all primary pitch-

fork bifurcations become Hopf bifurcations for any α �= 0.
Time-periodic states then only exist with small amplitude (not
shown).

Significantly more relevant is the generic case of unequal
subsystems. A corresponding bifurcation diagram is given in

FIG. 16. Emergence of drifting states close to equilibrium for
α = 0.01. Panel (a) shows a bifurcation diagram corresponding to
a CH instability of the uniform state (black line). The loci of the
selected profiles in (b)–(d) are marked by bold + symbols in (a).
Stable branches of steady n = 1 states exist with in-phase [blue line
in (a), profile in (d)] and antiphase [green line in (a), profile in (b)]
fields. They are connected by a branch of stable drifting states [gray
line in (a), profile in (c)]. The remaining parameters are ρ = 0, a	 =
−0.38, κ = 2.4, φ̄1 = 0, φ̄2 = 0, � = 4π , and Q = 1.

Fig. 16(a) for a small nonvariational coupling α = 0.01. It
shows the uniform state and the linearly stable parts of three
different phase-separated states. They almost lie on top of
each other and cannot be distinguished by eye. The unstable
parts are omitted. The uniform state (black horizontal line)
loosens stability to a CH instability where the stationary n = 1
branch (blue line) emerges supercritically, and hence, stable.
Figure 16(d) illustrates the emerging state and shows that
the two fields are in-phase, i.e., near onset the nonvariational
coupling acts attractively.

However, far in the nonlinear regime, an antiphase arrange-
ment is favored, e.g., for a � −1.22 the state of Fig. 16(b) is
stable (green line). The stable in-phase and antiphase station-
ary n = 1 states are connected by a branch of stable drifting
states (gray line) that ends at two drift-pitchfork bifurcations
(triangles). The example profile in Fig. 16(c) indicates an
intermediate phase shift that allows one to move from in-
phase to antiphase along the branch. For any phase between
0 and π , the states drift with constant velocity in the direction
indicated by an arrow in Fig. 16(c). Note that both drift-
pitchfork bifurcations emerge together in a codimension-2
point at α = 0. For instance, at α = −0.01 the branch of
drifting states connects stable antiphase states emerging in
the primary bifurcation with stable in-phase states far in the
nonlinear regime (not shown).

In addition to the unique property of time-dependent
behavior arbitrarily close to equilibrium, the purely nonvaria-
tional coupling also represents a special case regarding model
classification: For ρ = 0, we can write Eqs. (4) in a gradient
dynamics form, namely,

∂tφi =∂x

(
Qi

�2
∂x

δF̃
δφi

)
, i = 1, 2, (E1)
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with

F̃ =
∫ [

− 1

2�2
|∂xφ1|2 − f1(φ1)

+ κ

2�2
|∂xφ2|2 + f2(φ2) + αφ1φ2

]
dx, (E2)

and
Q1 = − 1, Q2 = Q. (E3)

Furthermore, the energy F̃ now has destabilizing and sta-
bilizing gradient-square terms and is not bounded from
below. However, the active character is encoded in the
negative mobility constant Q1, implying that F̃ does not
necessarily decrease in time in contrast to its variational
pendant.
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