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Gradient-dynamics model for liquid drops on
elastic substrates†

Christopher Henkel, *a Jacco H. Snoeijerb and Uwe Thiele acd

The wetting of soft elastic substrates exhibits many features that have no counterpart on rigid surfaces.

Modelling the detailed elastocapillary interactions is challenging, and has so far been limited to single

contact lines or single drops. Here we propose a reduced long-wave model that captures the main

qualitative features of statics and dynamics of soft wetting, but which can be applied to ensembles of

droplets. The model has the form of a gradient dynamics on an underlying free energy that reflects

capillarity, wettability and compressional elasticity. With the model we first recover the double transition

in the equilibrium contact angles that occurs when increasing substrate softness from ideally rigid

towards very soft (i.e., liquid). Second, the spreading of single drops of partially and completely wetting

liquids is considered showing that known dependencies of the dynamic contact angle on contact line

velocity are well reproduced. Finally, we go beyond the single droplet picture and consider the

coarsening for a two-drop system as well as for a large ensemble of drops. It is shown that the

dominant coarsening mode changes with substrate softness in a nontrivial way.

1 Introduction

The static and dynamic wetting behaviour of simple and
complex liquids on various surface types is highly relevant for
many aspects of daily life, including cosmetics, cleaning and
painting. It is also of great interest for many technical applica-
tions like, for example, printing, lubrication, and coating.
Related phenomena have been studied for more than two
hundred years.1–3 Many works published in the past decades
consider (de)wetting on smooth homogeneous rigid solid
surfaces,4,5 although more recently other substrate types have
also attracted much attention. For instance, in many applica-
tions the substrate actually consists of a soft elastic solid,6 a
viscous liquid7,8 or a viscoelastic material.9 Lubricant-infused
surfaces are another relevant example.10,11 In all these cases,
the coupling of the dynamics of the liquid and of the under-
lying substrate is important. Such phenomena are of particular
importance for micro- and mesoscale systems that are

dominated by interface phenomena. The latter include adhe-
sion and cohesion forces that, in the case of partially wetting
liquids, cause droplet formation and also deform the substrate.

A particularly interesting situation arises for the wetting of
soft elastic solid substrates.6,12–14 This situation is often
referred to as ‘‘soft wetting’’, and gives rise to many wetting
phenomena that have no counterpart on a rigid solid. The most
prominent feature of soft wetting is the appearance of a wetting
ridge: an elastic deformation that is drawn out of the substrate
by the vertical pulling force the liquid–gas interface exercises at
the three-phase contact line.15–18 The ridge is responsible for
intricate static and dynamic phenomena observed in soft wetting.6

The fine-structure of the wetting ridge arises from an
intricate balance of elastic and capillary forces, with recent
literature identifying a central role for the surface tension of the
solid.16,19–21 A central question is how the liquid angle, at
equilibrium, is different from Young’s law for rigid substrates.
It turns out that upon increasing the substrate softness, a
double-transition is observed in the various angles between
interfaces in the contact line region.22 Namely, when increasing
softness from low values (i.e., starting with a rigid substrate),
first a strong increase in the size of the wetting ridge is
observed while the droplet shape remains approximately con-
stant and the substrate surface in the inner region remains flat.
Then, when the softness increases several orders of magnitude,
a strong increase of the substrate depression under the droplet
occurs a constant opening angle of the wetting ridge. The
solid angle is governed by a balance of surface tensions,19–21

analogously to Neumann’s law known for floating lenses.
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In comparison to liquids, however, the surface tension of solids
brings in an additional complexity owing to its possible strain-
dependence (i.e., the Shuttleworth effect).23–27 The wetting
ridge further noticeably influences the dynamics of moving
contact lines and droplet interactions. Depending on the sub-
strate layer thickness and softness the wetting ridge may
develop local depressions on both sides which counteract
coarsening by droplet translation and can even result in an
effective repelling force between them – also referred to as the
‘‘inverted Cheerios effect’’.28 Another consequence is the so
called ‘‘viscoelastic braking’’, describing the decreasing speed
of a moving contact line with increasing softness of the sub-
strate, due to increased dissipation within the latter. This effect
was already investigated by Carré and Shanahan12,13 and Long
et al.,29 followed up in recent years in ref. 30–32. New phenom-
ena were discovered, such as intricate dependencies of sliding
velocity on substrate thickness33 and stretching,34 as well as
effects of free polymer chains that can be present in the
substrate.35 Besides slowing down the contact line, the wetting
ridge can also be the source of complex periodic stick–slip
motion.9,31,36

From the modelling perspective, various approaches to soft
wetting have been proposed. Most analytical results have been
obtained using linear elasticity theory.16,17,19,21,22,29,31 In these
approaches the surface tension forces are treated as tractions
that are imposed as boundary conditions at the free surface.
This approach has now been extended to large deformations,
including the possibility of the Shuttleworth effect.27,37 Other
studies employ an approach where the tractions are not
imposed by hand, but computed via a Derjaguin (or disjoining)
pressure38 – this is, a hybrid approach coupling elasticity to a
thin-film static equation.39 Only recently, dynamic calculations
coupling full hydrodynamic and nonlinear elasticity models
have become available.40–45

Dynamic long-wave (or thin-film) models were developed in
ref. 30 and 46–48. In particular, ref. 30, 46 and 47 present a
model for the dynamics of a liquid drop on a viscoelastic layer
while ref. 48 models the durotaxis of a liquid drop on a compliant
Kirchhoff plate. Aspects of substrate elasticity also enter long-wave
models for drops on polymer brushes49 and on growing layers of
ice.50 These long-wave descriptions are further discussed after
introducing our model in Section 2.1. Furthermore, some studies
employ molecular dynamics simulations, exploring the elasto-
capillary interactions at the nanoscale.51,52

None of the reviewed modelling approaches lends itself
easily to large-scale simulations of the coupled dynamics of
elastic and liquid layer considering, e.g., the coarsening beha-
viour of large droplet ensembles on soft substrates. Also the
incorporation of additional effects, e.g., the Shuttleworth effect
or forces due to thermal or solutal Marangoni effects or con-
densation/evaporation, is a major effort. In the present work we
present a simple qualitative model that captures main features
of the coupled dynamics of elastic substrate and liquid drop
or film. It is developed as a gradient dynamics model53,54 on
a simplified free energy that in its simplest form captures
compressional elasticity but can be extended to include effects

such as those mentioned above. Such a model may then be
employed in large-scale simulations similar to ref. 55 and 56 in
the case of droplet ensembles on smooth rigid substrates.

The collective behaviour of such ensembles, e.g., their
coarsening behaviour, is of large interest in practical contexts
like, for instance, condensation or inkjet printing. Similar
coarsening processes (Ostwald ripening) occur for emulsion
droplets,57 quantum dots,58 or crystalline nanoparticles.59 In all
cases, the mean cluster or drop size and their mean distance
continuously grow following power laws. For simple nonvolatile
liquids on horizontal homogeneous substrates coarsening is
experimentally well studied60–63 and theoretically well under-
stood through simulations and asymptotic considerations64–66

based on thin-film models.67 As explained more in detail below
in Section 5 one distinguishes two coarsening modes – Ostwald
ripening and migration – with the former often seen as dominant.
However, for the dewetting process of a liquid film on a rigid
substrate, ref. 65 and 68 find that, in contrast, there exist extended
parameter regions where coarsening by migration dominates. We
employ the developed simple model to investigate how substrate
softness influences the dominant coarsening mode.

Here, the mesoscopic thin-film model is presented in the
subsequent Section 2 where we also discuss how the quantities
of the model are related to macroscopic interface tensions and,
in consequence, how the classical Young and Neumann laws
result as limiting cases. In Section 3 the model is employed to
study the double transition of steady drops in its dependence
on drop size, Section 4 investigates the spreading dynamics of a
single drop in dependence of substrate softness for partially
and completely wetting liquids, and Section 5 considers the
coarsening behaviour of two drops and large drop ensembles,
again in dependence of substrate softness. The various results
are discussed in the context of literature results. Section 6
concludes and gives an outlook.

2 Modelling approach
2.1 Governing equations

The geometry of the problem is sketched in Fig. 1, where we
define the liquid layer thickness h(-x, t), and the deviation of the
elastic layer thickness from a uniform reference height x(-x, t).
We employ a long-wave model69,70 consisting of a standard
thin-film equation for h(-x, t)71 and a nonconserved Allen–Cahn-
type relaxational dynamics for x(-x, t). In dimensional form
we have

@th ¼ r �
h3

3Z
rph

� �
;

@tx ¼ �
1

z
px:

(1)

Here, ph and px are the pressures at the two interfaces that we
will express in terms of functional derivatives. We further
introduced the viscosity of the liquid Z, and an ‘‘elastic friction
constant’’ z that governs the relaxation of the elastic layer.
We remark that the dynamics of the elastic layer is a spatially
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continuous equivalent of a compressible Kelvin–Voigt-type
model, as will be further discussed below.

The system of governing equations is of gradient dynamics
form,54 i.e., the pressures ph and px are obtained as variations of
an underlying free energy functional

F[h, x] = Fcap[h, x] + Fwet[h] + Fel[x] (2)

with respect to h and x, respectively. The energy eqn (2) features
contributions due to capillarity of both interfaces, wettability of
the liquid on the elastic layer, and elasticity. The first contri-
bution consists of the interface energies in long-wave approxi-
mation, e.g., the area element d2s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrhj2

p
d2x of the

liquid–gas interface is approximated by d2s � 1þ 1

2
jrhj2

� �
d2x.

Up to a constant, one then has

Fcap½h; x� ¼
ð
O

gh
2
jrðxþ hÞj2 þ

gx
2
jrxj2

h i
d2x (3)

where O is the considered domain, and gh and gx are the liquid–
gas and the elastic–liquid interface energies per surface area,
respectively. Partial wettability of the liquid on the elastic layer is
incorporated into our mesoscopic model via

Fwet½h� ¼
ð
O
f ðhÞd2x (4)

where the local wetting energy f (h) is related to the Derjaguin (or
disjoining) pressure P(h) =�df/dh.4,38 The coupling of an effective
interface potential and elastic deformations was previously con-
sidered in ref. 39, 72 and 73. Here we use a simple form
combining destabilising long-range van der Waals interactions
and stabilising short-range adhesion forces, namely,

f ðhÞ ¼ AH

2h2
2

5

ha

h

� �3

�1
" #

: (5)

In this way, even macroscopically ‘dry’ spots are covered by a thin
adsorption (or precursor) layer of thickness ha (a molecular
scale).74 The Hamaker constant AH 4 0 is related to the (small)

equilibrium contact angle yeq by AH ¼
5

3
ghha

2yeq2. As a result the

effective elastic–gas interface energy is gsv ¼ gh þ gx þ f ðhaÞ ¼

gh þ gx �
gh
2
yeq2. In the limit of a rigid flat lower layer, this directly

corresponds to the Young–Laplace law in long-wave approxi-

mation cos yeq � 1� 1

2
yeq2

� �
.

Finally, we need to specify the elastic energy, which in linear
elasticity theory can be expressed as a quadratic non-local
functional of x(x, t). Here we approximate the energy‡ by a
local form, as

Fel ¼
kv
2

ð
O
xð~x; tÞ

ð
O
Qð~x�~x 0Þxð~x 0; tÞd2x0d2x � kv

2

ð
O
x2d2x:

(6)

This gives a simple continuous spring potential
kv
2
x2, where kv

corresponds to a spring constant per unit area. Such a free
energy corresponds to the so-called Winkler foundation
model,75 used also in problems of soft lubrication.76,77 In
Appendix A we show how the above model can in principle be
related to an elastic modulus G, see also ref. 78 for a detailed
discussion.

Varying the functional (2) one obtains the pressures ph ¼
dF
dh

and px ¼
dF
dx

. After nondimensionalisation the governing

eqn (1) become

qth = �r�(h3r[D(h + x) + P(h)]), (7)

@tx ¼
1

t
Dðhþ xÞ þ sDx� 1

s
x

� �
: (8)

where now all quantities are nondimensional. Here, the used
rescaling for space and time is based on quantities of the liquid
layer: vertical length scale ha, horizontal length scale

L ¼
ffiffiffiffiffiffiffiffi
3=5

p
ha=yeq, time scale th = 27haZ/25ghyeq

4. Note that the
employed long-wave approximation is valid if the ratio of the

introduced vertical and horizontal length scales e ¼ ha=L ¼ffiffiffiffiffiffiffiffi
5=3

p
yeq is small. The dynamical system is governed by three

dimensionless parameters that are all contained in the time-
evolution equation for x:

s ¼
gx
gh
; t ¼ 5

9

zhayeq2

Z
; s ¼ 5

3

ghyeq
2

kvha2
: (9)

The parameter s is the ratio of interfacial energies, t reflects the
ratio of viscous and viscoelastic dissipation, while s is the
dimensionless softness. Below we discuss how these dimen-
sionless quantities can be interpreted in a macroscopic frame-
work. Finally, eqn (7) contains the dimensionless Derjaguin
pressure P(h) = h�6 � h�3. In the scaled long-wave units, the

equilibrium angle on a rigid substrate is
ffiffiffiffiffiffiffiffi
3=5

p
.

We emphasize that all angles discussed below are long-wave
angles, i.e., a long-wave angle ~y of O(1) corresponds to a
physical angle y = e~y of O(e). Further, we point out that for
small physical angles qxh = tan yE y implying that in long-wave
scaling qx̃h̃ = ~y directly holds. A diverging long-wave angle

Fig. 1 The sketch shows the geometry of the considered two-layer
system consisting of a liquid layer on an elastic layer. The description is
based on the liquid layer thickness h(x

-
, t) and the vertical deviation x(x

-
, t)

of the elastic–liquid interface from a uniform reference height. The mean
thicknesses of the layers are given by h0 and x0, respectively. The liquid–
gas and the elastic–liquid interface have constant interface energies gh and
gx, respectively.

‡ As given e.g., in ref. 29 in Fourier space.
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~y - N implies that the physical angle approaches p/2. Note
that, in consequence, ‘‘angles’’ derived in the literature as
arctan qx̃h̃ from drop profiles in long-wave scaling are not
meaningful. For the present system, care has to be taken with
the solid angle yS between the elastic–liquid and elastic–gas
interface (see Fig. 2). As it approaches p in the limit of a rigid
substrate it is not a valid measure in the long-wave model.
Instead, we use the angle ySL + ySV = p � yS that in the
considered case is small in physical scales and therefore of
O(1) in long-wave scaling. Note, in particular, that the angle
�(ySL + ySV) in long-wave scaling is in the figures below used as
a shifted scaled representation of yS.

The presented model has a natural thermodynamic struc-
ture. The change in the free energy is given by

dF

dt
¼
ð
O

dF
dh

@h

@t
þ dF

dx
@x
@t
d2x (10)

¼ �
ð
O
h3 rdF

dh

����
����
2

d2x�
ð
O

1

t
dF
dx

� �2

d2xo 0 (11)

where from (10) to (11) we use eqn (7) and (8) as well as
integration by parts (in the first term). It is always negative
and corresponds to the negative of the total dissipation D, i.e.,
D = �dF/dt. A useful feature of eqn (11) is that it allows one to
individually measure the contributions coming from the liquid
and elastic layer, respectively and to resolve them spatially
using the dissipation density G(-x,t), i.e.

D ¼ Dh þDx ¼
ð
O
Ghd

2xþ
ð
O
Gxd

2x ¼
ð
O
Gd2x:

After having explained the gradient dynamics structure of
our model for the coupled liquid and compressible substrate
dynamics we briefly comment on related available long-wave
models. The model in ref. 30, 46 and 47 describes such
dynamics in the case of an incompressible viscoelastic material,
however, its complexity does not allow to easily discern a gradient
dynamics structure and underlying energy. Ref. 48 describes a
drop durotactically sliding on a compliant Kirchhoff plate with
position-dependent bending elasticity. However, the plate is

modelled with a static long-wave description, i.e., the elastic layer
dynamics is instantaneous and slaved to the dissipative liquid
dynamics. In consequence, dissipation in the elastic layer is not
considered. The long-wave model for a drop on a polymer brush
in ref. 49 contains an elastic contribution resulting from entropic
influences while ref. 50 describes a growing layer of ice under a
droplet employing a periodic potential to capture microscale
layering that resembles ‘‘periodic elasticity effects’’. The latter
two have a clear gradient dynamics structure similar to our model,
however, in contrast to the present case they allow for transfer of
material between the liquid drop and the substrate.

When determining steady states, qth = qtx = 0 and one may
integrate eqn (7) twice to obtain

0 = D(h + x) + P(h) + m, (12)

0 ¼ 1

t
Dðhþ xÞ þ sDx� 1

s
x

� �
: (13)

where m is a Lagrange multiplier ensuring mass conservationð
O
ðh� h0Þd2x ¼ 0: (14)

where h0 is the mean thickness of the liquid. The latter is
related to the drop volume Vd above the adsorption layer by
Vd E (h0 � 1)D where D is the area of the domain. In the
following we only consider the physically two-dimensional
situation, i.e., the substrate is one-dimensional (1d). All given
equations remain valid with r- qx, D - qxx, d2x - dx, and
-
x - x. Then, the domain size D is a length.

2.2 Relation to macroscopic theory

It is instructive to interpret the proposed mesoscopic model in
the context of the usual macroscopic description. Both perspec-
tives are sketched in Fig. 2, where we notice that the meso-
scopic model gives rise to a ‘‘rounding’’ of the sharp wetting
ridge at the scale where the disjoining pressure acts. Besides
this feature, a comparison of the proposed model to macro-
scopic theories (and to experimental data) requires the identifi-
cation of the relevant length scales and time scales of the
problem. Namely, the simplified form of the elastic energy
comes at the expense of losing some details in the description
of the elastic deformations below the drop. Still, as we will
demonstrate, the model captures all known essential static and
dynamic features of soft wetting, once the results are scaled
with the appropriate length and time scales.

In the literature of elastic wetting, it is common to express the
deformability in terms of the ‘‘elastocapillary length’’ cec, dictating
the typical elastic deformation induced by surface tension. In the
present model, such a length scale can be defined as

‘ec ¼
ffiffiffiffiffi
gx
kv

r
;) ~‘ec ¼

‘ec
L
¼

ffiffiffiffiffi
ss
p

: (15)

In the second step we defined the dimensionless ratio cec/L, based
on the horizontal scale. Hence, the softness parameter s can be
expressed in terms of the ratio of the typical elastic deformation of
the substrate to typical horizontal scale. The latter is proportional

Fig. 2 Sketch of the contact line region from two different perspectives:
(a) macroscopic, for which there are sharply defined contact angles and
contact point, (b) mesoscopic, where we observe an adsorption layer of
thickness ha on the macroscopically dry substrate and its macroscopic
interface energy gs is expressed using the wetting potential f (h). The
macroscopic contact point becomes a contact region and the corres-
ponding point force becomes a smoothened-out pressure.
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to the microscopic thickness of the adsorption layer divided by the
small equilibrium contact angle yeq.

A central feature of the macroscopic description is that it
exhibits well-defined contact angles, as indicated in Fig. 2(a).
Given that the drops are typically very large compared to the
scale ha, these angles can also be observed in the mesoscopic
model, at intermediate distances from the contact line (much
larger than ha, much smaller than the drop size). If in addition we
consider s -N, for which there is no elasticity and the substrate
is a liquid layer, one can directly express the contact angles in the
interfacial energies – using Neumann’s law.§ In the non-
dimensional long-wave limit the Neumann conditions read

Vertical: yL � sySL = [1 + s + e2f (ha)]ySV, (16a)

Horizontal: yL
2 + sySL

2 + 2f (ha) = [1 + s + e2f (ha)]ySV
2, (16b)

where all angles consistently correspond to long-wave angles,
i.e. we dropped the tildes for these angles. In the absence of any
elasticity, the liquid–liquid system approaches the shape of a
liquid lens, i.e. as s increases the angle ySV approaches zero.
Neglecting this angle from the Neumann conditions (2),
i.e. setting the right hand sides in eqn (2) to zero, the remaining
angles may be expressed like

Vertical: yL = sySL, (17a)

Horizontal: ySL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2f ðhaÞ
sð1þ sÞ

s
: (17b)

These relations give a well-defined macroscopic meaning to the
dimensionless parameter s (ratio of surface energies) and the
wetting energy of the adsorption layer f (ha). We remind that in
dimensionless units f (ha) = �3/10, which governs the liquid
angle for the rigid substrate (s = 0), i.e., in long-wave scaling
~yeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2f ðhaÞ

p
. Indeed, we will verify below that the ‘‘liquid’’ and

‘‘rigid’’ limits are correctly recovered by the mesoscopic model.
Finally, let us comment on the final dimensionless number

t, which expresses a ratio of timescales. The substrate eqn (8)
contains a stiffness kv and dissipative constant z. As is common
for the Kelvin–Voigt model, a timescale is obtained by taking
the ratio z/kv. Exciting the solid at slower timescales gives a
nearly elastic response, while at faster timescales the layer is
highly dissipative. We thus introduce the substrate’s viscoelas-
tic timescale tx, defined as

tx ¼
z
kv
;) ~t ¼ tx

th
¼ st ¼ t‘ec2

s
: (18)

In the second step we expressed the ratio tx/th, comparing the
viscoelastic timescale to that of the viscous fluid. If one chose to
scale the model on the substrate properties, most notably using
cec and tx, eqn (8) would take the form

@tx ¼
1

~t

~‘ec
2

s
Dðhþ xÞ þ ~‘ec

2Dx� x

" #
: (19)

In what follows, we stick to the original formulation, using t, s,
s as dimensionless numbers, obtained when scaling the vari-
ables on the fluid properties. For a physical interpretation of
the results, and in order to compare our model to existing
theory and experiments, we will make use of the connections
(15) and (18).

2.3 Numerical approach

In the following we employ the developed model in a number of
static and dynamic situations using two numerical techniques,
namely the continuation of steady states and direct time
simulations. For both methods the one-dimensional spatial
domain O of size D is discretized into a normally nonuniform
adaptive grid with periodic or Neumann boundary conditions.

Steady solutions are obtained by solving the second order
eqn (12) and (13) by pseudo-arclength continuation80–82

employing the packages auto-07p83 and PDE2path.84 They are
frequently used for thin-film descriptions of layers and drops of
simple or complex liquids on solid or liquid substrates.7,71,85,86

Continuation is started at an analytically or numerically known
steady state, e.g., a flat film with a small harmonic modulation
of a wavelength given by a linear analysis as critical value for a
surface instability. Then the steady state is followed in para-
meter space using, e.g., softness as control parameter, and
fixing the drop volume via a Lagrange multiplier (here m).
An individual continuation step combines a tangent predictor
and Newton correction steps.82,87

For the direct time simulations of eqn (7) and (8) the FEM-
based software package oomph-lib88 is employed. An adaptive
time stepping is used based on a backward differentiation
method of order 2 (BDF2) from which the next state is obtained
via a Newton procedure. The efficient adaptive time stepping
and mesh refinement routines allow for a treatment of even
very large systems. Fig. 3 illustrates that even quite sharp
corners like the tip of a wetting ridge are properly resolved.

In the following sections we employ the model to study the
double transition of steady drops (Section 3), the spreading
dynamics of a single drop (Section 4) and the drop coarsening
behaviour (Section 5). The results are compared to findings in
the literature to evaluate the validity of the developed model.

3 The double transition for static drops

First, we investigate a static situation, namely, the dependence
of the properties of sitting drops on the substrate softness s.
As described in Section 2.3 this is done by employing numerical
continuation to track solutions to the nondimensional steady
eqn (12) and (13). Typical drop and substrate profiles are given
in Fig. 4(a), showing how the equilibrium morphology changes
as the substrate changes from very rigid to very soft. Here we
explore the essential features, and compare the results to
existing literature.

Of particular interest are the angles sketched in the inset of
Fig. 4(b), namely, yL, the angle the liquid–gas interface takes
with the horizontal and ySL + ySV, the combined angles with the

§ Note that the previous suggestion that Neumann’s law is violated by nonlinear
elastic effects79 was found to be incorrect.27
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horizontal on both sides of the wetting ridge. Note, that the left
axis of Fig. 4(b) and 5 gives �(ySL + ySV), as this is the long-wave
equivalent to p � yS, such that the plots visually resemble Fig. 3
of ref. 22 (cf. Fig. 2 for angle definitions). Both, yL and ySL + ySV,
are expected to smoothly change from fulfilling Young’s law for
a rigid substrate (s - 0) to fulfilling Neumann’s law in the
limiting case of a liquid substrate (s - N). The change of both
angles with softness is given in Fig. 4(b) with the scale for yL

[ySL + ySV] given on the right [left] hand side axis. As in the full
elastic theory for drops with contact angle p/2 in ref. 22 two
distinguished separate transitions occur. Starting in the rigid
limit and increasing the softness, first, one observes the
formation of wetting ridges. As the overall shape of the drop
itself barely changes, in this first transition yL remains approxi-
mately constant while ySL + ySV strongly increases (in Fig. 4(b) at
about s = 1. . .102). In parallel, the wetting ridge grows as shown
in Fig. 4(c). Increasing the softness further, the substrate below
the drop is compressed owing to the Laplace pressure imposed
by the drop. In consequence, the drop gradually sinks into the
elastic layer accompanied by an inwards rotation of the wedge
structure in the three-phase contact region. This rotation marks
the second transition (in Fig. 4(b) at about s = 105. . .107): now yL

strongly decreases while ySL + ySV remains approximately con-
stant. The second transition is also reflected as a maximum in
the wetting ridge height, visible in Fig. 4(c). The two steps of the
double transition can be related to the ratio of the elastocapil-
lary length cec to the relevant microscopic and macroscopic
length scales of the system.22 Elasticity becomes important
when cec becomes comparable to the microscopic length scale,
here cec B ha. For our nondimensional quantities this implies

the first transition occurs when ~‘ec ¼
ffiffiffiffiffi
ss
p

� 1, i.e., for s E 1/s.
For s = 0.1 we have s E 10 in agreement with Fig. 4(b). Upon
entering the intermediate regime the ridge height Bs1/2, which

implies that the ridge height is proportional to ~‘ec. Likewise, the
second transition emerges when the droplet sinks in, which

happens when ~‘ec reaches the macroscopic scale of the droplet

size, here the radius. In nondimensional terms this occurs

when ~‘ec �
ffiffiffiffi
V
p

where V is the nondimensional volume of the
2d droplet,¶ i.e., s E V/s. For s = 0.1 and drop volume V = 106 we
have s E 107. This is close to the value observed in Fig. 4(b).

The dependence of the second transition on the drop
volume is further scrutinised in Fig. 5 where the dependencies
of yL and ySL + ySV on softness s are given for six different
volumes. The location of the first transition at s E 10 is clearly
independent of drop volume. The location of the second
transition, however, does depend on the droplet volume.
To quantify this we show in Fig. 6 the position of the two
transitions (measured as s-value where y = (ymax � ymin)/2) as a
function of softness. Indeed, the transition value for ySL + ySV

remains nearly constant while for yL it increases proportional to

drop volume. With the condition ~‘ec ¼
ffiffiffiffiffi
ss
p

�
ffiffiffiffi
V
p

we indeed
expect s B V/s in agreement with the full elastic theory.22

Finally, we return to Fig. 5 and inspect the asymptotic values
of the contact angles in the rigid (s - 0) and liquid (s - N)
limits. One notices that for large volumes the limiting angles

Fig. 3 Typical drop and substrate profiles in the contact line region. The
inset strongly magnifies the tip of the wetting ridge illustrating that it is
indeed rounded although in the main panel it appears to be quite pointed.
The black dots in the inset show an example of the nonuniform adaptive
numerical grid.

Fig. 4 The sub-panels in (a) show the typical equilibrium drop and
substrate morphologies (starting on the left) in the rigid limit s = 10�3,
for intermediate softness s = 104 and the liquid limit s = 1010. Panel
(b) displays the dependence of the angles yL (right hand side axis, blue line)
and �(ySL + ySV) (left hand side axis, red line) at the wetting ridge (defined in
the inset) on the substrate softness s for a drop of volume V E 106 at
s = 0.1. The two distinct transitions are discussed in detail in the main text.
The two vertical dashed lines indicate the regions where the transitions
from the rigid to the soft regime and from the soft to the liquid regime
occur, respectively. Panel (c) shows the dependence of the wetting ridge
height on s and indicates different scaling regimes. Note that the

ffiffi
s
p

scaling in the intermediate regime confirms the definition of the elasto-
capillary length (15). A corresponding continuation video can be seen in
HeSH2021-SupplMat-Video01-fig04 of the ESI.†

¶ Note that V is defined as the drop volume above the adsorption layer of
nondimensional thickness one and is strictly speaking an area.
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are independent of droplet size, and these values perfectly agree
with the expected values from Young’s law and Neumann’s law as
indicated by the blue (for yL) and red (for ySL + ySV) arrows in
Fig. 5. With decreasing volume, however, we observe an increas-
ing deviation from these ‘‘macroscopic’’ values which reflects the
mesoscopic character of the model, i.e., the modelling of wett-
ability using a wetting potential. However, macroscopic results of
elastic wetting are correctly captured when drops are much larger
than the thickness of the adsorption layer.

4 Drop spreading

We now investigate the dynamical process of droplet spreading.
Of particular interest is the effect of viscoelastic braking, i.e.,
the decrease of contact line speed during spreading with
increasing substrate softness.6,13,29–31 Any motion of the con-
tact line will displace the wetting ridge, which induces a time-
dependent deformation. Owing to the viscoelasticity of the
solid, this offers an additional source of dissipation that slows

down the spreading of the drop. Here we verify whether this
viscoelastic braking is correctly accounted for in our model.
Beyond that, we compare the case of a drop of partially wetting
liquid, i.e., employing the wetting energy (5) as in Section 3, and
the case of completely wetting liquid. The latter is realized by
using a positive sign for the long-range contribution to the
wetting energy (5) resulting in a strictly repulsive disjoining
pressure. As described in Section 2.3 the spreading is analysed
by direct time simulation of eqn (7) and (8). Note that here we
make use of the reflection symmetry w.r.t. the maximum of the
drop, and only simulate one half of the drop using Neumann
boundary conditions.

4.1 Partial wetting

The initial profile is a drop of parabolic shape on a flat
substrate with an initial contact angle that is three times larger
than the equilibrium contact angle resulting from Young’s law,

i.e., ~yini ¼ 3~yeq ¼ 3
ffiffiffiffiffiffiffiffi
3=5

p
. The initial drop height is hmax = 1000,

i.e., three orders of magnitude larger than the adsorption layer
height. A typical time evolution at intermediate softness s = 102

is shown in Fig. 7. Given that the initial contact angle is larger
than its equilibrium value, the disjoining pressure will drive a
flow of liquid towards the contact line. This induces a contact
line motion towards equilibrium, as visible in Fig. 7(a). The
corresponding evolution of the wetting ridge is indicated in
Fig. 7(b). At very early time, a ridge is growing out of the initially
flat substrate and subsequently moves along with the contact line.
This behavior closely resembles that observed in experiments.32

The corresponding dissipations in the liquid and in the substrate
are reported, respectively, in Fig. 7(c) and (d). For both, the largest
dissipation happens near the contact line. For this set of para-
meters, it turns out that the dissipation peak is larger in magni-
tude inside the solid, showing that the substrate dissipation
dominates over liquid dissipation. This is the viscoelastic braking
effect that we quantify in detail below.

A common way to characterize dynamical wetting is via the
dependence of the (dynamic) liquid angle yL on contact line
velocity v. To extract this information from our simulations we
trace the estimated macroscopic contact line position xC, and
its velocity v = dxC/dt, during the spreading process. There are
different ways of defining xC in the mesoscopic model.8 Here,

Fig. 5 Shown is the dependence of the angles yL (r.h.s. axis, blue curves)
and �(ySL + ySV) (l.h.s. axis, red curves) on substrate softness s for steady
drops of different volumes V as given in the legend. The remaining
parameters are as in Fig. 4. As the volume increases, the two distinguished
transitions become increasingly separated and for the angles the approach
of the Young–Laplace (YL) and Neumann (N) law in the rigid and liquid
limit, respectively, improves. The respective analytically predicted values
are marked by blue (for yL) and red (for ySL + ySV) arrows and thin horizontal
lines.

Fig. 6 The softness values where the two distinguished transitions occur are
shown in dependence of the drop volume [cf. Fig. 5]. The transition values are
determined as the values where the respective angle is y = (ymax � ymin)/2.

8 Common approximations for xC are: (i) the use of the position of steepest slope
of the liquid–gas interface (yL is obtained as slope of the corresponding tangent),
(ii) fitting a parabola to the drop apex and evaluate xC and yL at its intersection
with the reference flat liquid–elastic interface at z = 0, (iii) the use of the
intersection of the tangent from (i) and z = 0, and (iv) using the position of the
maximum of the wetting ridge. Our tests show that method (i) appears too often
to shift xC into the droplet by a non-negligible amount. Further, we find method
(ii) to be unreliable as it entirely ignores the local geometry of the three-phase
contact region, a problem partly shared by method (iii). Finally, method (iv) is
problematic when the contact line surfs on the wetting ridge, i.e. when the
wetting ridge falls behind. Beyond that, method (iv) requires a fitting routine to
prevent errors resulting from the discretization. Ref. 30 uses method (iii) to
predict certain subtle differences in the xC(t)-dependence of the spreading of
partially and completely wetting liquids on softness. Here, we only consider the
dependence of dynamic contact angle on contact line speed dxC/dt and method
(iii) gives robust results.
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we determine xC as the intersection point of the tangent to the
liquid–gas interface at the position of its steepest slope with the
reference flat liquid–elastic interface at z = 0.

Fig. 8 presents the resulting dynamic liquid contact angles,
for different softness (varying s) and different degrees of sub-
strate viscoelasticity (varying t). Specifically, we report the
difference in angle with respect to its equilibrium value,
DyL = yL � ~yeq, as a function of the contact line velocity
v = dxC/dt. In all cases there is an extended regime of propor-
tionality DyL B v where the change in contact angle is linear
with the contact line velocity. Such a linear dependence is
indeed expected here. The liquid dynamics is governed by
Stokes flow, for which the dynamic contact angle in partial
wetting is linear with velocity.5,89,90 Similarly, a Kelvin–Voigt
solid (as in the present case), will give a linear dependence of
the dynamic contact angle.31 We remark that in experiments,
the exponent is much lower than unity, with typical values
around 0.5. This is because the dynamic contact angle inherits
the scaling of the loss modulus – for the Kelvin–Voigt model
this is linear in frequency but in crosslinked polymer networks
typically exhibit smaller exponents.6

However, we still need to disentangle the relative roles of
liquid and solid dissipation. Fig. 8(a) corresponds to a very
small value of t, so that the solid very quickly adapts to any
changes in the liquid. We observe that the spreading dynamics
is completely independent of the softness s in this case. This
implies that the substrate has no influence on the spreading, in
spite of the presence of a wetting ridge. Indeed, at very small t
the solid’s response is nearly instantaneous, which corresponds
to a perfectly elastic limit where there is no dissipation inside
the substrate. By contrast, for larger values of t the softness
plays an important role, as seen in Fig. 8(b). Softer substrates
(larger s) give a larger departure from the equilibrium angle.
This indeed is a signature of the viscoelastic braking effect: for

a given value of yL � yeq, the contact line velocity is lower on
softer substrates. To verify whether the substrate dissipation
indeed dominates over liquid dissipation, we try to collapse the
same data using a characteristic velocity of the substrate.
Following ref. 6 and 31, this velocity is given by the ratio
cec/tx, which in the present scaling implies a dependence on
softness as � 1=

ffiffi
s
p

. Fig. 8(c) therefore shows the dynamic
contact angle plotted against the rescaled dimensionless sub-
strate velocity v

ffiffi
s
p

: the data now collapses, confirming that the
spreading dynamics is indeed completely governed by the
substrate’s viscoelasticity.

4.2 Complete wetting

The case of a completely wetting fluid can be analogously treated,
by using a positive instead of the negative sign in the wetting
energy (5). A corresponding typical time evolution is displayed in
Fig. 9, for the same initial conditions as for the partially wetting
case. At early times, the dynamics is very similar to that of the
partially wetting case. The liquid starts to spread and a ridge is
pulled out of the initially flat solid, however, the ridge remains
quite small. Owing to the complete wetting, however, the drop
does not spread toward a shape with finite equilibrium angle but,
instead, the contact line continues to spread. During this process
the wetting ridge gradually decays, cf. Fig. 9(b), in contrast to the
growth observed under partial wetting conditions. We attribute
this trend to the continuous decrease of the contact angles
reached during spreading, which diminishes the upward pulling
force of surface tension. In consequence, the dissipation in the
substrate decays more rapidly than the dissipation in the fluid, as
seen in Fig. 9(c) and (d).

Fig. 10 shows the dynamic contact angle yL against the
spreading velocity v for various softness values s. The chosen

Fig. 7 A typical time evolution of a spreading drops of partially wetting
liquid at intermediate softness s = 102 is characterized by space–time plots
of the (a) drop and (b) wetting ridge profiles, and by the spatially resolved
dissipation in (c) the liquid and (d) the substrate. The remaining parameters
are D = 2000, V E 106, t = 1, and s = 0.1. A corresponding time evolution
can be seen in HeSH2021-SupplMat-Video02-fig07.mp4 of the ESI.†

Fig. 8 Dynamic contact angles, characterized as DyL = yL� ~yeq, over
contact line velocity v = dxC/dt. (a) Result for fast relaxation of the substrate
(t = 0.01), for which the spreading dynamics is hardly affected when
varying the softness s. The spreading dynamics is governed by dissipation
in the liquid. (b) Result for slow relaxation of the substrate (t = 1), for which
the spreading dynamics is strongly affected when varying the softness s.
(c) Same data as in (b), but using the rescaled velocity v

ffiffi
s
p

(see text for
motivation). The collapse of data shows that the dynamic angle is entirely
governed by the solid dissipation, which is the hallmark of viscoelastic
braking. The indicated power laws are discussed in the main text.
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value of the relaxation t = 1 exhibits a strong viscoelastic braking
in the partially wetting conditions – the complete wetting case, by
contrast, shows no significant dependence on the substrate soft-
ness s. This reflects the observations in Fig. 9, where only a
comparatively small and soon decaying wetting ridge is found.
The observed relation for the dynamic angle is consistent with the
scaling yL B v1/3, which is the classical Tanner–Cox–Voinov
relation5,91 for viscous spreading under complete wetting condi-
tions. We thus conclude that in complete wetting, the softness of
the substrate does not influence the spreading dynamics.

5 Droplet coarsening

When an ensemble of drops coarsens the average drop size and
distance increase in time while their number decreases. This
may occur at overall fixed liquid volume61 or involve condensa-
tion (and evaporation).92 In any case, the underlying elemen-
tary process is the coarsening of two (and sometimes three)
drops into one. For such a coarsening step, there exist two basic
coarsening modes.

This is, on the one hand, the mass transfer mode of
coarsening: transport of material occurs from one droplet to
the other one(s) while the centers of mass of the drops do not
move. The mass flux is always directed from the small drop to
the larger one (guaranteeing coarsening) due to the difference
in Laplace pressure in the two coarsening drops. The process
ends when the smaller drop has vanished and all the mass is
contained in the remaining drop. There are different transport
channels for the mass transfer mode: transport may occur via
the vapour phase (for volatile liquids) or through an ultrathin
adsorption layer (for nonvolatile, partially wetting liquids). This
coarsening mode is in the literature referred to as volume or
mass transfer mode, (drop) collapse mode, diffusion-controlled
ripening, or Ostwald ripening.65,68,93,94

On the other hand, there is the translation mode of coarsening:
the entire drops migrate toward each other, until their contact lines
touch and the drops fast coalesce. This mode is also referred to as
collision, coalescence, or migration mode.65,68,93,94 Sketches of mass
transfer and translation modes can be found in ref. 65 and their
relation to the translation symmetry mode for single fronts or
contact lines in a homogeneous system is discussed in Section 3.4
of ref. 95. The stabilization of both coarsening modes by substrate
heterogeneities gives rise to intricate bifurcation behaviour.96

The two coarsening modes can contribute to the coarsening
process in a mixed way68,93 and can nearly not be distinguished
in the resulting scaling laws describing the increase of mean
drop volume and drop distance for coarsening large drop
ensembles. For the most common cubic mobility function
(resulting from no-slip boundary conditions at the solid
substrate69,97) the scaling laws for the two modes only differ
by a logarithmic factor.65 Ref. 68 shows for drops on a one-
dimensional solid substrate that beyond a certain threshold
with increasing mean drop size and decreasing mean drop
distance the translation mode becomes more prevalent until it
finally dominates (cf. Fig. 15 of ref. 68 and also ref. 98 and 99).
Below the threshold, only the mass transfer mode is found.

Here we briefly show that the developed model is well suited
to study drop coarsening on soft substrates. In particular, the
following two sections discuss the influence of softness on the
individual coarsening process of two drops and on the collective
coarsening behaviour of a large ensemble, respectively.

5.1 Case of two drops

Here, we employ the developed model to investigate the
dynamics of the individual coarsening step for two neighboring
drops and discuss how the dominant coarsening mode depends
on substrate softness. The process is initiated with two parabolic
drops of identical volume V that are placed at a distance L0

(between the contact lines) on an initially flat but soft substrate.
Their contact angle corresponds to the equilibrium value in the
corresponding rigid limit. The resulting profile is perturbed by

Fig. 9 A typical time evolution of a spreading drops of completely wetting
liquid at intermediate softness s = 102 is characterized by space–time plots
of the (a) drop and (b) wetting ridge profiles, and by the spatially resolved
dissipation in (c) the liquid and (d) the substrate. The remaining parameters
are D = 2000, V E 106, t = 1, and s = 0.1. A corresponding time evolution
can be seen in HeSH2021-SupplMat-Video03-fig09.mp4 of the ESI.†

Fig. 10 For the completely wetting case the spreading dynamics is
characterised by the dependency of the dynamic contact angle yL on
the contact line velocity v = dxC/dt. Results are given for different softness
s as given in the legend. The remaining parameters are as in Fig. 7.
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some small initial noise to slightly break the initial reflection
symmetry about the center line (x = 0). Typical time evolutions for
selected softnesses s at fixed V = 100 and L0 = 50 are given in
Fig. 11 as space–time plots. In all cases, initially, up to about
t = O(102) the substrate–liquid interface relaxes, i.e., the drops sink
into the soft substrate (not shown). The amount of sinking, i.e. the
size of the indentation in the substrate, and the size and height of
the developing wetting ridge all depend on softness (cf. Section 3).
Then, the coarsening process sets in on a much larger time scale.
Depending on softness, it is usually terminated at t = 105. . .107.

Inspecting Fig. 11, we find that the coarsening process
qualitatively changes with softness in a nonmonotonic manner.
In panels (a) and (d), respectively corresponding to the rigid
and soft limits, the droplets exchange volume with minor or
without lateral translation (volume mode). By contrast, at
intermediate softness panels (b) and (c) exhibit a clear lateral
motion of the drops towards one another (translation mode).
This nonmonotonic change in coarsening behaviour with s is
reminiscent of the nonmonotonic change of the wetting ridge
height with softness, observed for static drops in Fig. 4(c). This
suggests that the translation regime is mediated by elastic
deformation, as a form of the Cheerios effect.28

To quantify the relative importance of volume and transla-
tion mode, we introduce an asymmetry measure for the con-
sidered two-drop configuration, namely,

AðtÞ ¼ 1

2V

ð
D

x½hðx; tÞ � ha�dx: (20)

which corresponds to the center of mass of the drop volume
above the adsorption layer (ha = 1). A coarsening process
exclusively involving the translation mode that symmetrically
moves the drops towards each other would keep A = 0 as the
center of mass remains at x = 0. By contrast, an exclusive
transfer of liquid from one to the other drop via the volume
transfer mode would result in a maximal increase to A = Amax as
all the volume is finally centered about the initial position of
the remaining drop. If both coarsening modes contribute the
resulting value of A lies between the two extremes.

For the time evolutions in Fig. 11, the corresponding mea-
sures A(t) are given in Fig. 12(a) allowing us to quantitatively
discuss the changes of the coarsening mechanism with increa-
sing softness: for (nearly) rigid substrates [s = 10�1, Fig. 11(a)]
the volume transfer mode dominates, as one drop shrinks and
vanishes while the other one grows. The asymmetry measure
A(t) monotonically increases from zero and reaches a final value
of Afin E 22 o Amax E 40 [Fig. 12(a)]. It is interesting to note
that in parallel to the volume transfer both drops slightly
migrate into the same direction, pointing from the growing
to the shrinking drop. Even after the small drop vanishes the
remaining drop briefly keeps traveling in that direction. This
effect is well known for drops on rigid substrates, see e.g. ref. 68
and 93, and is related to liquid motion in the adsorption layer.

Increasing the softness to s = 10, volume transfer remains
dominant. The amount of migration into the same direction
decreases resulting in an increase of Afin to about 30. The
increase can be well appreciated in Fig. 12(b) where the final
asymmetry measure Afin is shown as a function of softness s.
Reaching the regime of intermediate elasticity, at about s = 102

[Fig. 11(b)] the behaviour abruptly changes and coarsening
becomes entirely dominated by the translation mode with
Afin E 0, as seen from the dotted line in Fig. 12(a). When
further increasing s by about one magnitude, the volume mode
starts to become important again: here, translation is still
dominant during the early stages of the process, but volume

Fig. 11 Shown are space–time plots for the coarsening of two drops
of partially wetting liquid into a single drop. The softness increases from
(a) s = 10�1 in the rigid limit, via (b) s = 102 and (c) s = 103 (intermediate
elasticity) to (d) s = 104 (liquid limit). With increasing softness the dominant
coarsening mode changes as discussed in the main text. The volume of
each drop is V = 100, the initial distance of their ‘‘inner’’ contact lines is L0 =
50 and the domain size is D = 400. The remaining parameters are as in
Fig. 7. The corresponding time evolutions can be seen in (a) HeSH2021-
SupplMat-Video04-fig11.mp4, (b) HeSH2021-SupplMat-Video05-fig11.mp4,
(c) HeSH2021-SupplMat-Video06-fig11.mp4 and (d) HeSH2021-SupplMat-
Video07-fig11.mp4 of the ESI.†

Fig. 12 (a) Shown is the temporal change in the asymmetry measure A(t)
[eqn (20)] for two-drop coarsening processes at softness values given in
the legend (including the values of Fig. 11). The maximal possible value for
the given drop volume and distance corresponds to the absolute value of
the initial drop position Amax = |xinit| E 40. Panel (b) gives the intricate
dependence of the final value Afin on softness s. It shows that the volume
mode is dominant apart from a finite range of intermediate softness
(s E 102. . .103) where the translation mode dominates. See main text for
further discussion.
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transfer becomes relevant in the final phase [see s = 103,
Fig. 11(c), Afin E 10]. Then, in approaching the liquid limit at
larger s, the translation mode loses all its impact and the
volume mode again dominates coarsening. In contrast to the
rigid limit, now no drop migration occurs [s = 104, Fig. 11(d)],
and Afin approaches Amax. The described intricate change from
volume transfer to translation mode and back can best be
appreciated in Fig. 12(b). Independently, of the non-
monotonic change in mode dominance, Fig. 12(a) clearly
indicates coarsening slows down with increasing softness.

To gain a deeper understanding of the transition between
modes, we perform a linear stability analysis for the alternative
constellation of a periodic drop array. Namely, two identical
drops of volume V are placed in a domain of finite size D = 200
at respective positions x = �D/4. The corresponding unstable
periodic steady two-drop state and its linear stability are
continued (using PDE2path). Starting at s = 10�3 in the rigid
limit, the softness is increased up to s = 106 in the liquid limit.
The resulting real eigenvalues corresponding to volume trans-
fer mode (the changes in film height profile are antisymmetric
w.r.t. the center line between drops) and translation mode
(symmetric changes in film height profile) of coarsening are
presented in Fig. 13 for three selected V. The blue curves
indicate the volume transfer mode, while red curves correspond
to the translation mode. The volume mode is strongest in the
rigid limit and decreases nearly monotonically with increasing
softness (up to the small dip after the strong step-like decrease
at intermediate softness s = 101. . .102). It further slightly
decreases overall with increasing drop volume, a change which
is more pronounced in the rigid limit.

By contrast, the translation mode is nearly absent apart from
intermediate softness where it develops a peak that becomes
more pronounced with increasing volume. In consequence,

the translation mode eventually dominates the volume transfer
mode for sufficiently large drops at intermediate s in accor-
dance with our time simulations in Fig. 12(b). The dominance
of the translation mode in the range of intermediate softness
approximately coincides with the intermediate regime for the
‘‘double transition’’ of static drops discussed in Section 3,
compare in particular, Fig. 6 at V = 100 to 1000 with
Fig. 12(b) and 13. It is in this regime that a prominent wetting
ridge occurs (cf. Fig. 4(c)), through which the droplets interact
via substrate deformations. Hence, we indeed conclude that the
dominant translation mode is a direct consequence of the
Cheerios effect.

This is further confirmed by stability calculations as in
Fig. 13 for other domain sizes D (not shown). We find that
the critical drop volume Vc where the translation mode first
becomes dominant at some critical softness sc increases with
increasing D. The corresponding sc always nearly coincides with
the left edge of the s-range where the second transition occurs
in Section 3. This agrees with the observed proportionalitiesffiffiffiffiffiffi
Vc

p
� ffiffiffiffi

sc
p � ~‘ec � Dc where Dc is the critical distance of the

contact lines of the two drops.

5.2 Case of drop arrays

Finally, we show that the developed model is also capable of
describing the coarsening dynamics of large drop ensembles.
Starting with a flat film of height h0 = 3 on a rather large
domain (D = 5000), a small added noise initiates the early
spinodal dewetting process.67,100 It produces a large ensemble
of about 100–200 droplets which then undergo coarsening.
Fig. 14 gives an exemplary space–time plot showing part of
the domain and process for an ensemble of initially E200
drops on a substrate of intermediate softness (s = 102). The
subsequent Fig. 15 shows space–time plots of the positions of
all drop maxima for the same case of intermediate softness
and, additionally, for the rigid and the liquid limit at s = 10�1

and s = 104, respectively. The corresponding dependencies of
drop number on time are presented in Fig. 16.

Inspecting Fig. 15(b) (also cf. the magnification in Fig. 14)
shows that at intermediate softness nearly all coarsening events
at early times occur by drop translation, i.e., two lines meet and

Fig. 13 Eigenvalues l of the volume mode (blue) and the translation
mode (red) for a periodic system of equally spaced steady drops. Shown
are results for three different drop volumes V as given in the legend. The
domain size is fixed to D = 200, i.e., a larger drop volume corresponds to a
smaller drop distance. The volume mode weakens with increasing softness
and drop size while the translation mode shows an increasingly pro-
nounced maximum at intermediate elasticity that even exceeds the
translation mode for the largest drop. The remaining parameters are as
in Fig. 7.

Fig. 14 The space–time plot illustrates the coarsening of a droplet
ensemble initially consisting of N E 200 drops of partially wetting liquid
on a substrate of intermediate softness s = 102 [parameters as in Fig. 11(b)].
The domain size is D = 5000, i.e., only a small part is shown. The remaining
parameters are as in Fig. 7. A corresponding time evolution can be seen in
HeSH2021-SupplMat-Video08-fig14.mp4 of the ESI.†
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join into one. By contrast, at later times from t E 104 more and
more drops vanish via volume transfer, i.e., single lines just
terminate. Beyond t E 106 no drop coalescence by translation is
visible anymore. This agrees with the transition from dominant
translation to volume transfer mode with increasing drop distance
discussed in Section 5.1 and described for rigid substrates in
ref. 68.

The mean drop volume also increases in time what should
favor the translation mode. However, the effect of the accom-
panying increase in mean drop distance is stronger. Focusing
at the rigid and liquid limit in Fig. 15(a) and (c), respectively,
one notes that there coarsening by volume transfer dominates
in perfect agreement with the findings of Section 5.1. A closer
look at Fig. 15(a) even reveals the above discussed joint migra-
tion of neighbouring drops.

Next we focus on the evolution of the drop number in
Fig. 16. The figure includes earlier times than Fig. 15 to indicate
a plateau that clearly marks a time span when the initial
spinodal dewetting process has ended and coarsening of the
drop array has not yet begun.** For the present parameters the
plateaus in Fig. 16 range from t E 102 to t E 104, and represent
an approximate unstable equilibrium. It is unstable with
respect to combinations of the two-drop coarsening modes
(discussed in Section 5.1), and various multi-drop modes; the

latter, are, however, much weaker than the two-drop modes.
Once coarsening starts at the end of the plateau, the drop
number continuously decreases. Due to the discrete measure of
the number of drops, individual steps in the curves are often
visible and become prominent at late times when few drops
remain. Qualitatively, the substrate softness does not seem to
have an effect on long-time coarsening as the three curves are
very similar. Empirically, a power law fit N(t) B t�a gives
approximately identical scaling exponents for all values of s
studied in Fig. 16. Based on the present low statistics one might
even be tempted to distinguish two power laws. One in the
range from t E 104 to t E 106 with a E 0.275 and one in the
range from t E 106 to t E 108 with a E 0.4.

Finally, we briefly discuss how the various contributions to
the total energy depend on time. Fig. 17(a) gives the mean
interface energy density (Fcap + Fwet)/D encompassing wetting
and capillary contributions [see eqn (3) and (4)]. It monotoni-
cally decreases with time and decreases with increasing sub-
strate softness. Fig. 17(b) gives the mean elastic energy density
Fel/D [eqn (6)]. It is negligible in the rigid limit, small and
nonmonotonic in the liquid limit, and monotonically decreases
during the coarsening process (i.e., after the plateau) at inter-
mediate softness. Even at intermediate softness, where elasti-
city is most prominent, the elastic energy is much smaller than
the interface energy. This indicates that coarsening is domi-
nated by interface effects; this might offer an explanation
why the coarsening exponent is not sensitive to the substrate
softness.

6 Summary and outlook

We have developed a qualitative long-wave model that captures
main features of the statics and dynamics of a liquid drop on an
elastic substrate. The transparency and simplicity of the model
rests in its gradient dynamics structure and the underlying free

Fig. 15 Space–time plots of the positions of all drop maxima on a
logarithmic time scale for (a) the rigid limit at s = 10�1 (fewer initial drops
and coarsening mainly via volume transfer, slight migrations are visible), (b)
intermediate softness at s = 102 (more initial drops, translation mode first
dominates before the volume transfer mode prevails at larger drop size
and distance), and (c) the soft limit at s = 104 (further increased initial drop
number, dominating volume mode, no visible drop migration). The domain
size is D = 5000, i.e., only a part is shown. The remaining parameters are as
in Fig. 7.

Fig. 16 Dependence of drop number on time on a doubly logarithmic
scale for softness s as given in the legend. The initial stage of drop
formation (dewetting) is finished at about t = 103 (indicated by the vertical
line). Coarsening sets in shortly after when the respective plateaus end.
Empirically, one may distinguish two coarsening regimes with slightly
different scaling laws as indicated by the short solid straight lines.

** Note that during the dewetting phase (not shown in Fig. 16) our counting
routine gives the number of maxima in the film profile, i.e., a mean wave number.
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energy that reflects capillarity, wettability and compressional
elasticity. The model has first been employed to investigate the
double transition that occurs in the equilibrium contact angles
when increasing the softness from an ideally rigid substrate
towards a very soft, i.e., liquid substrate.22 Both, the dependency
on softness and the scaling of the two transitions with drop
volume given by our model, closely resemble the behaviour
observed in ref. 22 with a full elasticity model for drops of contact
angle p/2 on thick incompressible elastic layers. In particular, the
scaling of the typical softnesses where the two transitions occur
with drop volume and the scalings of the wetting ridge height
with softness in the different regimes agree very well. This very
promising qualitative agreement should in the future be quanti-
fied by numerical models based on fully nonlinear elastic theory,
in the limit of small contact angles; this would enable to deter-
mine effective parameters for the present long-wave model in
terms of experimental parameters. Alternatively, one can attempt
to include a more realistic elastic energy into the long-wave model
by adopting the more intricate Green’s functions described in the
Appendix. Of specific interest would be to consider how the
incompressible limit is approached.78 This limit is relevant for
experiments, as elastomeric substrates are essentially incompres-
sible, but is precisely where the Winkler model breaks down. Still,
the identification of the softness parameter in Section 2 appears
to correctly capture the phenomenology of the static contact
angles.

Second, we have investigated the spreading of a single drop
of partially wetting liquid on elastic substrates. Dependencies

of the dynamic contact angle on contact line velocity have been
studied for different softness. Depending on the time scale
ratio between elastic and liquid dynamics different scales could
be introduced that allow to collapse sub-sets of curves. These
rescalings are directly rooted in the considerations in ref. 6 and
31 and indicates, that the dissipation in the substrate is
dominant and increases with softness, i.e. that viscoelastic
braking is present.12,13 Beyond that, the simplicity of our model
allowed us to also investigate the case of completely wetting
liquids. We find that viscoelastic braking is present in the
completely wetting case as well, in contradiction to ref. 30.
However, this effect is rather small and such is the shift
between the curves for dynamic contact angles (Fig. 10) due
to the less distinctive wetting ridge.

Third, we have considered the coarsening dynamics of a pair
of drops and of large ensembles of drops. In the case of two
drops we have found that the dominant coarsening mode
nonmonotonically changes when increasing the substrate softness.
In both, the rigid and the soft limits, the volume transfer mode
of coarsening (mass transfer mode, collapse mode, diffusion-
controlled ripening, or Ostwald ripening) dominates while
at intermediate softness the translation mode of coarsening
(collision, coalescence, migration mode) dominates for suffi-
ciently large drops. As such, the model recovers the ‘‘inverted
Cheerios effect’’, describing interaction of liquid drops mediated
by elastic deformation of the solid substrate28 (in contrast to the
Cheerios effect describing interaction of solid particles on a liquid
substrate). In the rigid limit the volume transfer mode is accom-
panied by migration of both drops into the direction of the
smaller one in accordance with literature.68,93 Although, the
nonmonotonic change in mode dominance has mainly been
investigated by time simulations, it has furthermore be confirmed
through a linear stability analysis for a closely related unstable
steady two-drop constellation.

Based on the results on two-drop coarsening, finally, we
have considered large drop ensembles and found that the
change in dominance of the coarsening mechanisms can be
found there as well. However, the strength of the translation
mode decreases faster with increasing separation of the drops
than the strength of the volume mode does. Hence, the
translation dominated regime ends at a critical value as the
drop number decreases and the mean distance between the
drops becomes too large. As the initial drop contribution
emerges from a dewetting film the number of drops at the
beginning of the coarsening process is not controlled. Indeed
the initial drop number was found to increase with increasing
softness, which might be reasoned by the reduced width of
drops that (partially) sink into the substrate. It will be interesting
to apply the model in the future to investigate the coarsening of
large ensembles of drops on a two-dimensional substrate.

Beside of direct extensions of the presently studied examples,
the presented model can be directly applied to a number of
different situations, e.g., to study the sliding of individual drops
under lateral driving, e.g., on an incline. Further, the model lends
itself easily to the investigation of moving contact lines on elastic
substrates, e.g., in a Landau–Levich geometry.101,102 This allows

Fig. 17 Dependence of (a) interface and (b) elastic mean energy density
on time for softnesses s as given in the legend. The strong decrease in
interface energy for 102 r t r 103 corresponds to the initial spinodal
dewetting. After the subsequent plateau marked by the vertical dashed line
coarsening sets in. Note that the contribution of elastic energy is much
smaller than the one of the interface energy, and almost negligible outside
the range of intermediate elasticity, i.e. here s = 102.
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one to investigate the appearance of stick–slip cycles as experi-
mentally observed in ref. 9, 36 and 103. In its present form the
model can be employed as an element of more complex models to
study the interaction of complex fluids with soft substrates. For
instance, it may be combined with thin-film models of active
media86,104 or biofilms105 to investigate the motion of active
drops on soft substrates106 and the growth of biofilms and cell
aggregates on such substrates.107,108

Finally, we point out that the presented qualitative model
may be expanded in a number of ways. One can explicitly
introduce the effect of finite thickness on sliding,33 which also
enables one to study phenomena such as durotaxis.48,109

Furthermore, it will be interesting to see how the approach
can be expanded to incorporate a description of the Shuttle-
worth effect,23 to account for substrate stretching,25,34 bending
elasticity,48 or to systematically account for other rheologies
and incompressibility of the elastic layer.6 The latter should
then allow one to capture drop–drop repulsion and attraction
via the inverted Cheerios effect28 not only the attractive case as
the present model.

The data that support the findings of this study are openly
available.110
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There are no conflicts to declare.

Appendix A: elastic energy per area
in the framework of linear elasticity

In this Appendix we discuss how elastic energy functionals can
in principle be derived from the theory of linear elasticity. The
central objects in elasticity theory are the displacement vectors
u. When varying the displacement at the free surface, one
performs a mechanical work that is equal to the stored elastic
energy. Hence, the energy can in principle be expressed as a
functional of u at the free surface. In the case of linear
elasticity, this energy must be of quadratic form,

Fel ¼
1

2
G

ð
d2x

ð
d2x0uðxÞ � Kðx� x0Þ � uðx0Þ: (21)

In this expression G is the elastic (shear) modulus while K is a
Green’s function for an elastic layer that we assume to be
homogeneous.

We will now restrict ourselves to the case where the interface
is shear free, and use that for small displacements uz(x) C h(x).
Then, the elastic energy can be inferred from the interface
shape

Fel ¼
1

2
G

ð
d2x

ð
d2x0Kðx� x0ÞhðxÞhðx0Þ; (22)

where now K is a scalar Green’s function, relating normal
displacement to normal stress. Explicit calculation of the
Green’s function requires solving the bulk-elastic problem
inside the layer. In case the problem is invariant along y, the

Green’s function is known analytically in the form of a Fourier
transform:111,112

~KðqÞ�1 ¼ ð1� nÞ
q

ð3� 4nÞ sinhð2qdÞ � 2qd

ð3� 4nÞ coshð2qdÞ þ 2ðqdÞ2 þ 5� 12n þ 8n2

� �
(23)

Here it is given as an inverse of the Green’s function, which
maps the traction to the displacement (while K̃ (q) maps the
displacement to the traction). It is of interest to consider some
limits. In the short-wave limit (qd c 1), we find

~KðqÞ�1 ¼ 1� n
jqj : (24)

In real-space this inverse Green’s function is a logarithm
(i.e. the surface displacement h(x) due to a point force is
logarithmic on a half-space). In the long-wave limit (qd { 1),
the limiting behavior depends on the Poisson ratio. For n a 1/2,
we find

~KðqÞ�1 ¼ dð1� 2nÞ
2ð1� nÞ ; (25)

which is independent of q. This implies that the real-space
Green’s function is a d function, i.e.

KðxÞ ¼ 2ð1� nÞ
dð1� 2nÞdðxÞ: (26)

We notice from this expression that there is a problem at n = 1/2,
so that an incompressible layer cannot deform under long-wave
tractions. This property is a consequence of K̃ (q = 0)�1 = 0.
Therefore, the long-wave expansion for incompressible media
needs to go to the next order, to yield

~KðqÞ�1 ¼ d3

3
q2; (27)

which in real space implies

hðxÞ ¼ �d3

3G

@2p

@x2
: (28)

Note the resemblance with the viscous thin-film response
h3/(3Z)qxxp: the Green’s function in elasticity plays the role of
the mobility in viscous fluids.

We thus conclude that the assumption of a Green’s function
that is a d function is rigorous in a specific limit: the long-wave
limit qd { 1 for compressible layers (na 1/2). In that case, the
elastic energy reads

Fel ¼
1

2

2Gð1� nÞ
dð1� 2nÞ

ð
d2xhðxÞ2; (29)

which is identical to eqn (6) in the main text. In this specific
limit, we recover the connection

kv ¼
2Gð1� nÞ
dð1� 2nÞ: (30)

Notice once again that the formulation does not apply for
incompressible layers (n = 1/2). Another implicit assumption
here is that we ignored any horizontal displacements that
can be caused by shear stress induced by the fluid. In the
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considered long-wave limit, however, one can argue that shear
stress is asymptotically small compared to the pressure.
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