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PACS 68.08.Bc — Liquid-solid interfaces: Wetting
PACS 47.55.D- — Drops and bubbles

PACS 47.20.Ky — Nonlinearity, bifurcation and symmetry breaking

Abstract — We study the depinning and subsequent motion of two-dimensional droplets with
large contact angles that are driven by a body force on flat substrates decorated with a sinusoidal
wettability pattern. To this end, we solve the Stokes equation employing a boundary element
method. At the substrate a Navier slip condition and a spatially varying microscopic contact angle
are imposed. Depending on the substrate properties, we observe a range of driving forces where
resting and periodically moving droplets are found, even though inertial effects are neglected.
This is possible in the considered overdamped regime because additional energy is stored in the
non-equilibrium configuration of the droplet interfaces. Finally, we present the dependence of the
driving at de- and repinning on wettability contrast and slip length, complemented by a bifurcation

analysis of pinned-droplet configurations.

Copyright © EPLA, 2012

Introduction. — The dynamics of partially wetting
droplets on heterogeneous substrates is relevant not only
from the perspective of fundamental research [1] as it
has direct applications in coating technology [2], micro-
fluidics [3], and enhanced oil recovery [4]. Microscopic
roughness and heterogeneities of the surface composition
are the main cause for contact line pinning which leads
to contact angle hysteresis and a low overall droplet
mobility. Here we present a numerical study of droplet
depinning for large contact angle droplets to elucidate the
interplay between wettability contrast, the length scale
of the substrate heterogeneities, and the slip length. For
simplicity, we consider two-dimensional droplets which
allow us to construct the energy landscape of a droplet
and to track local energy minima during changes of the
control parameter. To study the droplet moving over the
heterogeneous substrate after depinning, we consider the
droplet dynamics in the limit of high viscosity, i.e., small
Reynolds numbers. The evolution of the free-surface shape
and position of the droplet is obtained by numerically
solving the Stokes equations using the boundary element
method (BEM). Interestingly, we observe a bistability of
periodic motion and droplet pinning even though inertia,
one of the primary arguments for bistable behaviour in
tribology [5], is neglected in the Stokes limit.

Most studies of contact line dynamics that employ
continuum models regard chemically homogeneous and
flat substrates [1,6]. Effects of regular arrays of hetero-
geneities have recently been taken into account in studies
of wettability-driven droplet spreading [7] and of droplet
depinning under the influence of a lateral driving force
[8,9]. Spreading on random topographical substrates has
also been studied extensively [10,11]. These studies employ
a long-wave evolution equation for the drop profile [12]
that restricts them to droplets with small contact angles
and small wettability contrasts (or shallow corrugations).
Therefore, it is, for instance, not known which of the depin-
ning transitions described in refs. [8,9] occur for droplets
with large contact angles. Other methods employed to
study the motion of liquid fronts or droplets over hetero-
geneous substrates include Lattice Boltzmann [13], phase
field [14], and molecular-dynamics [15] simulations.

Here, we study droplets of arbitrarily large contact
angles and consider their depinning transitions and subse-
quent droplet mobility on substrates with a chemical
heterogeneity corresponding to a periodic wettability
pattern. In contrast to [9] where the droplets are small
compared to the distance of the defects, we focus on
characteristic length scales for the heterogeneities well
below the droplet size. The droplet is immersed in an
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Fig. 1: Two-dimensional, large contact angle droplet with base
length Az centered around z. sitting on a flat substrate with a

sinusoidally varying wetting energy w(z). The droplet is driven
by a body force f parallel to the substrate.

w(X)

inviscid fluid and driven by a constant body force parallel
to the substrate. In this system we study the critical
driving force where the droplet de- and repins, and the
droplet mobility as a function of the wetting properties of
the substrate and the slip length.

Static model. — The critical body force needed to
mobilise a static droplet is studied using two methods.
The first one is based on the observation that the energy
landscape of a static two-dimensional droplet only depends
on two coordinates, the positions of the front and back
contact point. Interfacial instabilities and depinning can
be detected by following the set of extremal points in the
energy landscape as control parameters are changed. The
second method considers the set of solutions to the ordi-
nary differential equation which governs the equilibrium
shape of the droplets. In this approach, static configu-
rations of the free interface are followed in the space of
control parameters using numerical continuation [16].

Energy landscapes.  The total energy of the droplet on
a vertical substrate, as visualised in fig. 1, is the sum of
interfacial and gravitational energy, and reads

E{S}:’yE—&—gA:Uo—i—/ng dz w(z), (1)

Th

where v is the energy of the free surface per length and
£ is the corresponding arclength. The second term on
the RHS of eq. (1) accounts for the gravitational energy
of the droplet with cross-sectional area A and lateral
center-of-mass position z,. The magnitude of the external
driving is controlled by the body force per area, g. We use
the total driving f =gA as control parameter. The third
term on the RHS accounts for wettability in terms of the
position-dependent surface energy w(z). It corresponds to
the difference between the solid/liquid and solid/vapor
surface energies per unit length normalised with v. Now
we consider dimensionless rescaled quantities by setting
the interfacial energy, ~, and the cross-sectional area, A,
equal to unity.

Mechanically stable two-dimensional droplets corre-
spond to local minima of the constrained droplet energy
min  (E{S}), ()

E,(z¢, zv) = sedmin
Tf,Th

i.e., to minima of the total energy equation (1), over
the subset C of interfacial shapes S with the front and
back contact line at positions x¢ and xy},, respectively, and
with a cross-sectional area A =1. As sketched in fig. 1,
instead of the positions of the contact lines one may
equivalently consider the droplet’s base length Ax = x¢ —
a1, and lateral position x. = (zf + ) /2 of the midpoint of
the wet section of the substrate. To determine F,(Ax, )
we use the free software package Surface Evolver [17].
We assume a periodic surface energy of the form

w(zr) =w, + Aw cos(2m kz/L,), (3)
where L, is the base length of a droplet with unit area on a
homogeneous substrate with wetting energy w,. The peri-
odicity k represents the number of substrate modulations
covered by a droplet. The maximal wettability contrast is
2Aw.

Integration of eq. (3) from xp, to z¢ together with
the gravitational energy leads to a position-dependent
contribution

Aw L,

sin(2m k /L) |§°f§f£

(4)

to the total droplet energy. The explicit form of the func-
tion E,(Az,z.) and the numerically determined function
E.(Ax) that gives the energy of the free interface for a
given baselength allow us to determine the set of extrema
of the energy landscape of the constrained droplet energy
E,(Ax,x.).

Without wetting contrast Aw =0 and at zero driving
f =0, the function E,(Az,z.) displays a single straight
valley into the direction of x. at the preferred base
length Az which is determined by the wetting energy
w,. For Aw #0 a periodic modulation of E,(Az, z.) in
the direction of z. appears. Together with the linear
gravitational contribution, E,(Az,z.) displays a periodic
landscape of local maxima, minima, and saddle points.

Changes in the control parameters f, Aw, or w, lead
to changes in the tracked position and number of extrema
found for each period of the wettability pattern. Monitor-
ing the contact angles 6y and 6}, at the front and back
contact point of the droplet, respectively, shows that,
as expected, droplets corresponding to an extremum of
E,(Ax, x.) satisfy the Young-Dupré equation

Ey=fao+w, Ax+ -

cost; =w(x;) for ie{f,b} (5)
within numerical tolerances.

For the simple wettability pattern chosen, the number of
local minima at fixed period is monotonically decreasing as
the driving f is increased. Hence, we can define complete

depinning of the droplet from the heterogeneities as the
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parameter value fT where the last local minimum of the
energy landscape disappears. In other words, for driving
forces above fT no mechanically stable steady droplets
exist.

Shape equation. Another possibility to obtain the
spectrum of steady droplets pinned to the heterogeneities
of the surface energies is to satisfy the conditions of
mechanical equilibrium for the interface and at the contact
points. The shape of the droplet can be given by a
parametric curve (z(u),y(u)) with a parameter u € [0, 1].
The local curvature x(u) of the interface, with u as control
variable of the parametrised curve describing the free
interface, has to balance the pressure difference according
to the Laplace equation

k(u) = fa(u)+ A (6)
which governs the shape of a droplet under the action of
a body force density f. Here X is the Laplace pressure
that has to be chosen to satisfy the constraint of a fixed
enclosed area A =1.

Provided the interface does not exhibit overhangs, its
curvature k can be expressed in Monge parameterization

y(z) as

/!

K(x) = *yigcn
(1+y7)2
where primes denote derivatives with respect to z. The
slope of the interface at the contact line has to satisfy the
boundary conditions

(7)

tanf(z;) =y (z;)  for i€ {b,f} (8)
according to the local contact angle 6(z) given by Young’s
equation (5) and the surface energy (3).

Here we use the continuation algorithms bundled in the
free software package Auto07p [16] to solve the ordinary
differential equation (6) and boundary condition (8) start-
ing from the known spherical cap solution on a homoge-
neous substrate. Such methods are extensively used in the
context of long-wave models [8,18].

Note that in the explicit construction of mechanical
equilibria, each of them must correspond to a mini-
mum, maximum or saddle point of the energy landscape
E.(Ax,x.) discussed previously. However, the stability of
the extrema is a priori not known and has to be obtained
via a combination of energy measurements and a discus-
sion of the obtained bifurcational structure.

Dynamic model. — For sufficiently small droplets
inertial effects are negligible and the droplet evolution
may be studied in the limit of completely overdamped
fluid dynamics, i.e., by solving the Stokes equations for
a droplet of incompressible viscous liquid immersed in
an inviscid fluid of zero density [19]. We chose our time
scale such that the dynamic viscosity of the liquid equals
unity. At the free interface of the droplet we impose a
vanishing tangential force while the normal force is (for

v=1) given by the local curvature of the free inter-
face, K, together with the gravitational contribution. The
boundary condition at the flat substrate is the Navier
slip condition 0,v, =v,/ls, relating the value of the
tangential velocity component v, to its derivative perpen-
dicular to the substrate. The linear interpolation length I
is the slip length. We solve the Stokes equation together
with the boundary conditions at the free interface and
substrate using the boundary element method (BEM) [19]
employing a piecewise linear discretised boundary of the
droplet with increased refinement in the contact point
regions.

For a given droplet configuration, we first determine the
curvature of the free interface and, hence, the Laplace
pressure at the interface. In a next step we obtain the
velocity of the free interface from the solution of the BEM
equation. This velocity field is used to evolve the shape of
the free interface. On the two boundary elements where
the free interface is in contact with the substrate, we
enforce the local position-dependent microscopic contact
angle. A similar method is used in refs. [20,21] to model
moving droplets. We used a sufficiently high discretisation
such that the numerical slip becomes negligible compared
to the physical slip included in the model.

Results and discussion. — Before addressing moving
droplets on a substrate with a wettability pattern it is
instructive to consider the spectrum of possible steady
states. On microscopically heterogeneous substrates, a
set of steady droplets with different macroscopic contact
angles can be observed experimentally. Following the
lines of the work of Vellingiri et al. [22] for the case
without gravity, we study the existence and stability of
such solutions depending on wetting energy contrast Aw,
wettability periodicity & and driving force f. Varying k
in eq. (3) we find by numerical continuation a number
of solution branches to the shape equation, eq. (6), for
f=0 as displayed in fig. 2(a). Inspection of the droplet
shapes on these branches reveals three different types of
equilibria, as shown in fig. 2(b), which depicts the energy
landscape for k=>5: Instead of a single, translationally
invariant minimum of the restricted energy F,(Az, z.),
as observed for a homogeneous substrate, we find a
corrugated energy landscape with a number of minima,
maxima, and saddle points.

The first and second type of equilibria correspond to
droplets that are located symmetrically with respect to
the minima (on vertical lines in fig. 2(b)) and maxima
(at x. =0 in fig. 2(b)) of the sinusoidal wetting energy
pattern w(x), respectively. Both types may be either
stable or unstable as indicated by solid and dashed lines
in fig. 2(a), respectively. The third type are the saddle
points of the energy landscape that always correspond
to unstable droplets. They sit in an asymmetric way on
the wettability pattern w(z) (dotted lines in fig. 2(a) and
crosses in fig. 2(b)), and have base lengths Az that are a
multiple of the period L = L, /k.
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Fig. 2: (a) Base length Az of extremal droplet configurations as a function of the periodicity k for vanishing body force f =0.
Solid lines represent stable droplets (ss) while dotted and dashed lines represent unstable droplets with one (us) or two (uu)
unstable directions, respectively. At k=25, local maxima, minima, and saddle points are marked by triangle, circle and cross
symbols, respectively. (b) Density plot of the restricted droplet energy E.(Az, z.) at f =0 and k =5 showing the displacement
of the marked solutions on the substrate and the degeneration of the saddle points with vertical lines delimiting one period
of the substrate. (c) Bifurcation diagram for increasing driving force f >0 for k=5 showing the steady droplets (lines) and
the minimal and maximal base length of periodically moving droplets (triangles). For plots (a) to (c), the sinusoidally varying
wetting energy has an amplitude Aw =0.2, mean w, = —0.707 (corresponding to a contact angle 6§ =45°) and slip length

ls =10.

The (double) branches of asymmetric solutions connect
the two different branches of symmetric solutions via
symmetry breaking pitchfork bifurcations and form
thereby a similar snake and ladders bifurcation diagram
as well known for localised states [23]. Here, the bifur-
cations occur at points where the base length Az as a
function of k of the first and second type of droplets
displays either a minimum or a maximum (fig. 2(a)).
In terms of equilibria of the energy E,(Az,z.), a local
minimum and a pair of saddle points corresponding to
asymmetric solutions merge into a single saddle point
that corresponds to a symmetric solution. Droplet shapes
corresponding to the local minimum and the single saddle
point exhibit the same symmetry, i.e., reflection symme-
try with respect to either a minimum or a maximum
of w(x). Following the symmetric branches beyond this
bifurcation point to the turning point, the saddle point
transforms into a local maximum.

The number of mechanically stable droplet equilibria
increases as the periodicity of the pattern is reduced while
the upper and lower limit for Ax are fixed by the minimal
and maximal wetting energy. These relations can easily be
derived from the observation that any equilibrium shape
of the free interface must be a circular arc matching the
local contact angles according to the equation of Young-
Dupré (5). This has already been described in ref. [7] where
the spreading of two-dimensional droplets under the action
of interfacial forces is investigated.

To understand the depinning of droplets from the
wettability pattern we follow the steady-solution branches
of egs. (6) and (8) when the body force f is increased
at fixed periodicity k, average wettability w,, and wetting
contrast Aw. In fig. 2(c) the resulting droplet base lengths
Az are shown as a function of f for the case of k=5. A
body force f >0 amounts to an overall tilt of the energy

landscape in fig. 2 into positive z.-direction and a change
of the energy contribution E. fixed by the contour of the
free interface.

Since the body force breaks the reflection symmetry
of the wettability pattern a classification of equilibrium
droplets according to discrete symmetries can no longer
be applied. However, the spectrum of solutions evolves for
f >0 continuously from the one at f =0 which displays
these symmetries. Discontinuous changes of the number of
solutions only occur whenever a saddle point and a local
extremum of E,(Az, z.) merge and disappear in a saddle-
node bifurcation (cf. also fig. 2(c)). For the sinusoidal
wettability pattern, eq. (3), we observe that the number
of steady solutions decreases as the external driving is
increased. We note that the loss of a stable solution branch
is correlated with the contact point at the droplet back or
front reaching a maximum or minimum of the wettability,
respectively.

To study the dynamics of depinned moving droplets we
solve the Stokes equation as described above. A variety
of different dynamical behaviours can be observed. For
instance, as shown in fig. 3(a) small changes in the
periodicity k£ can result in a transition from an anti-phase
stick-slip motion where the velocities of the front and back
contact points are phase-shifted by half a temporal period
to an in-phase stick-slip motion, where front and back
move synchronously.

The triangles in fig. 2(c) show the classical depin-
ning scenario of a saddle-node infinite period (SNIPER)
bifurcation. The branch of periodically moving droplets
emerges at the saddle-node bifurcation with a period that
diverges close to the critical point. This scenario is also
observed for an overdamped mass point in a periodically
modulated potential under constant driving where it is
described by the Adler equation [8,24]. Figure 3(b) depicts
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Fig. 3: (a) Velocity of the front (solid line) and back (dashed
line) contact point over time showing (left) anti-phase motion
at periodicity k=10 and (right) in-phase motion at the
slightly different k=10.25 for Aw=0.2, f =0.35. (b) Final
mean droplet velocity as a function of driving force f for
heterogeneities Aw as given in the legend and k=10, with
the observed depinning (solid line) and repinning (dashed line)
force. For (a) and (b) the average wetting energy is wo =0
(0 =90°), and the slip length I5 = 10.

the resulting mean droplet velocity v as a function of the
driving f for the case of a large slip length [ =10 and
large average contact angle of 90°. The average velocity
is monotonically decreasing with increasing Aw because
the viscous dissipation resulting from the periodic droplet
deformation increases, resulting in a higher effective fric-
tion.

If one starts with a steady droplet and increases the
driving f, the droplet depins at fT (respective solid verti-
cal lines in fig. 3(b) where it jumps to a finite mean veloc-
ity. However, decreasing f again, one observes that below
fT the solution follows a different branch until f+ where
in our simulations the mean velocity drops discontinuously
to zero. This hysteresis loop differs substantially from the
depinning via a SNIPER bifurcation where f at de- and
repinning is identical [8]. The hysteresis leads to a parame-
ter range of bistability where both, the static droplet and
a periodically moving droplet, exist for identical substrate
properties and forcing.

Fig. 4: (a) Minimal and maximal droplet base length Az and
(b) average droplet velocity v for static and periodically moving
droplets as function of the driving force f for different slip
length s as given in the legend of (b). The inset of (b) gives
the minimal force f where moving droplets were observed as
function of Ils. In all cases wo=0 (6=90°), Aw=0.2, and
k=10.

To further analyse the repinning, fig. 4 shows how
the hysteresis depends on the slip length: the minimum
and maximum droplet base length Axp.. and Azmin
of periodically moving droplets together with the base
lengths of the steady droplets are given for w, =0, Aw =
0.2, k=10, and slip lengths from l[s=1 to 10. With
decreasing slip length, the amplitude of the oscillations
of Az increases while the hysteresis range decreases. Such
an observation of a hysteresis loop is commonly associated
with inertial effects [5], however in the considered Stokes
limit inertia is neglected.

Hysteresis in the present system is possible because the
moving droplet is never at its equilibrium shape for the
given positions of the back and front contact points. In
the case of a large slip length the relaxation time scale of
the interface can be larger than the time scale related to
periodic deformations of the interface during motion. The
excess in surface and wetting energy allows the droplet
to pass the wettability barriers, analogous to the kinetic
energy in a system with inertia.

Therefore, one may relate the droplet behaviour to two
competing time scales: i) The scale of relaxation of the
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