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Stick-slip dynamics in the forced wetting
of polymer brushes†

Daniel Greve, *a Simon Hartmann ab and Uwe Thiele ab

We study the static and dynamic wetting of adaptive substrates using a mesoscopic hydrodynamic

model for a liquid droplet on a solid substrate covered by a polymer brush. First, we show that on the

macroscale Young’s law still holds for the equilibrium contact angle and that on the mesoscale a

Neumann-type law governs the shape of the wetting ridge. Following an analytic and numeric

assessment of the static profiles of droplet and wetting ridge, we examine the dynamics of the wetting

ridge for a liquid meniscus that is advanced at constant mean speed. In other words, we consider an

inverse Landau–Levich case where a brush-covered plate is introduced into (and not drawn from) a

liquid bath. We find a characteristic stick-slip motion that emerges when the dynamic contact angle of

the stationary moving meniscus decreases with increasing velocity, and relate the onset of slip to Gibbs’

inequality and to a cross-over in relevant time scales.

1 Introduction

Many hydrodynamic processes of practical importance involve
the motion of three-phase contact lines. In consequence, for
many years phenomena involving static and dynamic contact
lines have been of much interdisciplinary interest. This includes
shapes of static and dynamic drops and bubbles at solid sub-
strates and liquid bridges between solids as well as wetting and
dewetting processes.1–7 An important class of problems that has
gained much attention in recent years is the wetting of soft
adaptive substrates,8–10 i.e., substrates with an intrinsic dynamics
that responds to the dynamics of the liquids on top of them.

To comprehend the intricacies of dynamic wetting processes
on substrates like hydrogels and polymer brushes, first, a
profound understanding of the statics of wetting is essential.
For a sessile liquid drop on a substrate, two limiting cases are
often considered: on the one hand, for a rigid solid substrate,
the equilibrium contact angle yY at the three-phase contact line
is given by a macroscopic horizontal force balance, namely, the
Young law.11 If, on the other hand, the substrate is liquid, also
the vertical force balance has to be taken into account as the
liquid–gas interface tension exerts a traction force that deforms
the substrate. The two components of the force balance form

the Neumann law.12,13 It determines the two independent
angles between the three involved interfaces and is invariant
under a rigid rotation of the three-phase contact region.

For other non-rigid substrates as soft elastic or otherwise
adaptive substrates, normally, the Neumann law applies at least
in the close vicinity of the contact line.10,14 At larger distances,
the bulk influence of substrate elasticity becomes relevant and
results in features like the wetting ridge and viscoelastic
breaking.10

Here, we are specifically concerned with liquid droplets and
menisci on a rigid solid substrate covered by a polymer brush
that can elastically deform, and also absorbs liquid due to mass
transfer and imbibition processes.9,15–18 As a result, brush
swelling and deformation interact with contact line motion,
e.g., for spreading and sliding drops.19–22 In contrast to soft
solid substrates, where, depending on substrate softness, large
elastic deformations can be found even on the scale of macro-
scopic droplets,23 the comparatively small length (nanometer to
micrometer) of the grafted polymer molecules restricts brush
deformations to mesoscopic scales. We will show that, in
consequence, the wetting behaviour of polymer brushes corre-
sponds to an intermediate case, where characteristics of both,
the macroscopic Young law and Neumann law are encountered.

Due to the involved small scales of the deformations, many
of the features known from soft solid substrates, e.g., the
occurrence of a wetting ridge at the contact line, have, to our
knowledge, not yet been assessed in experiments involving
three-phase contact lines on polymer brushes. However,
they may be responsible for intricate observed macroscopic
behaviour, namely, the emergence of stick-slip dynamics,
i.e., stick-slip motion of the contact line. This occurs, e.g., in forced
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wetting experiments with expanding or moving droplets on poly-
mer brushes.24–26 The length scale-bridging relation of stick-slip
motion and the formation of wetting ridges and associated pinning
effects is already more widely investigated for contact line motion
on soft solid substrates.10,27–32 However, even there, the bifurca-
tions underlying transitions between stationary and stick-slip
contact line motion are not yet well understood.

Note that related stick-slip phenomena occur well beyond
systems involving soft and adaptive substrates. They are
described in a wide range of (de)wetting, deposition and coat-
ing processes,33,34 where they can occur for both, advancing
and receding contact lines. Detailed investigations exist for
droplets spreading or sliding on rigid substrates with imposed
regular wettability or topography patterns.35–42 Rough rigid
substrates often reveal a stochastic stick-slip motion due to a
contact line pinning induced by a random topography.43–46

Furthermore, self-organised stick-slip motion is of key impor-
tance to deposition processes like in the evaporative dewetting
or dip coating of a solution or suspension,33,34,47–49 and the
Langmuir-Blodgett transfer of a surfactant layer from a bath
onto a moving plate.50,51 This is also closely related to the fine
structure of coffee rings.52 Beyond various technical applications,33

similar time-periodic behaviour may as well be found in biology
as cells can show a stick-slip motility.53,54 Detailed nonlinear
analyses of the rich dynamical behaviour for the examples
of evaporative dewetting,55 Langmuir–Blodgett51,56 and dip-
coating transfer57 are available. They show that the onset of
stick-slip motion is often related to time-periodic states that
appear at Hopf bifurcations (at large contact line speeds) and
global bifurcations (at low contact line speeds). The emergence
of the entire branch of such states has recently also been
investigated.58 Here, we aim at a detailed understanding of
stick-slip motion of advancing contact lines on adaptive brush-
covered substrates.

Our work is structured as follows. In Section 2 we present a
mesoscopic hydrodynamic model that allows us to study the
coupled dynamics of the profiles of the brush–liquid and the
liquid–gas interfaces under full consideration of absorption,
swelling and imbibition processes. In the subsequent Section 3
we consider steady sessile droplets on the swollen polymer
brush and analytically obtain laws characterizing the macro-
scopic contact angle and the mesoscopic wetting ridge. Using
numerical simulations we then analyse in Section 4 the case of
forced dynamic wetting, i.e., the inverse Landau–Levich case
when a brush-covered plate is slowly pushed into a liquid bath.
There, a particular interest lies on the dynamic behaviour of
the wetting ridge close to the three-phase contact line. Then,
Section 5 focuses on the conditions for the emergence of
stick-slip motion. Finally, Section 6 provides a conclusion and
outlook.

2 Mesoscopic hydrodynamic model

We develop a mesoscopic gradient dynamics model that allows
for studies of situations involving the dynamics of a three-phase

contact line on an adaptive substrate formed by a rigid smooth
solid covered by a polymer brush. In particular, we extend a
recently presented model by Thiele and Hartmann20 to also
capture the dependence of wettability on brush state. The addi-
tional incorporation of driving forces then allows us to study
forced wetting.

In particular, we consider a liquid drop, layer or meniscus of
height profile h(x,t) on a polymer brush of height H(x,t) = Hdry +
z(x,t). Here, x = (x,y)T are the substrate coordinates, Hdry denotes
the reference height of a completely dry brush and z(x,t) is the
local increase in brush thickness due to swelling, i.e., it
corresponds to an effective height of the liquid contained
within the brush (or effective liquid volume per area). The
geometry in the case of a liquid meniscus is sketched in Fig. 1.

The coupled dynamics of h and z is then described within a
gradient dynamics framework59 – a common formulation of
evolution equations for one-layer thin liquid films and shallow
drops.60,61 This approach has been expanded to two-field
systems as, for example, two-layer liquid films,62,63 liquid
drops/films covered by an insoluble surfactant,64 drops on
viscoelastic substrates,23 films of liquid mixtures,65 and drops
of volatile liquids in a vapour-filled gap.66 It also forms a central
building block for models of biofilms67 and drops of active
liquids.68

To arrive at a gradient dynamics description for a meniscus
on a brush-covered substrate we assume that the region of
interest is sufficiently small to be able to neglect inertia, i.e., the
dynamics is mainly driven by an underlying free energy func-
tional F½h; z� that depends on the drop profile and the brush
state. Allowing for various occurring transport and transfer

Fig. 1 Shown is a sketch of the considered geometry close to a static
three-phase contact line for the case of a liquid meniscus on a polymer
brush. Such a meniscus may, e.g., be seen as the contact line region of a
sessile liquid drop (inset). Indicated are the definitions of height profiles
h and z, the equilibrium (Neumann) angles yLG, yBL and yBG defined at the
tip of the wetting ridge. The horizontal dotted lines mark the dry brush
thickness Hdry, as well as the equilibrium brush height zn and the height of
the wetting ridge zwr, both above Hdry. At positions x1 and x4 far away from
the three-phase contact line region (inset) the brush is practically flat.
Positions x2 and x3 mark the points of maximal and minimal slope of the
brush–liquid interface, i.e., its inflection points. Far from the meniscus the
liquid thickness approaches a mesoscopic adsorption layer height hp.
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processes, the dynamical equations for the profiles h and z have
the form

@th ¼ r �
h3

3Z
rdF

dh

� �
�M

dF
dh
� dF

dz

� �
þU@xh

@tz ¼ r � DzrdF
dz

� �
�M

dF
dz
� dF

dh

� �
þU@xz:

(1)

where U is an imposed velocity of the substrate that is drawn
out (U 4 0) or pushed into (U o 0) the bath/drop. For U = 0,
eqn (1) have the same form as the ones in Thiele and
Hartmann.20 The first term on the r.h.s. of the first equation
describes advective transport within the liquid layer (with
the dynamic viscosity Z), driven by the pressure gradient
rðdF=dhÞ; while the second term describes the loss/gain of
liquid via transfer to/from the brush (with rate constant M).
This absorption process is driven by the pressure difference
between liquid and brush. Without transfer, the equation
becomes the standard mesoscopic thin-film (lubrication,
long-wave) equation for a nonvolatile liquid on a rigid solid
substrate.1,3–5,61,69 The first term on the r.h.s. of the second
equation describes diffusive transport of liquid within the
brush (diffusive imbibition with the diffusion constant D)
driven by the gradient in chemical potential‡ rðdF=dhÞ while
the second term describes the loss [gain] of liquid via transfer
to [from] the meniscus. As we assume a nonvolatile liquid, the
nonconserved terms in the two equations exactly compensate,
i.e., h + z follows a continuity equation.

Assuming a long-wave setting, i.e., small interface slopes,5,69

h3/3Z and Dz are the viscous mobility in the liquid and the
diffusive mobility within the brush, respectively. Note that
there is no dynamic cross-coupling between drop and brush
as we neglect advective transport of liquid within the brush.
The driving term has the form of a Galilean transformation
from a reference frame S, in which brush and liquid meniscus
are at rest, into a frame S0 moving with velocity U. In conse-
quence, as long as boundary effects are excluded, in the new
reference frame S0 both the liquid film/drop and the substrate
are translated horizontally at a constant speed �U without
any change in drop or brush profile. However, incorporating
boundary conditions within the moving frame S0, e.g., imposing
the film inclination on one boundary of the finite (co-moving)
domain, U represents a driving force onto the film. This geometry
effectively models a liquid drop being pushed over the substrate
with a sharp blade (in the reference frame S0 of the blade) or the
substrate being pushed into a liquid bath (in the reference frame
S0 of the bath), i.e. the dipping-phase of a dip-coating process.
Note that such a permanent external driving force is normally
not captured by a free energy functional F. In other words, it
represents a nonvariational influence that persistently keeps
the system out of equilibrium making time-periodic behaviour
possible.

The considered free energy functional is

F½h; z� ¼
ð
fcapðh; zÞ þ xzfwetðh; zÞ þ gbrushðzÞ
� �

d2x: (2)

It incorporates contributions due to capillarity of the brush–
liquid and the liquid–gas interfaces

fcap(h,z) = gbl(z)xz + gxh+z, (3)

wettability xzfwet(h,z), and the local free energy of the (dry or
swollen) brush gbrush(z). Here, g and gbl(z) denote the interface
energies of the liquid–gas and brush–liquid interfaces, respec-
tively. In general, both, wetting energy fwet(h,z) and brush–
liquid interface energy gbl(z) will depend on the brush state
encoded in z. This dependence is necessary to ensure that at
very high liquid concentration within the brush, the brush–
liquid interface energy tends to zero while the brush–air inter-
face energy (as encoded in fwet, cf. de Gennes,1 Bonn et al.,4

Thiele et al.70) tends to g. Note that this generalises the
approach in earlier work20 where such z-dependencies were
not considered. Further note that the metric factors of the two
interfaces,

xz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðrzÞ2

q
and xhþz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½rðhþ zÞ�2

q
; (4)

enter the interface energies as well as the wetting energy. This
ensures consistency with macroscopic relations (see below).

The employed wetting energy we base on a simple standard
form for partially wetting liquids that includes long-range
attractive and short-range repulsive contributions, both as
power laws61,71 (see Fig. 2(a))

fwetðh; zÞ ¼ AðzÞ hp
3

5h5
� 1

2h2

� �
: (5)

Here, we employ a brush state-dependent Hamaker constant A
effectively letting the equilibrium contact angle adjust to the
swelling state of the brush. For a simple ansatz that fulfils
the aforementioned limiting cases, we assume that both,
the Hamaker constant A(z) and brush–liquid interface energy
gbl(z), depend linearly on the polymer concentration in the
brush c, i.e.,

A(z) = A0c(z) and gbl(z) = gbl,0c(z), (6)

Fig. 2 Displayed is the typical qualitative behaviour of (a) the wetting
energy fwet(h,z) as a function of h at fixed z [eqn (5)], and (b) the brush
energy gbrush(z) as a function of z [eqn (9)].

‡ Note that conceptionally it is a chemical potential that drives diffusion,
however, here it is literally a pressure as our considered field z is a height and
not a particle number per area.
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where the constants A0 and gbl,0 are the reference values
obtained for a dry brush (z = 0). This in particular ensures that

fwet(h,z - N) = 0 and gbl(z - N) = 0, (7)

i.e. the brush–liquid interface turns into a liquid–liquid inter-
face between identical liquids. The implications for the macro-
scopic brush–air interface are discussed below in Section 3.2.
The volume fraction of polymer within the brush layer is
defined as

cðzÞ ¼ Hðz ¼ 0Þ
HðzÞ ¼ Hdry

Hdry þ z
; (8)

i.e., it corresponds to the inverse of the local swelling ratio.
Finally, we employ the brush energy20

gbrushðzÞ ¼
HdrykBT

‘3K

s2

2c2
þ ð1=c� 1Þ log 1� cð Þ

� �
; (9)

where T is the temperature, cK is the Kuhn length (or the length
of a unit cell in the lattice model) and s is the relative grafting
density, i.e., the number of grafted chains per unit area.
Note that in a simple Alexander–de Gennes approach for the
brush72–74 the grafting density relates to the collapsed brush
height via the degree of polymerisation N as Hdry = sNcK.

Within the brush energy (9), the first term accounts for the
elastic energy due to the stretching of polymers, whereas the
second one represents an entropic contribution as obtained
from a Flory–Huggins lattice model for polymer–solvent
mixtures.75 Independently of all parameters, the brush energy
is convex and therefore has one global minimum, see Fig. 2(b).
Note that our approach assumes that the liquid content of the
brush is vertically homogeneous, i.e., the distribution of liquid
in the brush does not depend on the height coordinate.

In summary, compared to Thiele and Hartmann,20 we have
generalised the theoretical description in four ways: first, we
incorporate dependencies of the brush–liquid interface energy
and of the wetting energy on the brush state. Second, for
consistency with macroscopic laws (considered in Section 3.2),
the wetting energy is scaled with the metric factor of the
brush–liquid interface. Third, we incorporate a permanent
driving force to be able to investigate forced wetting processes.
Fourth, we improve the energy functional by using the exact
metric factors resulting in the exact curvature in the time-
evolution equations.76,77 It has been shown that such improved
representations of the underlying energy functional are more
important for a correct description of the physical behaviour
than the details of the dynamics even though the resulting
model is not asymptotically exact78 (also see Section 3 of the
review by Thiele59). Naturally, for small inclinationsrz andrh,
the metric factors can be Taylor-expanded up to second order to
arrive at a standard long-wave approximation of both, mobili-
ties and energies5,69 as used by Thiele and Hartmann.20

3 Equilibrium states
3.1 Grand potential and mechanical analogue

We start by analysing the variational case (U = 0), where the
gradient dynamics structure of eqn (1) implies a continuous
decrease of the free energy, dF=dt � 0 (see Appendix A.4). With
other words, F is a Lyapunov functional and the system always
approaches a steady state corresponding to a minimum of F

under the constraint of an imposed total liquid volume. Then,
all equilibria correspond to minima of the grand potential

G½h; z� ¼
ð
fcap þ xzfwet þ gbrush � Pðhþ zÞ
� �

d2x (10)

where P is a Lagrange multiplier to ensure volume conservation,
and equilibria fulfil the corresponding Euler–Lagrange equations
dF=dh ¼ P and dF=dz ¼ P.

As the integrand of G only depends on the fields h and z and
their first spatial derivatives, in the case of a one-dimensional
substrate (1D),§ there exists a strong analogue to classical
Lagrangian and Hamiltonian mechanics: the functional G then
corresponds to an action and its integrand to a Lagrangian L,
i.e., G ¼

Ð
L dx. The fields h(x) + z(x) and z(x) are generalised

coordinates, and the spatial coordinate x becomes time.
In consequence, the determination of steady interface profiles
corresponds to solving the coupled generalised Newton equations

dG
dh
¼ �g@xxðhþ zÞ

xhþz3
þ xz@hfwet � P ¼ 0 (11)

dG
dz
¼ � g

@xxðhþ zÞ
xhþz3

� @x � gbl þ fwetð Þ@xz
xz

� �

þ xz@z gbl þ fwetð Þ þ @zgbrush � P ¼ 0:

(12)

Further employing the analogy, we define the appropriate
generalised momenta ph+z and pz

phþz: ¼
@L

@ @xðhþ zÞ½ � ¼ g
@xðhþ zÞ

xhþz
(13)

pz: ¼
@L

@ @xzð Þ ¼ gbl þ fwetð Þ@xz
xz

(14)

and determine the first integral

H ¼ phþz@xðhþ zÞ þ pz@xz�L

¼ � g
xhþz
� gbl þ fwet

xz
� gbrush þ Pðhþ zÞ;

(15)

that corresponds to the Hamiltonian. In consequence, E ¼ �H
is a constant energy density, which we can use to describe the
balance of horizontal forces across the contact line.

§ With other words, we consider two-dimensional (2D) droplets, see inset of
Fig. 1, that may be seen as cross sections of liquid ridges in 3D that are
translation-invariant in the transverse direction. Also in a dip coating geometry
a 2D slice of a transversely translation-invariant configuration is considered.

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
6 

M
ay

 2
02

3.
 D

ow
nl

oa
de

d 
by

 W
E

ST
FA

L
IS

C
H

E
 W

IL
H

E
L

M
S 

U
N

IV
E

R
SI

T
A

T
 M

U
N

ST
E

R
 o

n 
6/

16
/2

02
3 

3:
35

:5
8 

A
M

. 
View Article Online

https://doi.org/10.1039/d3sm00104k


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 4041–4061 |  4045

3.2 Limiting cases and consistency condition

3.2.1 Contact angles. Next, we consider a 2D slice through
a straight liquid meniscus as depicted in Fig. 1. Then, the
angles between local tangents to the brush–liquid and liquid–
gas interface and the horizontal, ybl and ylg, respectively, are
directly related to the metric factors via

cos ylg ¼
1

xhþz
; sin ylg ¼

@xðhþ zÞ
xhþz

;

cos ybl ¼
1

xz
; and sin ybl ¼

@xz
xz
:

(16)

As there is no trivial definition of equilibrium contact angles in
the mesocopic picture,79 here, we introduce them as extremal
values of ylg and ybl, i.e., as local steepest slopes. Namely,
considering the geometry in the main panel of Fig. 1 we use

yLG = min(ylg), yBL = max(ybl) and yBG = min(ybl).
(17)

Note that due to the identification with the metric factors,
inclination and contact angles are signed values in the range
[�p/2,p/2] where a positive [negative] angle corresponds to a
positive [negative] slope of the corresponding interface profile.

3.2.2 Global Young law. As the wetting energy (5) and its
derivatives approach zero at large film height h, for a macro-
scopic droplet far away from the contact line region (e.g., at
position x1 in Fig. 1) eqn (11) becomes

P ¼ �gk with the curvature k ¼ @xxðhþ zÞ
xhþz3

: (18)

Therefore, macroscopically, P corresponds to the Laplace pressure
and in the studied 2D slice the liquid–gas interface approaches
the shape of a circular arc. Next, we consider a very large drop, i.e.,
k - 0, at equilibrium on a brush. Aiming at a global picture that
ignores the details of the configuration in the contact line region,
we consider positions x1 and x4 far from the contact line (Fig. 1).
There, the brush approaches a flat state, i.e., all spatial derivatives
of the brush profile approach zero. In consequence, within the
drop (at x1) eqn (11) and (12) simplify to

P = 0 and qz(gbl + gbrush) = 0, (19)

as the Derjaguin (or disjoining) pressure �qhfwet vanishes
within the droplet due to large h (as discussed above). The
brush assumes a height zd given by the minimum of gbl + gbrush

with respect to z (Fig. 2(b)). In contrast, far away from the drop
(at x4), the Derjaguin pressure matters and eqn (11) and
(12) become

qhfwet = 0 and qz(gbl + fwet + gbrush) = 0, (20)

i.e., the minimum of the wetting energy w.r.t. h gives the adsorp-
tion layer height hp (Fig. 2(a)) while the minimum of gbl + fwet +
gbrush w.r.t. z gives the brush height zp far away from the drop.

Using this result and eqn (15) we evaluate the asymptotic
energy density E ¼ �H inside and outside of the drop

E(x1) = g cos yLG + gbl(zd) + gbrush(zd) (21)

E(x4) = g + gbl(zp) + fwet(hp,zp) + gbrush(zp). (22)

We set the two energies equal, identify the occurring contact
angle yLG as a macroscopic angle yY and obtain an equivalent to
Young’s law11

g cos yY ¼ gþ fwet hp; zp
� �

þ gbl zp
� �
þ gbrush zp

� �
� gbl zdð Þ � gbrush zdð Þ

(23)

expressed in mesoscale quantities. Note that the last four
addends are solely due to the adaptive character of the brush
and are not present in the classical result known from rigid
non-adaptive substrates. However, as per the bulk equilibrium
condition (19) the correction to Young’s law is of second order
in the height difference zd – zp and therefore potentially small.

A similar consideration based solely on macroscopic quan-
tities, see Appendix A.5, gives an identically amended macro-
scopic Young’s law

g cos yY ¼ gbg zp
� �
� gbl zp

� �
þ gbl zp

� �
þ gbrush zp

� �
� gbl zdð Þ � gbrush zdð Þ:

(24)

Note that here we added the terms gbl(zp) � gbl(zp) = 0 to resemble
the form of the mesoscopic Young law, namely eqn (23). Compar-
ing both versions of Young’s law, we identify a consistency relation
between the macroscopic and mesoscopic global picture

fwet(hp, zp) = gbg(zp) � gbl(zp) � g. (25)

The relation determines how the dependencies of interface
tensions and wetting potential on the brush state z are related.
Together with our assumptions on the brush state-dependence
of the mesoscopic wetting potential fwet(h,z) and the brush–
liquid interface energy gbl(z) in eqn (6) this implies that the
macroscopic brush–gas interface energy scales as

gbg(z) = (gbg,0 � g)c(z) + g, (26)

i.e., it interpolates between the dry brush–gas interface energy
gbg,0, and the energy of a liquid–gas interface in case of a fully
swollen brush, as expected.

3.2.3 Local Neumann law. Having established the global
picture for a large drop on a brush within a mesoscale and a
macroscale description, we next retain the mesoscopic view and
consider the local picture of the contact line region. Equating
the brush and film pressure (eqn (11) and (12)), we obtain for
the curvature of the brush–liquid interface

@x ðgblþ fwetÞ
@xz

x3z

" #
¼xz@z gblþ fwetð Þþ@zgbrush�xz@hfwet: (27)

Furthermore, eqn (11) indicates that the Derjaguin pressure
term �xzqhfwet has to balance the (strong) curvature of the
liquid profile in the contact line region. Thus, generally, the
r.h.s. of eqn (27) is non-zero, i.e., the curvature of the brush
profile can not vanish. We expect that the brush forms some
type of wetting ridge as known from elastic substrates.10

To investigate the ridge we consider the inflection points
x2 and x3 of the brush profile as indicated in Fig. 1. Close to
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three-phase contact, the Derjaguin pressure will dominate
eqn (27) over a small length scale of the order of the height
hp. Hence, the distance between x2 and x3 will scale with hp/yLG.
Outside this small region, the wetting ridge will decay to the
equilibrium brush height zp (or zd) and its shape is governed by
the differential eqn (27).

To further advance, we next focus on situations where the
wetting ridge is large compared to the adsorption layer height
and assume, motivated by the previous argument, that the
brush heights at x2 and x3 well approximate the peak height
zwr. Also assuming that the inclination angle of the liquid–gas
interface at x2 equals yLG, we again use eqn (15) to evaluate the
energy E ¼ �H, this time at x2 and x3. We obtain

E(x2) = g cos yLG + gbl cos yBL + gbrush(zwr) (28)

E(x3) = [g + gbl + fwet(hp,zwr)]cosyBG + gbrush(zwr). (29)

Equating the two expressions yields the horizontal component
of the Neumann law, namely,

g cos yLG + gbl cos yBL = [g + gbl + fwet(hp,zwr)]cos yBG.
(30)

To obtain the vertical component of the law, we consider
conservation of the total generalised momentum pz + ph+z

(eqn (13) and (14)) across the contact line region, i.e., from x2

to x3.¶ Also using eqn (16) and (17), this directly gives

g sin yLG + gbl sin yBL = [g + gbl + fwet(hp,zwr)]sin yBG.
(31)

Note that the brush energy does not enter as we have used
z(x2) E z(x3) E zwr.

The obtained mesoscopic Neumann law, eqn (30) and (31),
corresponds to the usual macroscopic form when taking the
consistency condition (25) into account, see Appendix A.5.
We emphasise that the full agreement critically depends on
the above discussed scaling of the wetting energy with the
metric factor of the brush–liquid interface.

We therefore conclude that in the limit of a wetting ridge
that is large compared to the adsorption layer height hp, its
shape is governed by the Neumann law expressed in mesoscale
quantities. This is in line with similar findings for elastic
substrates, where Pandey et al.14 have shown that the classic
macroscopic Neumann law applies at the wetting ridge as
substrate elasticity is negligible when approaching the contact
line sufficiently closely.10

3.2.4 Height of the wetting ridge. In a similar way one can
equate the energy E underneath the liquid far away from the
wetting ridge (21) and close to the peak of the wetting ridge

(28). As a result we obtain the difference in brush energy at the
peak and for the flat brush

gbrush(zwr) � gbrush(zd) = gbl(zd) � gbl(zwr)cosyBL. (32)

This is a transcendent equation for the wetting ridge height zwr

at the contact line of large drops at equilibrium. Next, we derive
an explicit expression for Dz = zwr � zd by expanding eqn (32) up
to the second order in small values of Dz and yBL.

@zgbrush zdð ÞDzþ @zzgbrush zdð Þ
ðDzÞ2
2

¼ �@zgbl zdð ÞDz� @zzgbl zdð Þ
ðDzÞ2
2
þ gbl zdð Þ

yBL2

2
:

(33)

The first order contributions cancel due to eqn (19). Hence, the
height of the wetting ridge is approximately given by

Dz � yBL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbl zdð Þ

@zz gbrush zdð Þ þ gbl zdð Þ½ �

s
: (34)

The angle yBL may be expressed via the Neumann relations
given in the previous section.

Note that at no point of the above derivations the brush
energy gbrush has to be specified, i.e., all results are generic for
rather general adaptive substrates. For purely elastic substrates
the square root in eqn (34) corresponds to the elastocapillary
length cec.23

3.3 Approaching the limiting cases

Next we consider how the derived relations for large steady
drops are approached when the volume of drops of finite size is
increased. This is done numerically employing direct time
simulations and pseudo-arclength path continuation using
the C++ finite element library oomph-lib.80 In all calculations
a nondimensional version of the dynamic model (1) is used.
Note that we present results for both variants of the presented
mesoscopic model, the full-curvature formulation and the long-
wave approximation mentioned at the end of Section 2. Details
of the nondimensionalisation and the long-wave approxi-
mation are given in Appendix A.1. For the sake of readability
from here on we use the dimensionless formulation without
the tildes.

As the boundary conditions (BC) for the numerical analysis
of the steady states we employ homogeneous Neumann condi-
tions

@xh ¼ @xz ¼ @x
dF
dh
¼ @x

dF
dz
¼ 0 (35)

at both boundaries of the 1D domain. This ensures, in parti-
cular, that for U = 0 there is no liquid flux through the domain
boundaries, i.e., the total volume is conserved. For the forced
wetting case U 4 0 we need to amend the BC to retain the
global balance of liquid volume as discussed in Appendix A.3.
In order to reach the limit of very large droplets P - 0, we
exploit that it is sufficient to only simulate the vicinity of the
contact line region. We therefore replace the homogeneous
Neumann condition qxh(x = 0) = 0 with an imposed interface

¶ In the mechanical analogue the approach of the brush–liquid and liquid–gas
interfaces and subsequent fusion at the contact line into the brush–gas interface
corresponds to a completely inelastic collision of two particles. The wetting
energy takes the role of an internal energy like a spring that snaps in on close
approach.
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slope qxh(x = 0) = �y0 at the boundary associated with the drop.
When we increase y0 letting it approach the equilibrium angle
|yY|, the curvature of the bulk part of the drop decreases and
approaches zero, i.e. P - 0, and an infinitely large drop is
approached.

In Fig. 3 we depict equilibrium states obtained in simula-
tions for different dry brush heights and drop volumes. In this
way we obtain an overview of possible shapes of the wetting
ridge. Panels (a)–(c) only differ in the dry height of the brush
Hdry = sc, whereas panels (d)–(f) have identical brushes with
Hdry = 6 while drop size varies from (d) small to (f) the limit of
an infinitely large drop. The dry brush height Hdry = sNcK is
varied by controlling the polymer chain length NcK at fixed
grafting density s = 0.3. Careful inspection of Fig. 3 shows that
there is always a significant difference zd – zp of the brush
swelling inside and outside the drop. Numerically, we find that
in all panels the brush inside the drop is swollen to approxi-
mately 300% of its dry height. Outside the drop, the brush is
swollen only to approximately 200%. Here, we have used 1/c to
calculate the swelling ratio.

This is further quantified in Fig. 4 that provides various
geometric measures of the equilibrium configuration in the
contact line region in dependence of the dry brush height Hdry.
There we find that the equilibrium (swollen) brush heights inside
(zd) and outside (zp) the drop, and the wetting ridge height zwr all
increase approximately linearly with Hdry while the Neumann
angles strongly [weakly] increase at small [large] Hdry.

In contrast to the brush height, the drop size has only a very
small influence on the swelling state and the wetting ridge.
Namely, in Fig. 3(d–f) one discerns nearly no change in zd,p,wr

upon varying the Laplace pressure P. This visual impression is
quantitatively supported by Fig. 5, where we display the geo-
metric measures as obtained from simulated equilibrium drops
at different P.

Note that the shape and size of the wetting ridge are also
impacted by some of the parameters not discussed here.
As eqn (34) already indicates, the ridge height is governed by
an interplay of the interface energy and the brush forces. Thus,
the values of the interface energies as well as the scale of the
brush energy, namely, the dimensionless temperature para-
meter T, are equally relevant. While the above considerations
are entirely static, the situation may become more intricate
when the system is taken outside of equilibrium. This will be
addressed in the subsequent sections.

Fig. 3 Steady state brush profiles for different values of (a–c) the dry
brush height Hdry and (d–f) the drop size, demonstrating that the ridge
scales with brush height but not drop size. The drop size is adjusted via the
slope of the drop profile at x = 0 that controls the Laplace pressure P. In
particular, P = 0 corresponds to an infinitely large drop. Note the small but
significant difference zd – zp between the brush heights inside and outside
the drop. The remaining parameters are T = 0.05, s = 0.3, and gbl = 0.4. The
Laplace pressure in panels (a–c) is P = 9 � 10�4 and the dry brush height in
panels (d–f) is Hdry = 6. The results are obtained from finite element
simulations of the full model, eqn (37)–(39). A quantitative characterisation
of the wetting ridge is provided in Fig. 4 and 5.

Fig. 4 Shown are geometric measures of the equilibrium configuration in
the contact line region in dependence of the dry brush height Hdry. Given
are the brush heights (a) below the drop zd, (b) outside the drop zd, (c) the
wetting ridge height zwr, and (d–f) the three Neumann angles yLG, yBG, and
yBL. In all panels we compare the full-curvature (dashed lines) and long-
wave (solid lines) results. All other parameters are as in Fig. 3(a–c).

Fig. 5 Shown are geometric measures of the equilibrium configuration in
the contact line region in dependence of the drop volume as controlled by
the Laplace pressure P. The limit P = 0 corresponds to an infinitely large
droplet. The shown quantities in panels (a–f) and linestyles are as in Fig. 4.
All other parameters are as in Fig. 3(d–f).
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Besides demonstrating the influence of drop size and dry
brush height on the wetting ridge, Fig. 4 and 5 also compare the
results obtained with the full-curvature and long-wave variants
of the model (cf. Section 2). In general, for the chosen values of
the interface energies the differences are relatively small. The
Neumann angles tend to have slightly lower values for the long-
wave model. Differences are largest for thin brushes. The brush
swelling is practically identical in the two cases. Moreover,
Fig. 5 suggests that the effect is rather independent of the
drop size. In consequence, we only use the model in long-wave
approximation for all remaining numerical calculations.

Finally, we assess how well the Young and Neumann laws
are fulfilled by the simulation results by comparing the mea-
sured value of the liquid–gas contact angle yLG to the predicted
value yLG

(theo) that we obtain from either the Young or the
Neumann laws, eqn (23), (30) and (31), and the measured
values of the brush angles. The relative deviation is shown in
Fig. 6 for both the full-curvature and the long-wave version of
the model. There, the results are shown in dependence of the
parameters varied in Fig. 4 and 5, namely, Hdry and P.

We find that in the full-curvature formulation the Young law
is perfectly fulfilled in the limit of large droplets (P = 0), whereas
the long-wave approximation results in a slightly lower contact
angle. For decreasing drop size (increasing Laplace pressure)
the results for the Young law increasingly deviate. For
the Neumann law a deviation is already notable in the full-
curvature case for P = 0: there, the horizontal [vertical]
Neumann balance deviates by about 4% [more than 10%].

We suggest that the latter deviations are due to the meso-
scopic modelling as they are connected to the intricacies
hidden in the analytic derivation of the mesoscopic Neumann
law. On the one hand, we have assumed that the wetting
potential can be neglected at the inner inflection point x2 of
the wetting ridge, i.e., that it does not appear in eqn (28).
Indeed the local film height is not sufficiently large, resulting in
a contribution to the observed deviation in the horizontal
Neumann balance. On the other hand, the conservation of

the total generalised momentum pz + ph+z is also only exact in
the limit hp/zwr - 0.8 The finite height of the wetting ridge
results in the observed deviation in the vertical Neumann
balance. Note that as the convergence towards the limit
hp/zwr - 0 is very slow, and reducing the adsorption layer
height hp increases the numerical effort significantly, here, we
do not go beyond the choice of parameters employed above.

4 Forced wetting
4.1 General remarks

Having analysed the case of drops and menisci at equilibrium,
we next consider the case of forced wetting of a brush-covered
substrate. Namely, we activate the additional advection terms
in eqn (1) by considering substrate velocities U 4 0,
i.e., pushing the substrate covered by a nearly dry brush into
the liquid. In other words, we invert the typical Landau–Levich
setting where a plate is drawn from a bath.

As this corresponds to a persistent energy influx, thermo-
dynamically, we keep the system permanently out of equili-
brium. This implies that occurring steady interface profiles
with qth = qtz = 0 do not correspond to a quiescent state of the
liquid but to an internal stationary flow profile. Neither do such
steady profiles correspond to minima of the free energy F,
i.e., the discussion of equilibrium states in Section 3 does only
provide the behaviour in the static limiting case U - 0 and can
not be applied for U a 0. Further, it is important to note that
out of equilibrium other states are possible beside steady ones.
In particular, we expect time-periodic stick-slip motion of the
contact line to occur. First, however, we analyse the changes
occurring in the steady profiles when the velocity U is increased
from zero.

As any analytic treatment becomes rather challenging, here, we
entirely focus on numerical results. To facilitate the numerical
computations and a clear discussion of the effect of the brush
energy, from now on we only consider the dimensionless model in
long-wave approximation. For simplification, in this section we
neglect the dependence of capillarity and wettability on brush
state, i.e., we use gbl and fwet that do not depend on z, as the basic
features of the stick-slip motion can be understood even without
these brush-dependencies. An exemplary comparison between
dynamic results of the full model and the simplified version are
provided and discussed in Appendix A.2. Also, from hereon the
meniscus is modelled using the above mentioned inclined film
boundary condition qxh(x = 0) = �y0 in order to capture the
scenario of a brush-covered plate being pushed into a large liquid
reservoir rather than into a finite sized droplet.

4.2 Small velocities – rotation of Neumann angles

We start by considering stationary states that occur at relatively
small advection velocities U 4 0. Fig. 7 shows corresponding

Fig. 6 Relative deviation (yLG–yLG
(theo))/(y(theo)

LG ) between the measured
liquid–gas contact angle yLG and the predicted contact angle y(theo)

LG using
either the Young or the Neumann laws, namely, eqn (23), (30) and (31). The
result quantifies how well the relations are fulfilled in dependence of (a) the
dry brush height Hdry and (b) the Laplace pressure P (encoding the drop
volume). Solid lines correspond to calculations based on the full-curvature
version of the model and the long-wave results are shown as dashed lines.
The simulation data corresponds to the one shown in Fig. 4 and 5.
In particular panel (a) uses P = 9 � 10�4 and panel (b) uses Hdry = 6.

8 In the mechanical analogue the inelastic collision takes place in an external
force field (corresponding to qzgbrush), such that the total momentum is only
approximately conserved during a relatively short collision time.
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characteristics of the out-of-equilibrium configuration of the
contact line region: as U is increased from zero, all contact
angles start to deviate from their equilibrium values (panel (a)),
also compare the typical profiles given in panel (b). The wetting
ridge height decreases with increasing U (panel (c)).

The solid lines in Fig. 7(a) converge at very small values
(U E 10�6) to the equilibrium values. Then, upon increasing U,
the dynamic |yLG| and |yBG| increase while yBL decreases.
However, introducing the three dynamic angles into the
Neumann law (eqn (30) and (31)) we find that it holds reason-
ably well at least up to U E 10�3. To show this we use the
numerically determined yLG (blue line) and determine the
other two angles employing eqn (30) and (31) in long-wave
approximation, i.e., eqn (52) in Appendix A.1.2. The resulting
theoretical values are given as dashed lines. At all U, the
deviation is rather small for yBG while for yLG it remains
constant at E10% as seen before in the static case in Subsec-
tion 3.3. By checking the validity of the vertical and horizontal
Neumann conditions for all three measured angles, we deter-
mine that any deviation is as in the static case mostly due to
the vertical Neumann balance. Collecting all terms of eqn (30)
and (31) on one side, we find that the expressions for U = 0
deviate from zero by absolute errors of 0.003 (horizontal
condition) and 0.174 (vertical condition).

The continued approximate validity of the Neumann law
implies that the Neumann angles are merely rotated with
increasing U as known for moving contact lines on an elastic
substrate.29 The rotation is best seen in the dynamic Young
angle that coincides with yLG (blue line in Fig. 7(a)). In the
velocity range from 10�5 to 10�3 it undergoes a 75% increase
accompanied by a 60% decline in the height of the wetting
ridge above the dry brush height (from 25 to 10, see Fig. 7(c)).
This makes the continued validity of the Neumannn law
particularly interesting.

Another remarkable observation is, that at U E 10�2 the
three dynamic angles all pass an extremum, i.e., a further
velocity increase results in a smaller rotation of the Neumann
angles as compared to their equilibrium values. Indeed, there,
the deviation from Neumann’s law strongly increases, rendering
its application invalid. As next discussed in Section 4.3, the
qualitative change in behaviour is closely related to the onset of
an instability that occurs at a velocity less than one order of
magnitude larger. It gives rise to time-periodic stick-slip motion.

4.3 Large velocities – instability mechanism

Moving to larger velocities in the range 10�2 to 1 we restrict our
attention to the angles yLG and yBG. As the wetting ridge is very
low, no well-defined yBL can be measured. Fig. 8 shows the
remaining dynamic angles as a function of U. At small and
large U the angle yLG increases with increasing U while it
decreases in the intermediate range 10�3 o U o 10�2. In
contrast, the angle yBG first becomes larger and then, for U 4
10�3, continuously decreases. Asymptotically it approaches zero
as the wetting ridge and the difference in the brush heights
inside and outside the liquid both shrink. The latter results
from the strong decrease in the advection time scale as com-
pared to the time scale for mass transfer into the brush. This
also illustrates that at higher velocities the deviation from the
Neumann law must get large.

Evaluating the stability of the stationary states tracked in
Fig. 8 shows that they are linearly stable at small and large U

Fig. 7 Characterisation of the out-of-equilibrium configuration of the
contact line region for (relatively small) plate velocities U. Shown are (a)
the dynamic contact angles (as indicated in the legend) as a function of U.
Numerical results (solid lines) are compared to predictions obtained with
the Neumann law based on the measured dynamic liquid–gas contact
angle yLG (dot-dashed line). The horizontal line gives the value of the
equilibrium Young angle yY. Panel (b) presents examples of steady inter-
face profiles at different velocities U as indicated by the colour code of the
brush–liquid interface. Gray lines indicate the liquid–air interfaces. Note
that the profiles are shifted such that the peak positions of the wetting
ridges coincide. Panel (c) indicates the decrease of the ridge height zwr

with increasing U. The long-wave approximation is used with parameters
T = 0.02, s = 0.3, gbl = 0.3, c = 20, M = 0.1 and D = G � 10�3.

Fig. 8 The dynamic angles |yLG| and |yBG| as well as their difference are
given for steady profiles for a large range of substrate velocities U. At small
and large U, the profiles are linearly stable (solid lines), while they are
unstable at intermediate velocities (dashed lines). There, time-periodic
stick-slip behaviour occurs (green shading) with a hysteresis range beyond
the lower instability threshold (indicated by vertical dotted lines). The
remaining parameters are as in Fig. 7.
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(solid lines), but unstable at intermediate U (dashed lines). In
the latter range, time simulations reveal time-periodic stick-slip
behaviour. Furthermore, Fig. 8 already hints at two important
conditions for the instability to occur. First, the corresponding
U-range nearly coincides with the range where yLG decreases,
i.e., where q|yLG|/qU o 0 for the stationary state. In other
words, the instability occurs when an increase in velocity
results in a decrease of the global dynamic contact angle. This
implies that a slowly increasing velocity would favour a decreas-
ing angle, but to decrease the angle the contact line region has
to advance even faster – corresponding to a destabilising
feedback loop.

Second, the instability occurs at an order of magnitude of U,
where the difference |yLG| � |yBG| starts to strongly increase as
the Neumann law does not hold any more. Notably, the upper
critical U where the unstable range ends, occurs where the
difference |yLG| � |yBG|, i.e., the effective liquid contact angle at
the advancing side of the ridge, exceeds the equilibrium contact
angle |yY|. This is a consequence of the Gibbs condition31,81

which states that a contact line depins from a heterogeneity of a
rigid solid substrate when the contact angle with respect to the
local substrate slope exceeds the equilibrium contact angle, see
Fig. 9. While for |yLG| � |yBG| o |yY| the pinning at the wetting
ridge governs the contact line dynamics (or at least part of it
during the stick-slip dynamics), above this critical angle the
contact line is unable to pin at all and instead constantly slips.
Consequently, the dynamics is purely governed by the moving
contact line while the ridge, or swelling gradient, simply follows
behind.

5 Stick-slip dynamics

Having established the existence of a velocity range where
unstable stationary profiles give rise to stick-slip motion, we
next analyse in some detail this time-periodic state of the
contact line region and its dependence on various parameters.

5.1 Single stick-slip cycle

A single typical stick-slip cycle is displayed in different repre-
sentations in Fig. 10 and 11. The former gives space-time plots
of the interface profiles while the latter presents detailed views
of sequences of individual profiles close to crucial moments

within the cycle as well as measurements of dynamic angles
during the cycle. The accompanying Fig. 12 presents an analy-
sis of changes during the same cycle in overall free energy F[h,z]
and its constituents as well as in total dissipation and the
individual dissipation channels as defined in Appendix A.4.
Note that for Fig. 10–12 we set the beginning of a cycle (t = 0)
to be the time where the contact angle |yLG| reaches its
maximum value.

We start with a discussion of the dynamics of the interfaces,
where we split one cycle of the periodic motion into phases of
qualitatively different behaviour, that is characterised in the
following: during the phase where the contact line is pinned to
the fully developed wetting ridge (0.17 r t/t r 0.72), the ridge
slowly recedes towards the left carrying the pinned contact line
along, which is illustrated by the brighter lines in Fig. 11(d)
displaying the profile at previous times in this phase of the
cycle. However, in parallel, the contact line slowly creeps onto
the right flank of the ridge (Fig. 11(a)), i.e., it surfs the ridge
(as described for elastic substrates by Karpitschka et al.,29 van
Gorcum et al.31). Because the surfing contact line separates
from the peak of the wetting ridge, the upwards traction at the
peak decreases and the ridge becomes rounder. In this phase
|yLG| remains nearly constant while |yBG| decreases more and
more. This occurs, in particular, in the surfing phase when the
difference |yLG| � |yBG| sharply increases (Fig. 11(f)). In con-
sequence, at t/t E 0.10 the difference |yLG| � |yBG| passes the
equilibrium angle thereby fulfilling the Gibbs condition. As a
result, the contact line depins and suddenly moves to the
right leaving the ridge behind that then very slowly shrinks
(Fig. 11(b)). In this short slipping phase |yLG| sharply decreases
while |yBG| remains nearly constant but is irrelevant as it
belongs to the ridge that is already detached from the contact
line. When the contact line slows down a new wetting ridge
starts to emerge and pins the contact line (Fig. 11(c and d)).
In this long phase |yLG| slowly increases as does |yBG|, now
related to the new ridge (Fig. 11(f)). Nevertheless, |yLG| � |yBG|
stays almost constant in this phase. Then the cycle starts again.

Fig. 9 Sketch illustrating the Gibbs condition and the resulting depinning.
In panel (a) the contact line is pinned at the ridge as the effective angle
between liquid–gas interface and the substrate-gas interface in front of
the contact line is lower than the Young angle, i.e., |yLG| � |yBG| o |yY|.
The liquid–gas interface steepens until equality (panel (b)). Any further
steepening lets the contact line slip off the ridge (panel (c)).

Fig. 10 Shown are space-time plots of (a) the brush profile z and (b) the
liquid height profile h + z in the contact line region during a single typical
stick-slip cycle at U = 0.014. The green dashed line illustrates the
approximate position of the contact line over time. The black dotted line
indicates when the Gibbs condition is fulfilled and the ensuing depinning
results in a slipping motion. The remaining parameters are as in Fig. 7. The
period of the cycle is t = 4800. A video of the dynamics displayed here is
available under https://zenodo.org/record/7886530.
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Focusing next on Fig. 12 we note that the dominant con-
tribution to the overall energy F is in all phases the capillary
energy Fcap. This is even more pronounced when an entire
droplet is considered instead of a domain limited to the contact
line region. When the new ridge grows with the contact line
sticking to it, the increasing |yLG| results in an increase in
capillary energy. In parallel, the wetting energy Fwet decreases

as in an increasing part of the domain the brush is only covered
by the energetically favourable adsorption layer. During the fast
slipping process, Fcap and with it F sharply decrease, relaxing
to their lowest values within the cycle. Fwet behaves inversely
and sharply increases. The contribution of the brush Gbrush is
comparatively small in the considered parameter range, and
qualitatively similar to Fcap. Dissipation occurs through three

Fig. 11 The top row (a–d) displays time sequences of snapshots from four different stages of the single cycle of stick-slip motion in Fig. 10. Shown are
profiles of the liquid–gas (blue) and brush–liquid (orange) interface in the contact line region. The final snapshot (corresponding to the end time of the
respective indicated temporal interval) from each phase is shown in darker colours than the preceding ones. For a discussion see main text. The bottom
row shows a linearly stable stationary profile at identical parameters (e), and the temporal change in contact angles (f) over one period t for the top row
dynamics (solid lines) compared to the values for the stationary state (dashed lines). The vertical dotted line indicates when the Gibbs condition is fulfilled.

Fig. 12 The top and bottom row present contributions to energy and dissipation, respectively, for the single cycle of stick-slip motion shown in Fig. 10
and 11 (solid lines). In particular, the total free energy F and its constituents Fcap , Fwet and Gbrush defined through eqn (2) are given as differences w.r.t. to
their values at equilibrium (U = 0). The total energy dissipation Dtot is compared to contributions from the three dissipation channels Dh, Dz, and DM

defined through eqn (58) in Section A.4. The horizontal dashed lines give the corresponding values for the linearly stable stationary state that exists at
identical parameters. All values are obtained by integrating over the spatial domain x A [0,420]. In each panel the vertical dotted line marks the time when
the Gibbs condition is fulfilled. The insets magnify the vicinity of this instant.
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channels: viscous dissipation Dh within the liquid, mostly
focused in the contact line region, dissipation Dz due to liquid
diffusion within the brush, and dissipation DM due to mass
transfer between liquid layer and brush. The corresponding
expressions are derived in Section A.4. The total dissipation Dtot

is dominated by Dh, followed by the about one magnitude
weaker DM, and the rather small Dz. All contributions show a
slow build-up in the stick-phase that develops into a sharp peak
in the surf- and slip-phase with the maxima of the individual
channels slightly shifted w.r.t. each other. The trough to peak
contrast is about one magnitude for all channels. The total
dissipation peaks after the Gibbs condition is reached,
i.e., clearly in the slip-phase. In contrast, DM peaks earlier
confirming that depinning is triggered by a mass transfer-
induced deformation of the substrate. The very weak Dz seems
to have a double-peak structure with the minimum between
the two maxima coinciding with the fulfilment of the Gibbs
condition.

Note, finally, that due to hysteresis there exists a linearly
stable stationary state at the same parameter values where the
analysed stick-slip cycle occurs. It is shown in Fig. 11(e) with
the corresponding angles, energies and dissipation given as
horizontal dashed lines in Fig. 11(f), Fig. 12 (top) and Fig. 12
(bottom), respectively. On average the stick-slip cycle has a
lower total energy and shows also a lower mean dissipation
than the stationary state.

After having discussed a single stick-slip cycle in detail for a
particular set of parameters, in the following we explore how
the behaviour depends on important system parameters.
We focus on the driving substrate velocity in Section 5.2, on
the mass transfer rate between liquid layer and brush in Section 5.3,
and on interface and brush energies in Section 5.4.

5.2 Dependence on substrate velocity

It is our main interest to systematically establish in which
parameter ranges stationary and time-periodic states dominate.
To obtain these ranges we employ two numerical techniques:
first, we use extensive time simulations of the liquid meniscus
dynamics where we increase (decrease) the substrate velocity in
small steps and make sure that the integration time of each
step is long enough for transient behaviour to die out. This
allows us to access stable dynamical states. Second, we employ
path continuation to access the stationary state for arbitrary
values of the substrate velocity and to obtain its linear stability.
We proceed to combine the results of both approaches into one
diagram. As solution measures for the stationary states we use
the height of the wetting ridge zwr, and the dynamic contact
angle |yLG|. For the time-periodic stick-slip motion we show the
corresponding minimal and maximal values within a cycle.
Thereby, for zwr we only consider the particular ridge located in
the vicinity of the contact line, (practically, we request a liquid
film height h o 5). This ensures that the newly growing ridge
is analysed and not the former one that is slowly decaying
underneath the liquid. Additionally, we consider the frequency
n = 1/t obtained as the inverse of the time period. Note that
n = 0 for the stationary states.

Fig. 13 gives the described quantities in dependence of
substrate velocity U. Inspecting the figure we see that there
exists a regime of stick-slip behaviour in the range of decreas-
ing angles |yLG| as already established in Section 4.3. At large
velocities, it ends at U E 0.068 in a supercritical Hopf bifurca-
tion: the amplitude of the temporal modulation of all quanti-
ties approaches zero while the frequency approaches a finite
value. This is further confirmed by the fact that at the same
velocity the stationary state changes its linear stability via a pair
of complex conjugate eigenvalues that crosses the imaginary
axis. The situation is more involved at small velocities where a
range of hysteresis exists, i.e., where bistability occurs between
stationary state and time-periodic stick-slip behaviour. The
latter is first observed at U E 0.010 while the stationary state
looses stability in a (seemingly subcritical) Hopf bifurcation at
U E 0.013. This indicates that the time simulation stops to pick
up the stick-slip motion close to a saddle-node bifurcation of
limit cycles. There, the subcritical branch of cycles from the
primary Hopf bifurcation of the stationary state at U E 0.013
stabilises and the branch folds back towards larger U becoming
the numerically observed stable cycle between U E 0.010 and
U E 0.068. At this point the frequency is small but finite and
the amplitude of the temporal modulation of |yLG| and zwr

reach their largest values. Both amplitudes monotonically
decrease with increasing U. Note that we find no indication
of more complicated behaviour like, e.g., period doubling.

Fig. 13 Stationary states and stick-slip cycles are analysed in dependence
of substrate velocity U. Shown are (a) frequency n, (b) the dynamic liquid–
gas contact angle |yLG|, and (c) the wetting ridge peak height zwr. Solid
[dashed] orange lines indicate linearly stable [unstable] stationary states,
while green lines give the corresponding range for linearly stable stick-slip
cycles. Linear stability thresholds and existence ranges are indicated by
vertical dotted lines, thereby marking the stick-slip and hysteresis regimes.
The remaining parameters are T = 0.02, s = 0.3, gbl = 0.3, c = 20, M = 0.1
and D = 10�3.
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5.3 Dependence on transfer constant

In Section 5.2 we have analysed how the system behaviour
depends on substrate velocity for a fixed set of all other para-
meters. Thereby, we have identified a U-range where stick-slip
behaviour occurs. Next, we explore how the stick-slip range
changes when the transfer rate constant M is varied. Accord-
ingly, Fig. 14 shows dependencies of dynamic angles |yLG| and
|yBG| as well as of their difference |yLG| � |yBG| on U for six
different values of M between M = 10 (very fast mass transfer
between liquid meniscus and brush) and M = 10�4 (very slow
transfer). The panel at intermediate M = 0.1 reproduces Fig. 8.
Comparing the panels of Fig. 14 we first note that for fast
transfer |yLG| is a monotonically increasing function of velocity
U. There is no range of negative inclination of |yLG| vs. U and no
stick-slip motion occurs. Both features only appear if M is
sufficiently small, here M Z 0.1. Further decreasing M by three
orders of magnitude widens the U-range of negative inclination
(the dip get shallower though) as well as the range of stick-slip
motion.

Both (necessary) criteria for the instability uncovered in
Section 4.3 still hold for the entire range of considered transfer
constants M: on the one hand, the instability only occurs, when
|yLG|(U) has a negative slope. On the other hand, the maximal U
where the stationary state is unstable coincides with the fulfil-
ment of the Gibbs condition, i.e., |yLG| � |yBG| crosses yY.
However, considering the sequence from M = 0.1 to M = 10�4 it
also becomes obvious that the negative slope criterion is not
sufficient for the instability to occur. While at M = 0.1 the

instability threshold follows not too far behind the maximum
of |yLG|(U), the distance becomes larger for smaller M. For
instance, for the slowest considered transfer, at M = 10�4, the
unstable U-range only corresponds to the second half of the
range with negative slope. Therefore we need to refine our
criterion for the onset of instability.

To do so, we define a characteristic timescale tM for the
growth of a wetting ridge. It is important as during the stick-
slip motion periodically a new ridge is created (see Fig. 13). For
simplicity, we assume that U has only a minor influence on the
growth and consider the relaxation from a flat brush state
towards an equilibrium wetting ridge at U = 0. The corres-
ponding growth of zwr is shown for three values of M in
Fig. 15(a). Based on these simulations, we define tM as the
time when the wetting ridge reaches half of its equilibrium
height. This characteristic time (marked by vertical lines in
Fig. 15(a)) increases by about one order of magnitude when M is
decreased from 0.1 to 10�3.

Additionally, we define a typical horizontal length scale L0

characterising a typical ridge width based on the triangular
approximation of the equilibrium profile illustrated in Fig. 15(b),
or, by formula

L0 ¼ zwr � znð Þ 1

yBLj j þ
1

yBGj j

� �
(36)

as obtained in long-wave approximation. This length scale allows

us to define a second characteristic time tU ¼
L0

U
that charac-

terises the forced motion of the substrate. The values for the two
defined timescales tM, tU are plotted in dependence of the velocity

Fig. 14 For selected values of the transfer rate constant M (stated above
each panel) the dependencies of the dynamic angles |yLG| and |yBG| as well
as of their difference on substrate velocity U are given. As reference the
equilibrium contact angle |yY| is indicated by a horizontal line. The green
shading marks the range of stick-slip motion including the hysteresis
regime. The remaining parameters and line styles are as in Fig. 13.

Fig. 15 Illustration of the definitions of (a) the characteristic timescale tM

(vertical lines) for ridge growth as the time when zwr–zn reaches half its
maximal equilibrium height, and (b) the characteristic equilibrium ridge
width L0 defined by a triangular approximation using the equilibrium values
of yBL and yBG (see eqn (36)). Panels (c–e) compare for selected values of
the transfer rate M the timescale tM and a characteristic timescale of
substrate motion tU = L0/U. Their equality coincides with the lower border
of the unstable U-range highlighted by the green shading.
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U in Fig. 15(c)–(e) for M = 0.1, 10�2, and 10�3, respectively. One
immediately notices that the low-velocity border of the region of
unstable stationary states very closely coincides with the velocity
where the two time scales cross. In other words, there, the
stationary state is linearly stable as long as the wetting ridge grows
much faster than it is moved by the substrate (note Fig. 15(c–e) are
log–log plots). One may say, the ridge is slaved to the liquid that
moves with the substrate. In contrast, when the time scales
become similar all influences compete on equal terms and an
instability is possible.

As a result of this consideration, we expect that the effect of a
variation of the transfer coefficient M is reciprocal to the effect
of a variation of the velocity U, i.e., when increasing M from
small values, we expect the stick-slip motion to start with a
large finite frequency and zero amplitude. Then the frequency
decreases and the amplitude increases with further increasing
M until the periodic behaviour ceases when the saddle-node
bifurcation of limit cyles is passed at large finite M.

5.4 Dependence on energies

Finally, we briefly investigate the influence of a number of
further parameters related to capillary and brush energies.
An overview is given in Fig. 16 where dependencies on brush–
liquid interface energy gbl, effective temperature T, brush
grafting density s and the Kuhn length cK of the brush poly-
mers are shown at fixed U = 0.014, i.e., at the velocity of our

reference case in Fig. 11. Both, stationary states and stick-slip
cycles are included. Note that each of the chosen parameters
allows us to approach the limiting case of a rigid, non-adaptive
substrate, i.e., with vanishing wetting ridge. The respective
limits correspond to gbl - N, T - N, s - N and cK - 0.
This implies that in each of these cases the stick-slip behav-
iour will eventually disappear when moving towards the
corresponding limit.

Inspecting Fig. 16 we note that hysteresis is observed for
all parameter dependencies indicating that in each case a
subcritical Hopf bifurcation occurs. It is remarkable that the
frequency n of the stick-slip cycle barely depends on the brush-
related parameters and only shows a small decrease with
decreasing interface energy gbl. A similar observation holds
for the amplitude of variations in the height of the wetting
ridge over a stick-slip cycle. The abrupt stop of stick-slip motion
with increasing gbl, T, and s can in all cases be related to the
occurrence of a saddle-node bifurcation of cycles, in particular,
for gbl and T curves become nearly vertical clearly indicating a
fold. This is less pronounced for s and cK.

Taken together these observations imply that there is a
‘‘critical softness’’ or ‘‘critical adaptivity’’ that must be reached
to induce a stick-slip behaviour. The stick-slip motion itself
only depends relatively weakly on the energetic parameters.
This is in stark contrast to the much larger influence found in
Sections 5.2 and 5.3, respectively, for the dynamic parameters

Fig. 16 Influence of various parameters on stationary states and stick-slip cycles: (top row) frequency n, (center row) contact angle |yLG|, and (bottom
row) height of the wetting ridge zwr are given as function of (1st column) brush–liquid interface energy gbl, (2nd column) effective temperature T,
(3rd column) brush grafting density s and (4th column) brush Kuhn length cK. Line styles and respective remaining parameters are as in Fig. 13.
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substrate velocity and transfer rate constant. Their direct
correspondence to the timescales tU and tM reinforces our
finding that their ratio controls the occurrence of stick-slip
behaviour.

6 Conclusion

We have presented a mesoscopic model for the dynamic wet-
ting of a polymer brush-covered substrate. It accounts for the
coupled dynamics of a liquid drop/meniscus on the brush and
of the imbibed liquid within the brush as well as for the
imbibition process itself. Due to its central gradient dynamics
structure, the dynamics is driven by a single underlying free
energy functional. The model extends the work by Thiele and
Hartmann20 by introducing a refined energy functional that
additionally accounts for the dependencies of the wetting and
interface energies on the brush state. Moreover, now the
energies may be employed in their full-curvature formulation
as well as in their long-wave approximation.

The refined mesoscopic model has first allowed us to
employ the full-curvature formulation to consider a static
contact line region. There, we have analytically recovered both,
the Young law for the global liquid–gas contact angle and the
Neumann law that locally relates the contact angle to the
opening angle of the occurring static wetting ridge. While our
calculations have mostly been performed in the mesoscopic
picture, the derivation of macroscale equivalents for both laws
has also been sketched. This has allowed us to establish
consistency conditions that relate mesoscale and macroscale
quantities in a similar spirit as recently presented for surfactant-
covered drops.70 In passing, analytic considerations have provided
an estimate for the shape and size of the wetting ridge. Due to
its nanometric size, a quantification remains a challenge for
experiments. However, observations of wetting ridges are reported
for Molecular Dynamics simulations.16,17

Second, we have employed numerical simulations not only
to confirm our analytical findings but also to test how they
change beyond the static equilibrium case when considering a
more intricate forced wetting scenario. We have therefore
investigated the case of an externally driven liquid meniscus
moving over the brush substrate at an imposed mean velocity
modelling, e.g., a brush-covered plate that is plunged into a
liquid bath at constant relatively small velocity. In other words,
the employed geometry resembles a dip coating process that is
modelled by adding a simple advection term and adjusting the
boundary conditions. This corresponds to an inverted Landau–
Levich setting as usually one studies the transfer of liquid onto
a plate that is drawn out of a bath.57,82,83 Note that the case of a
receding contact line could be equally described using our
model, but may develop more intricate behaviour, e.g., due to
effects of liquid deposition. Preliminary calculations have
not shown stick-slip motion in this case, in agreement with
available experimental results.25

For the brush-covered substrate that is immersed into the
bath, at low velocities we have observed a deformation of the

interfaces in the contact line region. Specifically, the liquid
contact angle as well as the inclination angles of the flanks of
the wetting ridge all change under the additional stress that
forces the ridge to advance along the substrate. However,
we have found that at small velocities the three angles continue
to satisfy the Neumann law even in this out-of-equilibrium
scenario. In other words, the interfaces close to the contact line
region undergo a nearly rigid rotation. This agrees with earlier
observations for moving contact lines on viscoelastic substrates
(i.e., without mass transfer into the substrate).10,29 The motion
of the wetting ridge we have observed here on the swelling
polymer brush has been found to cause a similar dissipative
braking of the motion, that counteracts the imposed movement
of the liquid meniscus, and results in a steepening of the liquid
contact angle.

At larger velocities, first, the deviation of the relation
between the angles from the Neumann relations starts to
increase such that the Neumann law does not hold anymore.
Then, one enters the velocity range where the dynamic brush–
gas and liquid–gas contact angles decrease with increasing
plate velocity. Eventually, the growth of the ridge due to mass
transfer is not able to keep up with the substrate motion, the
stationary state becomes unstable. In the unstable regime,
the liquid–gas interface depins from the wetting ridge and
advances over the substrate in a rapid slipping motion. The
contact line slows down and stops when the contact angle
relaxes. Subsequently, the brush starts to form a new ridge via
some liquid imbibition near the contact line, thereby pinning
the front again. In consequence, the process starts over and a
time-periodic stick-slip motion emerges. There exists a hyster-
esis between stationary state and stick-slip cycles in the vicinity
of the stability threshold. While a few experimental observa-
tions of stick-slip behaviour in the forced spreading of drops on
polymer brushes exist,24,25 to our knowledge, the present work
establishes the first theoretical description and analysis of the
mechanism.

Overall, the phases of a stick-slip cycle are rather similar to
the ones described for other systems where stick-slip motion
occurs, e.g., for evaporation-induced moving contact lines of
solutions and suspensions that periodically deposit material55

and contact lines moving on viscoelastic substrates.29,30,84

Moreover, we have identified that the depinning of the contact
line from the ridge within a stick-slip cycle coincides with the
fulfilment of a Gibbs condition81 as it is known from the
wetting of rough or otherwise topographically heterogeneous
substrates. Our data suggest that this condition governs both
the onset of slip within a cycle and the size of the stick-slip
range of forcing velocities. Note that the relevance of Gibbs’
condition is also reported for other out-of-equilibrium settings,
namely, related to evaporation.85

Similarly, our analysis has shown that the growth rate of
the ridge that newly grows during a cycle is critical to the
existence of a stick-slip motion. If the time scale of growth
(here limited by the rate of imbibition) is much smaller than
the time scale of contact line motion over a characteristic
length, the wetting ridge is able to move along with the contact
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line without depinning. In other words, a rapid (de-)swelling
of the polymer brush allows the contact line to surf the
comoving ridge. If, however, the contact line is forced to
advance at a much larger velocity than the swelling rate of
the polymers, the wetting ridge is unable to form at all. It is
only when the time scales of imbibition and motion are
comparable that a periodic ridge formation, pinning and
subsequent depinning are observed.

We acknowledge that the time scale of ridge growth is a
theoretical measure that could be difficult to access in experi-
ments. Using our findings on the stick-slip phenomenon
in applied scenarios may therefore require a related charac-
teristic quantity as a proxy, e.g., the swelling time of a homo-
geneous brush from vapour. The prevalence of stick-slip
motion in numerous wetting problems renders this a very
interesting subject for future investigations. We point out that
some of our key findings should allow for a straightforward
comparison with experimental works and theoretical results
employing other methods. Prominently, our model predicts
a hysteretic transition between the stationary regime at
low velocities and the stick-slip regime. The recent theoretical
work by Mokbel et al.32 on the forced wetting of soft elastic
substrates gives comparable results. Namely, their investigation
of the transitions in and out of the stick-slip regime reveals a
similar, respectively sub- and supercritical behaviour although
hysteresis is not explicitly mentioned. In a comparison to experi-
mental data models like ours could in the future be used to
quantify microscopic properties of a brush, e.g. the speed of
wetting ridge formation, from macroscopic features of the stick-
slip motion.

We have concluded our investigation with an extensive study
of the dependence of the dynamics on various control para-
meters thereby providing an overview of the stick-slip range in
parameter space. This parameter study will help to understand
and compare the role of the various parameters in different
experimental settings and even in the analysis of stick-slip
behaviour in related problems. For example, the presented
results show that the periodic stick-slip motion can be sup-
pressed by using a liquid of a low liquid–gas interface energy.
Similarly, we predict that brushes of lower grafting density
should be more prone to stick-slip behaviour. Note that the
validity of the discussed criteria for stick-slip motion was not
accessed in this parameter study as the time-scales would need
to be re-evaluated for every parameter configuration. This could
be a subject for future studies.

Finally, we stress that the presented gradient dynamics
model allows for refinements in numerous ways. While for
the sake of efficiency all of our numerical results have been
performed using the free energy in its long-wave approxi-
mation, we expect only subtle shifts in the results when
computed using the full-curvature model. Moreover, an
extended model may additionally account for miscibility effects
(e.g., by using a Flory–Huggins energy with w a 0), substrate
elasticity,23 or the effects of evaporation into an ambient vapour
phase using, e.g., the approach suggested by Hartmann et al.66

and Kap et al.86
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A Appendix
A.1 Dimensionless formulation and long-wave expansion of
the model equations

Here, we give the details of the steps we have performed to
prepare the model for the numerical analysis in order to reduce
the computational effort, i.e., the nondimensionalisation and
rescaling of the variables and parameters, and the long-wave
expansion of the interface terms. We then proceed to give
details on the numerical implementation, i.e. the employed
techniques, software, and the initial and boundary conditions.

A.1.1 Full model equations. For reference, we start with a
brief summary of the complete model. As per eqn (1) the
dimensional model reads:

@th ¼ r �
h3

3Z
rdF

dh

� �
�M

dF
dh
� dF

dz

� �
þUrh

@tz ¼ r � DzrdF
dz

� �
�M

dF
dz
� dF

dh

� �
þUrz;

(37)

The variations of the energy functional F are [eqn (11) and
(12)]

dF
dh
¼ �gr

2ðhþ zÞ
xhþz3

þ xz@hfwet (38)

dF
dz
¼ � g

r2ðhþ zÞ
xhþz3

�r � gbl þ fwetð Þrz
xz

� �

þ xz@z gbl þ fwetð Þ þ @zgbrush:
(39)

The derivative of the wetting potential (eqn (5)) gives the
Derjaguin (disjoining) pressure that we further rewrite using
Young’s law (23) into

Pðh; zÞ ¼ �@hfwet ¼
BðzÞ
h6
� AðzÞ

h3
¼ 5

3
ghp2yY2

hp
3

h6
� 1

h3

	 

: (40)

The derivative of the brush potential evaluates to

@zgbrushðzÞ ¼
kBT

‘3K
s2=cþ cþ logð1� cÞ
� �

(41)

with the polymer volume fraction

c ¼ Hdry

Hdry þ z
(42)

and the dry brush height Hdry = sNcK.
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In a first simplification, we consider one spatial dimension.
Moreover, following Thiele and Hartmann20 we neglect the
dependence of the wetting potential and brush–liquid interface
energy on the brush state, namely, fwet(h,z) = fwet(h) and
gbl = const.

A.1.2 Scaling and long-wave expansion. A dimensionless
formulation reduces the model’s complexity by eliminating
some parameters and by converting the magnitude of all
variables to scales that minimise numerical errors. Thus, we

introduce a height scale h0 = hp, a lateral length scale x0 ¼ffiffiffiffiffiffiffiffiffiffi
g=A0

p
hp

2 and a time scale t0 = 3Zghp
5/A0

2 and transform to the
dimensionless variables (marked with a tilde) by using

h = hph̃, z = hp
~z, x = x0x̃, t = t0t̃. (43)

Here, the parameter A0 denotes the Hamaker constant for a dry
brush, see eqn (6).

For shallow drop, film and brush profiles, we can assume
that all occurring height scales are much smaller than the
lateral length scales. We hence introduce a ‘‘smallness’’ para-
meter e = h0/x0 and expand the model up to second order in e.
This is known as the long-wave approximation and is the
standard approach for deriving simplified equation for the
interface dynamics from the Stokes equation.69 In the long-
wave limit, the metric factors then expand to

xz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @xz2

p
� 1þ e2

2
@~x

~z
� �2

and

xhþz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @xhþ @xzð Þ2

q
� 1þ e2

2
@~xð~hþ ~zÞ
h i2

: (44)

The rescaled variations of the free energy then become

d ~F

d~h
¼ � @~x

2 ~hþ ~z
� �

þ 1

h6
� 1

h3

d ~F

d~z
¼ � @~x

2 ~hþ ~z
� �

� ~gbl@~x
2~zþ ~T s2=cþ cþ logð1� cÞ

� �
;

(45)

where we have introduced the dimensionless interface energy
~gbl = gbl/g and the dimensionless temperature T̃ = (hp

3kBT)/
(A0cK

3). The functional variations have units of a pressure and

transform as dF=dh ¼ A0


hp

3d ~F
.
d~h. Note that the metric

factor in front of the wetting potential becomes one because
the wetting potential is intrinsically of order e2, as also seen
when approximating the mesoscopic Young’s law (23).

The dimensionless part per volume polymer concen-
tration is

c ¼ s~l

s~l þ ~z
(46)

where l̃ = Nck/hp is the dimensionless polymer length.

In the final step, we apply the scales to the dynamical
equations, effectively eliminating the viscosity Z:

@~t
~h ¼ @~x � ~h3@~x

d ~F

d~h

� �
� ~M

d ~F

d~h
� d ~F

d~z

� �
þ ~U@~x

~h

@~t
~z ¼ @~x � ~D~z@~x

d ~F

d~z

� �
� ~M

d ~F

d~z
� dF

dh

� �
þ ~U@~x

~z:
(47)

The remaining model parameters

~gbl ¼ gbl=g; ~l ¼ N‘k=hp; ~T ¼
h3pkBT

A0‘K3
;

~M ¼ 3MghpZ
A0

; ~U ¼ 3Uhp
3Z

ffiffiffi
g
pffiffiffiffiffiffi

A0

p
3

; ~D ¼ 3ZD
hp2

:

(48)

are dimensionless combinations of the original dimensional
parameters. Recovering the dimensionless wetting potential,

~fwetðhÞ ¼ �
1

2h2
þ 1

5h5
; (49)

and then following the derivation in Section 3.2.2, we find an
approximate expression for the equilibrium contact angle as

yY ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2fwetðhpÞ

q
: (50)

Further, in the long-wave approximation the Neumann law
from Section 3.2.3 becomes

yBL ¼ yLG þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~gbl

~gbl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2fwet hp

� �q
(51)

yBG ¼ yLG þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~gbl
1þ ~gbl

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2fwet hp

� �q
: (52)

A.1.3 Exemplary dimensional scaling. As an example,
we demonstrate how to scale back our results to dimensional
quantities for comparison, e.g., with experimental data. We use
a sample liquid with the properties of water at room tempera-
ture, i.e., with the viscosity Z = 8.9 � 10�4 Pa s and the liquid–
gas interface tension g = 72.8 � 10�3 N m�1, cf. Lide.87 The
height scale is given by the precursor layer height h0 = hp =
100 nm. Assuming a low equilibrium contact angle of 51, i.e.,
yY = tan(51), eqn (50) implies a Hamaker constant of the order
A0 = 9.3 � 10�18 J. In consequence, the length scale is x0 E
885 nm. While the droplets in this work are usually considered
to be infinitely large, the smallest droplet in Fig. 3 has a height
of 20 mm and a volume of 0.01 ml.

The time scale is t0 = 22.5 ms. The velocities are transformed
with the scale U0 = x0/t0, e.g., the stick-slip motion in the space-
time plot in Fig. 10 is caused by a brush moving at a velocity of
U = 0.55 mm s�1 and has a period length of tt0 = 0.1 s.
The velocity corresponds to a capillary number of Ca = ZU/g E
7 � 10�6.

For a brush of the relative grafting density s = 0.3 the
employed dimensionless height parameter l̃ = 20 corresponds
to a dry brush thickness of Hdry = sNcK = 600 nm. The
dimensionless parameter T̃ = 0.02 encodes the energy scale of

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
6 

M
ay

 2
02

3.
 D

ow
nl

oa
de

d 
by

 W
E

ST
FA

L
IS

C
H

E
 W

IL
H

E
L

M
S 

U
N

IV
E

R
SI

T
A

T
 M

U
N

ST
E

R
 o

n 
6/

16
/2

02
3 

3:
35

:5
8 

A
M

. 
View Article Online

https://doi.org/10.1039/d3sm00104k


4058 |  Soft Matter, 2023, 19, 4041–4061 This journal is © The Royal Society of Chemistry 2023

the brush and together with the other parameters determines
the Kuhn length cK = 28 nm. Consequentially, the absolute
grafting density is s/cK

2 = 383 mm�2.
Given the above scaling the dimensionless diffusion coeffi-

cient D = 4 � 10�3 corresponds to a value of 2 � 10�6 m2 s�1 in
dimensional terms, if additionally multiplied with the liquid
energy scale rliqkBT, where rliq = 3.33 � 1028 m�3 is the liquid
particle density. The transfer coefficient M can be expressed in
units of liquid volume per area per pressure (or particle velocity
per pressure), where, e.g., M = 1 corresponds to a value of
4.8 � 10�7 m Pa�1 s�1.

A.2 Comparison of dynamic behaviour between full and
simplified models

In order to reduce the computational complexity all dynamic
forced wetting simulations in the main part were conducted
using the simplified version of the gradient dynamics model,
i.e., by dropping the brush-state dependencies of the interface
and wetting energies and employing a long-wave approxi-
mation, see Appendix A.1.2. We suggest, that the localised
effects acting at the wetting ridge, which are responsible for
the stick-slip dynamics, are only weakly affected by this simpli-
fication and appear similarly in the full model. Here, with ‘full
model’ we refer to the model as presented in Section 2
(summarised in Appendix A.1.1), in particular, accounting for
the correct interface curvature via the metric factors xh+z and xz
and including the brush state-dependencies of the interface
and wetting energies [eqn (5) and (6)]. To support this state-
ment, in Fig. 17 we present contact angle measurements in a
forced wetting scenario for a wide range of velocities similar to
the one presented in Fig. 8 but for both the full and the
simplified model with otherwise identical parameters.

Notably, the behaviour is qualitatively identical and also
quantitatively very similar. The stick-slip regime is only slightly
shifted between the two models and hysteresis behaviour is
equally observed. Due to both full-curvature and adaption
effects the contact angles in the full model are slightly different
and cover a wider range of interface slopes. Note that the
contact angles are converted to radians via the arc tangent of
the interface slopes in the full-curvature model.

A.3 Numerical implementation

For the numerical simulations of the model eqn (45) and (47)
we employ the finite element method implemented in the C++
library oomph-lib80 and use the implicit BDF scheme of second
order for time stepping. Spatial adaption of the mesh and
temporal adaption of the time step allows us to resolve the
multi-scale character of the problem, in particular for the stick-
slip dynamics. The typical number of used spatial grid points is
of the order of 1000.

To investigate the forced motion of a large droplet over a
polymer brush in the reference frame of the droplet, we need to
adopt sensible boundary conditions. Both partial differential
eqn (47) are of fourth order in space and thus we require eight
individual boundary conditions as specified in the following
eqn (54)–(56).

During the forced wetting we have a dry brush entering the
comoving frame and a swollen brush leaving it, i.e. some
amount of liquid is transported through the boundaries and
out of the system. As for the analysis of periodic motion it is
helpful to conserve the liquid mass in the system, we counter
this effect by resupplying the exact amount liquid lost through
the boundaries back into the droplet. We express the boundary
fluxes via the brush as jz and the boundary fluxes transported
via the liquid layer as jh, where the flux of a variable f is
defined by

@tf = �@xjf + M[. . .]. (53)

The transport fluxes through the domain boundaries that are
caused by the moving substrate and adsorption layer are then

jzðx ¼ 0Þ ¼ �Uzðx ¼ 0Þ; jzðx ¼ LÞ ¼ �Uzðx ¼ LÞ;

and jhðx ¼ LÞ ¼ �Uhðx ¼ LÞ:
(54)

Note that this corresponds to homogeneous Neumann
conditions for the pressure @xdF=df at the corresponding
boundaries.

The liquid flux through the left boundary jh(x = 0), namely,
the boundary where the drop is situated, is then set to account
for the sum of all other fluxes:

jh(x = 0) = jz(x = L) + jh(x = L) � jz(x = 0), (55)

Fig. 17 Dynamic contact angles |yLG| and |yBG| for a large range of
substrate velocities U similar to Fig. 8, but here we compare simulations
of (a) the simplified model used throughout Sections 4 and 5, i.e., the
long-wave model without brush state-dependent interface energies
[eqn (45)–(49)], and (b) the full model [see Appendix A.1.1], i.e., the full-
curvature formulation with the brush state-dependent capillarity and
wettability [eqn (5) and (6)]. The stick-slip regime is only slightly shifted
between the two models. The parameters are identical to the ones used in
Fig. 8 but the strength of the wetting potential, i.e., the Hamaker constant
A, was reduced by 25%, which lowers the contact angles and eases the
numerical effort in particular in the full-curvature computations. Note that
in the full-curvature formulation the angles are not approximated by the
interface slopes. The conversion via tan y is provided as a second y-axis.
The equilibrium Young angle yY is not shown for case (b), as it depends on
the dynamic brush state.
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thereby compensating all potential losses of liquid volume.
With these boundary conditions, the total liquid volumeÐ L
0
ðhþ zÞdx is a conserved quantity also in the comoving frame.
While the gradient of the brush height at the boundaries is

assumed to vanish (homogeneous Neumann BC), we fix the
slope of the liquid–gas interface profile at the macroscopic
Young’s angle yY. This implies that the curvature of the droplet
approaches zero, which resembles the limiting case of an
infinitely large droplet:

@xhðx ¼ 0Þ ¼ yY and

@xzðx ¼ 0Þ ¼ @xzðx ¼ LÞ ¼ @xhðx ¼ LÞ ¼ 0:
(56)

The choice of the macroscopic Young angle as a boundary
condition again corresponds to the simulation of a very large
droplet and implements the previously discussed equilibrium
states as limiting cases at vanishing velocity. The droplet
volume is chosen such that the region deformed by the stick-
slip motion is far away from the boundaries. This is visualised
in Fig. 18 where the stick-slip dynamics occurs localised in the
vicinity of the contact line and far off the boundary.

A.4 Obtaining dissipation from the gradient dynamics

Here we discuss how to measure the dissipation due to the
various fluxes based on the gradient dynamics structure (1)
analogously to the one-field case treated by Thiele.59 Without
loss of generality, we restrict the derivation to the planar case.

First, we define the lateral liquid transport fluxes jh and jz
(within film and brush) including advection and also introduce
the vertical transport flux jM between the two phases as

jh ¼ �
h3

3Z
@x
dF
dh
�Uh; jz ¼ �Dz@x

dF
dz
�Uz;

jM ¼ M
dF
dh
� dF

dz

� �
:

(57)

Here, a positive sign of jM corresponds to transport of liquid
from the drop into the brush. Next, we rewrite the total time
derivative of the free energy in terms of the dynamical eqn (1)

and the fluxes:

dF

dt
¼
ð

dF
dh
@thþ

dF
dz
@tz

� �
dx

¼
ð

dF
dh
�@xjh � jMð Þ þ dF

dz
�@xjz þ jMð Þ

� �
dx

¼ð�Þ �
ð
h3

3Z
@x
dF
dh

	 
2

dx�
ð
Dz @x

dF
dz

	 
2

dx

�
ð
M

dF
dh
� dF

dz

	 
2

dxþ
ð
ð�UÞ h@x

dF
dh
þ z@x

dF
dz

	 

dx

¼ :�Dh �Dz �DM þDadv

(58)

where we have used partial integration with vanishing bound-
ary terms at (*) and identified the integrals with the different
channels of energy dissipation: convective motion within the
drop Dh, diffusion within the brush Dz, liquid transfer between
film and brush DM, and caused by imposed advection Dadv.

Notably, in the case of U = 0 this directly implies
dF

dt
� 0;

i.e. the system approaches an energetic minimum if no driving
U is applied.

A.5 Macroscopic derivation of the Young and Neumann laws

In Section 3 we derive a global Young law and a local Neumann
law in the mesoscopic description of a drop on the brush. Here,
we present a derivation of the same laws in the macroscopic
picture to establish the conditions for the consistency of the
two descriptions. This follows in spirit a similar derivation for
the case of films covered by an insoluble surfactant presented
by Thiele et al.70

On the macroscale, there is a sharp contact line limiting the
drop base at radius x = R. It divides the brush-covered substrate
into a part covered by liquid and a part without liquid on top.
Hence, we write for the macroscopic grand potential

G½h; z� ¼
ðR
0

gxhþz þ gblxz þ gbrush � Pðhþ zÞ
� �

dx

þ
ð1
R

gbgxz þ gbrush � Pz
� �

dx

þ lhhðR�Þ þ lz zðR�Þ � zðRþÞð Þ;

(59)

i.e. the macroscopic analogy to eqn (10). Here, the Lagrange
multiplier P ensures conservation of liquid volume and the
Lagrange multiplier lh ensures the condition h(R) = 0. In addition,
we need to impose explicitly that the brush height z is continuous
across x = R, which is done by the Lagrange multiplier lz. In order
to distinguish the states on the two sides of the contact line we
have defined the limits R	 ¼ lime!0 R	 e.

Employing the same mechanical analogy as in the meso-
scopic picture, we interpret the integrand of the grand potential
as a Lagrangian L:G ¼

Ð
L dx and evaluate the Hamiltonian H

with respect to the generalised coordinates {h + z,z} and
their corresponding generalised momenta {ph+z,pz}. In the

Fig. 18 Shown is the numerically realised forced wetting scenario for a
stick-slip-motion. The brush–liquid (orange) and liquid–gas interfaces
(blue) are displayed at the largest (solid line) and smallest (dashed line)
contact angle of a cycle of stick-slip motion. A deformation of the brush
only occurs in the vicinity of the contact line.
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macroscopic approach, we need to distinguish positions inside
and outside of the drop radius and find for the Hamiltonian

Hin ¼ �
g

xhþz
� gbl

xz
� gbrush þ Pðhþ zÞ; (60)

Hout ¼ �
gbg
xz
� gbrush þ Pz: (61)

Again, it corresponds to an energy density that has to be
uniform across the domain. We therefore evaluate Hin ¼
Hout far away from the contact line, assuming that 1/xh+z =
cos yLG = cos yY is nearly constant and that the brush has
adapted a constant height zd inside and zp outside of the drop
(and xz = 1). Further, we assume that the drop is very large,
hence the Laplace pressure vanishes P E 0. This gives the
ammended Young law as

g cos yY = gbg(zp) � gbl(zd) + gbrush(zp) � gbrush(zd).
(62)

Note that the slope of the liquid–gas interface is only approxi-
mately constant when h + z { g/P but the flat brush is only
attained for gbl/qzgbrush { (R � x) Bh + z. Thus, to achieve a
form like Young’s law requires an intermediate asymptotics
gbl/qzgbrush { h + z { g/P B R. This is, however, easily fulfilled
for large drops. The close relation of the macroscopic Young
law to its mesoscopic equivalent eqn (23) is particularly trans-
parent if an additional 0 = gbl(zp) � gbl(zp) is added to the r.h.s.
of eqn (62), see the resulting eqn (24) in the main text.

Similarly, we also recover the two components of the
Neumann law by equating the Hamiltonian in the two regions
close to the contact line, i.e. for x - R	. There, due to the
continuity of z, the brush energy approaches the same value
and evaluating Hin ¼Hout gives

g cos yLG + gbl cos yBL = gbg cos yBG, (63)

namely, the horizontal Neumann condition in the macroscopic
picture. The relation is exactly equivalent to the mesoscopic
version (eqn (30)) if the consistency relation (25) is considered.

Assuming a conservation of the generalised momentum pz +
ph+z across the contact region x A [R�,R+] results in the vertical
Neumann condition

g sin yLG + gbl sin yBL = gbg sin yBG (64)

as an exact analogy to the mesoscopic eqn (31).
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