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Abstract
We show that one can employ well-established numerical continuation methods to efficiently
calculate the phase diagram for thermodynamic systems described by a suitable free energy
functional. In particular, this involves the determination of lines of phase coexistence related to
first order phase transitions and the continuation of triple points. To illustrate the method we
apply it to a binary phase-field-crystal model for the crystallisation of a mixture of two types of
particles. The resulting phase diagram is determined for one- and two-dimensional domains.
In the former case it is compared to the diagram obtained from a one-mode approximation.
The various observed liquid and crystalline phases and their stable and metastable coexistence
are discussed as well as the temperature-dependence of the phase diagrams. This includes the
(dis)appearance of critical points and triple points. We also relate bifurcation diagrams for
finite-size systems to the thermodynamics of phase transitions in the infinite-size limit.

Keywords: phase field crystal model, phase separation, colloidal crystallization, Maxwell
construction, numerical continuation, binary mixture

(Some figures may appear in colour only in the online journal)

1. Introduction

We introduce an efficient method to calculate the phase
behaviour of thermodynamic systems as described by a suit-
able free energy functional. To demonstrate the method, we
apply it to a two-component phase-field-crystal (PFC) model,
which describes the crystallisation behaviour of a binary mix-
ture of (colloidal) particles. Continuum models of this kind
represent a mean-field description and are widely used to

∗ Author to whom any correspondence should be addressed.

investigate the liquid to crystalline solid phase transition [14].
PFC models are in many regards similar to other families of
models, such as those arising from density functional theory
(DFT), from which they can be derived (cf [1, 14]). The tech-
niques described here can be applied to these models as well;
all that is needed is for the free energy to be expressed as a
functional of the density profile(s) and/or any other relevant
(order parameter) fields.

PFC and PFC-type models are increasingly widely used.
A two-dimensional (2D) model similar to the one we
consider here was employed to study pattern formation in lipid
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bilayers [21]. More recently, the phase behaviour of a closely
related model of binary colloidal crystals was presented by
Taha et al [37], also for the 2D case. As well as for modelling
the phase behaviour of matter, PFC-type models for biolog-
ical and active systems have been developed [31] and even
for quantum-mechanical systems, such as in the work of
Heinonen et al who developed a PFC-like model for super-
fluidity and supersolidity in Bose–Einstein condensates [20].

In reference [21], to determine the phase diagram a one-
mode approximation was used, i.e. it is assumed that the crys-
talline state may be approximated by harmonics of a single
wavelength. This approach is similar to that used in the deriva-
tion of amplitude equations in the area of pattern formation
[9, 23]. Similarly, a one-mode approach together with direct
numerical calculations was used to determine the structures
and phase diagrams in the work of Taha et al [37]. Track-
ing the coexistence curves between the different phases using
direct numerical calculations can be time consuming, which is
why one-mode approximations are often used. However, com-
paring the phase diagram of the one-component PFC model
calculated using a one-mode approximation (cf reference [13])
to the exact phase diagram obtained from a full numerical solu-
tion, the limitations of the one-mode approximation become
apparent even in one dimension [38]. In particular, there it is
shown that more than one mode is needed to exactly obtain
the tricritical point where the phase transition changes from
being first order to second order. For 2D systems, reference
[37] shows examples where there is relatively poor agree-
ment between the phase diagram obtained via a one-mode
approximation and that from direct numerical simulations. In
particular, problems arise in regions of two- and three-phase
coexistence. Moreover, it seems that some phase boundaries
could not be completely obtained with their methods (see their
figure 3).

Additionally, deriving the amplitude equations can be cum-
bersome in systems with different length scales. In these more
complex cases one mode is generally not sufficient and two
or more modes need to be considered. In contrast, our fully
nonlinear approach based on the well established numerical
path continuation methods that are widely used in pattern for-
mation problems and the study of complex systems [10, 15,
28] enables us to track easily the coexistence regions between
the different phases. Code packages such as auto07p [11, 12]
and pde2path [41] provide all the routines required. These
methods have recently been applied to study the emergence
of the Maxwell construction for phase coexistence in both the
Cahn–Hilliard and the PFC model [39]. Once set up to study
the bifurcation diagrams in finite size systems, these continua-
tion techniques can easily be extended to numerically calculate
the phase diagrams. Of course, a point that merits careful con-
sideration is the choice of the numerical domain for the crystal
phases, since it has to have the right size and boundary con-
ditions to accommodate the crystalline structures. These are,
however, general considerations that also apply in most other
approaches.

As mentioned, the approach developed here can in princi-
ple be applied to any DFT-type theory for phase transitions.
As such, it is subject to any of the limitations inherent to the

model free energy functional with which our approach is used.
Thus, for the PFC model used here all the well-known limita-
tions of the theory must be kept in mind [14]. For example,
since the PFC model is mean-field in character, it predicts
freezing in all dimensions, while of course in reality for a one-
dimensional (1D) system of particles, fluctuations prevent any
genuine phase transition occurring at finite temperatures. Sim-
ilarly, in two-dimensions the PFC model does not predict the
occurrence of a hexatic phase [19, 26, 27, 30], again because
of the mean-field character of the PFC model failing to account
for the effects of the fluctuations in the system. Interestingly,
certain systems of soft particles in two-dimensions do exhibit
freezing straight from the liquid to the crystal phase [32], with
the hexatic phase only intervening between the liquid and the
crystal at lower temperatures. Thus, the binary PFC model
analysed below may be viewed as a simple theory for mixtures
of such soft particles. Note also that PFC models can describe
disordered (or amorphous) states, which can be precursors to
crystallisation [14, 18, 38].

This paper is structured as follows: in section 2 we intro-
duce the two-field PFC model used to illustrate the proposed
method. We discuss some general considerations for both,
the one-mode approximation and the fully nonlinear solution
method in section 3.1. In the subsequent section 3.2 we present
the simplified approach, i.e. the one-mode approximation for
our system. Section 3.3 explains our method in more detail
while section 4 presents selected results for a 1D system and
compares them to results obtained employing the one-mode
approximation. In section 4.2 we extend the method to follow
triple points in parameter space while in section 5 results are
presented for a 2D system. Finally, in section 6 we conclude
and discuss further investigations facilitated by the proposed
methods. Note that most data and computer codes presented
in our work are available in a data repository [22].

2. Two-field phase-field-crystal model

2.1. Governing equations

We calculate the fully nonlinear phase behaviour of a two-field
PFC model that is derived from the Helmholtz free energy:

F [φ] =
∫

V
dnx

⎡
⎣ 2∑

j=1

{
φ j

2
[r + (q2

j +Δ)2]φ j +
φ4

j

4

}

+ cφ1φ2

⎤
⎦ , (1)

where V is the ‘volume’ of the considered n-dimensional
domain. Further, the φ j with j = 1, 2 are order parameter fields
associated with the two different species of particles. In the
derivation of PFC models from DFT they arise as scaled and
shifted densities [1, 14]. For simplicity, here we refer to them
as concentrations. The parameter r is a scaled shifted tem-
perature, sometimes called the ‘undercooling’. The qj are the
critical wavenumbers for the two decoupled fields, i.e. they
control the length scale of the crystalline patterns formed, c is a
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coupling constant and Δ denotes the Laplacian. In principle
it is possible for the two species to have different freezing
temperatures, which can be incorporated by replacing r with
r +Δr in one of the two terms of the sum in (1), with Δr then
being the difference in the scaled temperatures. However, here
we do not consider this case and, therefore, keep the above
notation. Further, we only consider the case q1 = q2 = 1 and
correspondingly drop the subscript j where convenient. This
free energy reduces to the standard PFC model free energy
[13, 38] for each field if the other concentration becomes zero
everywhere. Additionally, there is the single coupling term
cφ1φ2 that represents the simplest form of interaction energy.
It keeps the φ j →−φ j symmetry of the decoupled systems.

Using the free energy (1), the dynamics is given by the
conserved gradient dynamics [14]

∂t

(
φ1

φ2

)
= Δ

⎛
⎜⎝

δF
δφ1
δF
δφ2

⎞
⎟⎠

= Δ

(
[r + (q2

1 +Δ)2] φ1 + φ3
1 + cφ2[

r + (q2
2 +Δ)2

]
φ2 + φ3

2 + cφ1

)
, (2)

where t is time and where ‘conserved’ refers to the fact that
this dynamics conserves the masses m j =

∫
V dnxφ j (and the

mean concentrations φ̄ j = m j/V). Note that we use identi-
cal mobilities in both equations that are then absorbed into
the time scale. This simplification does not affect the phase
behaviour, but needs to be justified when studying dynamic
behaviour. Overall, equation (2) are parity and field-inversion
symmetric, i.e. they do not change their form for x→−x and
(φ1,φ2) →−(φ1,φ2), respectively. For q1 = q2 the symmetry
w.r.t. exchange of the two fields (φ1,φ2) → (φ2,φ1) also holds.
Our attention is focussed on steady states, i.e. ∂tφ j = 0. With
this, equation (2) can be integrated twice to obtain(

0
0

)
=

(
[r + (q2

1 +Δ)2] φ1 + φ3
1 + cφ2 − μ1[

r + (q2
2 +Δ)2

]
φ2 + φ3

2 + cφ1 − μ2

)
, (3)

where the chemical potentialsμ j arise as integration constants.
Note that the integration constants of the first integration are
set to zero as we exclude fluxes across the boundaries.

When considering steady states on finite size domains we
present them in state or bifurcation diagrams that display typi-
cal measures that characterise the states as a function of a con-
trol parameter such as, e.g. a mean concentration or a chemical
potential. As characterising measures, often the L2-norm of the
deviation of the concentrations from their mean values

‖δφ‖ =

√
1
V

∫
V

dnx [(φ1 − φ̄1)2 + (φ2 − φ̄2)2] (4)

is used, as well as the mean Helmholtz free energy density

f̄ =
F
V

, (5)

and the mean grand potential density

ω̄ = f̄ − μ1φ̄1 − μ2φ̄2. (6)

2.2. Numerical path continuation

Before considering the phase behaviour in the following
section 3, here we first briefly describe the essential ideas in
path continuation methods [10, 15, 28] and also analyse the
linear stability of homogeneous (i.e. liquid) states of differ-
ent concentrations and give selected examples of bifurcation
diagrams. The basic underlying concept in path continuation
methods is as follows: consider some system of differential
equations

∂tu = G(u,λ), (7)

with variables u and control parameter(s) λ. Note that once
a suitable spatial discretisation has been applied, partial dif-
ferential equations such as the system of equations (2) have
the form (7). The main idea is to follow a branch of steady
state solutions, i.e. states satisfying ∂tu = 0, through parame-
ter space. To obtain a bifurcation diagram, one starts from a
known solution u0, e.g. the homogeneous state. From there,
the continuation parameter λ is varied by a certain step size
and a new solution is found by solving equation (7) at the
new parameter value using u0 as an initial guess. The stabil-
ity of these solutions can be determined, e.g. by calculating
the eigenvalues of the Jacobian of G(u,λ). A change in the
number of unstable eigenvalues then indicates a bifurcation.
Existing code packages contain routines to follow a solution
branch, to detect bifurcations, and switch to a branch emerging
at a bifurcation. As described, this continuation routine using
the natural parametrisation fails at points where a solution
branch folds back, i.e. at saddle-node bifurcations. To avoid
this, one alternatively employs pseudo-arclength parametri-
sation, where the arclength s of the solution branch is used
as the continuation parameter. Then, the control parameter λ
becomes part of the solution and the system of equations to be
solved is extended by adding the pseudo-arclength equation

u̇(u − u0) + λ̇(λ− λ0) = Δs, (8)

to the system of equations being solved, where (u̇, λ̇) is the
direction of the branch and Δs is the step size in the con-
tinuation parameter along the solution branch. This allows
continuation through fold points.

2.3. Linear stability analysis and typical bifurcation
diagrams

Linearising equation (2) about the homogeneous states
(φ1,φ2)T = (φ̄1, φ̄2)T and employing the Ansatz δφ j(x, t) ≡
φ j(x, t) − φ̄ j = χ j exp(σt + ikx), with (χ1,χ2)T the eigenvec-
tor to an eigenvalue σ results in the dispersion relations

σ± = −k2

2

(
J1 + J2 ±

√
(J1 − J2)2 + 4c2

)
, (9)

where Ji = r + (q2
i − k2)2 + 3φ̄2

i . When the two intrinsic
length scales are identical, i.e. q1 = q2 = q, the relation sim-
plifies to
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σ± = −k2

2

{
2[r + (q2 − k2)2] + 3(φ̄2

1 + φ̄2
2)

±
√

9(φ̄2
1 − φ̄2

2)2 + 4c2

}
. (10)

As expected for a gradient dynamics, the eigenvalues are
always real. The onsets of the two modes of short-scale insta-
bility occur for k = ko = q at r = r±c = q2 [−3(φ̄2

1 + φ̄2
2) ±√

9(φ̄2
1 − φ̄2

2)2 + 4c2]/2. Decreasing the temperature r from
large values, the first mode to become unstable is the one with
the ‘+’ sign, i.e. for φ̄1 = φ̄2 = 0 at r+c = |c|q2.

Above onset, i.e. for r < r+c , a finite band of unstable
wavenumbers exist. Whenever σ+ or σ− crosses zero while
changing one of the control parameters, a pitchfork bifurca-
tion occurs. There, a branch of inhomogeneous steady states
emerges from the branch of homogeneous states. For instance,
when employing one of the mean concentrations φ̄ j as the con-
trol parameter, fixing all remaining parameters and the domain
size (that controls ko), a bifurcation occurs at critical values φ̄c

j.
Here, we detect such bifurcations within the path continuation
routines and follow the emerging branches of inhomogeneous
states.

A typical example of the resulting bifurcation diagrams
with φ̄1 as the control parameter is displayed in figure 1,
in this case for fixed φ̄2 = −0.85 and for the particular
domain size L = 16π. The various states are characterised
by their L2-norm, Helmholtz free energy density, chemical
potentials, and grand potential density. Four types of states
can be distinguished: (i) the homogeneous (liquid) state, that
is stable at small φ̄1 (solid blue line), which becomes lin-
early unstable at φ̄1 = −0.5572 to periodic perturbations of
critical wavenumber q = 1 (dashed blue line). At the lin-
ear stability threshold, a branch of (ii) periodic (crystalline)
states bifurcates supercritically. It is at first linearly stable
(solid orange line), but destabilises shortly after in a sec-
ondary pitchfork bifurcation where two branches of localised
states emerge subcritically (green lines). By ‘localised states’,
we mean states consisting of a patch of one phase within
a background of another phase. A typical example consists
of a portion of the crystal coexisting with the liquid state.
The branch of periodic states continues as an unstable state
(dashed orange line) before becoming stable again at a further
bifurcation where the branches of localised states terminate.
(iii) The pair of branches of localised states that emerge at
the secondary bifurcation are called ‘symmetric’ as they have
a (x →−x)-symmetry. One exhibits an odd and the other
an even number of peaks. They are connected by ladder
branches, that connect the intertwining pair of branches and
consist of (iv) unstable asymmetric localised states. Together,
they form a tilted snakes and ladder structure typical for
homoclinic snaking [5] in a system with a conservation law
[25, 38]. As the branches snake back and forth, pairs of
peaks are added until the domain is filled. Then the branches
terminate in another secondary pitchfork bifurcation on the
branch of periodic states. The snaking is best appreciated from
the plots of the L2-norm [figure 1(a)], the chemical potential
[figure 1(b)] and the grand potential [figure 1(d)]. The manner

Figure 1. Typical bifurcation diagrams for the binary PFC in
equation (2), exhibiting four types of steady states: (i) uniform
liquid state (blue line), (ii) periodic crystal state (orange line), (iii)
symmetric (green lines) and (iv) asymmetric (black lines) localised
states. The four panels show the same branches using (a) the
L2-norm, (b) the chemical potential μ1, (c) the mean Helmholtz free
energy density, and (d) the mean grand potential density as solution
measure. Stable (unstable) states are shown as solid (dashed) lines.
The concentration φ̄2 is fixed at φ̄2 = −0.85. The other parameters
are r = −0.9, q1 = q2 = 1, and c = −0.2. The domain size is
L = 16π.

in which the different branches are connected is less easy to
discern in the plot of the Helmholtz free energy [figure 1(c)]
since the different localised states have very similar ener-
gies. However, the inset illustrates that subsequent localised
states are connected via swallow-tail structures typical for hys-
teretic transitions between metastable states. Note that effec-
tively such a transition also occurs from the liquid state to
the localised crystalline state (via the periodic state). In this
way, identifying the existence of the localised states allows
one to see how a supercritical homogeneous-to-periodic bifur-
cation can still give rise to a first order liquid-to-crystalline
phase transitions. For further details of such a bifurcation
analysis in the context of phase transition behaviour see the
extensive studies for one-component systems in references
[38, 39].

Figure 2 illustrates how decreasing (to L = 8π, top panel)
and increasing (to L = 32π, bottom panel) the domain size
affects the bifurcation diagram. First we note that a larger
(smaller) domain size brings the secondary bifurcation where
the localised states emerge from the periodic one closer to (fur-
ther away from) the primary bifurcation. In the thermodynamic
limit of an infinite domain, the primary and secondary bifur-
cations coincide [6]. In a larger (smaller) domain it takes more
(fewer) peaks to fill the domain, resulting in more (fewer) folds
in the snaking curve and therefore a denser (less dense) snaking
region in the bifurcation diagrams. Reference [39] explains
in detail how the increase in the number of folds ultimately
results in the emergence of the Maxwell construction when
approaching the thermodynamic limit. However, here, in con-
trast in reference [39], the localised states in figures 1 and 2
do not converge to a Maxwell construction when merely
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Figure 2. Bifurcation diagrams of the binary PFC in equation (2),
displayed in terms of the L2-norm as in figure 1(a), are shown for
three different domain sizes L = 8π, 16π, 32π, going from top to
bottom. The remaining parameters and line styles are as in figure 1.
For clarity, the asymmetric localised states are not included.

increasing the domain size. This is because the mean con-
centration φ̄2 is held fixed, i.e. no coexisting liquid and crys-
talline states with both chemical potentials and the grand
potential equal can emerge. However, this observation does
not apply for the localised states on the snaking branches
since in this case the concentrations in each of the two phases
can achieve their coexisting concentration values by adjusting
the spatial size of each of the two phases in the system. To
approach the Maxwell constructions from a bifurcation dia-
gram when increasing the domain size for the present two-
field system in a way similar to reference [39], one would
need to fix one chemical potential, instead of a concentration.
Physically, this corresponds to a system with a semipermeable
membrane that enables exchange with a particle bath of that
species.

3. Determining coexistence by continuation

3.1. General considerations

The two approaches for calculating phase coexistence that we
compare share a similar general idea, which is outlined next.
As mentioned, both approaches rely on numerical continu-
ation techniques. First, we describe in section 3.2 how the
well established one-mode approximation is practically used
in conjunction with numerical continuation of solutions of an
algebraic equation system. Second, section 3.3 introduces our
fully nonlinear approach that essentially corresponds to the
parallel numerical continuation of two solutions to a system
of partial differential equations.

In general, coexistence of two distinct phases is charac-
terised by equal temperature, pressure and chemical potentials
of all species in the two phases. The system considered here

Figure 3. Sketch illustrating the approach taken by our algorithm:
two simulation boxes in a common bath, that keeps the two boxes at
equal pressure, temperature and chemical potentials.

is isothermal, with the parameter r effectively being the tem-
perature. Thus, having set the value of r, the temperature is the
same in all phases by definition and is therefore not considered
further. The pressure p is related to the grand potential density
(6) as

ω̄ = −p, (11)

while the chemical potentials μ j = δF/δφ j are introduced in
equation (3). As a result, the conditions for coexistence of two
phases A and B are

ω̄A = ω̄B, (12)

μA
1 = μB

1 , (13)

and
μA

2 = μB
2 . (14)

From hereon we use superscripts to denote the phase
and subscripts to refer to the specific species. Note that
equations (12)–(14) correspond to the common tangent con-
struction. In 1D we observe four different phases: (i) the uni-
form liquid, (ii) a periodic phase where the amplitude of the
oscillations in φ1 are much larger than in φ2, so we refer to
this as the φ1-crystal, (iii) a corresponding φ2-crystal, where
the oscillations in φ2 are much larger than in φ1 and (iv)
a crystalline phase where the amplitudes of the concentra-
tion variations in both fields are comparable, which here we
call the ‘alloy’ phase. The 2D phases are discussed below in
section 5.

The coexistence of two phases is calculated by employing
two parallel simulation boxes (solution domains), as illustrated
in figure 3. The conditions of equal temperature and chemical
potentials for the two boxes are ensured via an ‘external bath’,
i.e. by setting the system parameters rA = rB and by equili-
brating the chemical potentials by adjusting the values of φ̄A

j

and φ̄B
j . Normally, the quantities in one box are chosen and the

ones in the other box are accordingly adapted to fulfil the above
conditions. The pressure is equilibrated via an auxiliary con-
straint. Before following a line of two-phase coexistence (i.e. a
binodal), the corresponding coexisting states are initialised by
performing single-parameter single-box continuations, as used
to obtain bifurcation diagrams. As illustrated in figure 4(b),
for the alloy and φ2-crystal phases, there is a first order tran-
sition between these two states and they typically coexist over
a small parameter range of bistability, e.g. in figure 4(b) for
0.53 � μ1 � 0.66.
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Figure 4. Bifurcation diagrams showing branches of (a) the liquid
and φ̄1-crystal states for μ2 = −2.0 and (b) different crystalline
states for μ2 = 0 in 1D, characterised by the grand potential density
ω̄ as a function of the chemical potential μ1. The diagram
corresponds to a central horizontal crossing of the right half of
figure 6(a) below. In (a), the crystalline state (orange lines) emerges
subcritically from the liquid state (blue lines). The dashed portions
of the lines show where the states are unstable. In (b), the two stable
states (alloy and φ2-crystal, orange lines) are connected through a
swallow-tail structure. The insets show concentration profiles at the
positions marked by filled red circles. The branches are obtained by
continuation of the fully nonlinear model for a single box. A
two-parameter continuation of the loci of the two saddle-node
bifurcations in (b) is shown in figure 5. The remaining parameters
and line styles are as in figure 1.

Figure 4 displays two bifurcation diagrams, showing ω̄ as a
function of the control parameter μ1, for fixed μ2. In this rep-
resentation, a point on the binodal can be directly identified as
the crossing point of two sub-branches. Once a point on the
binodal is identified, we then follow the binodal in a dedicated
continuation run while keeping all conditions (12)–(14) ful-
filed. The results from this are the values of μ j, ω̄, φ̄A

j and φ̄B
j

along the binodals. Subsequently, pairs of binodals can then be
displayed in various representations; the most common being
in the (μ1, μ2)- and (φ̄1, φ̄2)-planes.

The procedure works for both, the one-mode approxima-
tion, where the system of equations to be solved is algebraic,
and for the fully nonlinear case, where it consists of ordi-
nary (1D) or partial (2D) differential equations (ODE and
PDE, respectively). To identify the binodal starting point, we
introduce an auxiliary continuation parameter δω = ωB − ωA,
which is the difference between the grand potentials of the
two phases. With this additional condition, in the initial run
we perform a two-parameter continuation in δω and one of
the chemical potentials, and stop when δω = 0, i.e. when we
have reached the binodal. Then, in the following run, δω = 0 is
used as constraint, and a two-parameter continuation in the two
chemical potentials directly follows the binodals in parameter
space.

Figure 5. Loci of the saddle-node bifurcations of the solution
branch in figure 4(b) are shown in the (μ1, r)-plane. As the two lines
approach with increasing r, the swallow-tail structure in figure 4(b)
gets smaller, until the saddle-node bifurcations meet and annihilate
in a hysteresis bifurcation. As a consequence, there is no longer a
point where distinct alloy and φ2-crystal coexist and the phases
continuously morph into each other. The remaining parameters are
as in figure 4(b).

Note that the swallow-tail structure in figure 4(b) is formed
of two sub-branches of linearly stable phases and a sub-branch
of unstable states connecting them [similar to the structures
displayed in figure 1(c)]. Starting at the saddle-node bifur-
cation where the sub-branch of φ2-crystal ends, the unstable
state consists of with monotonically increasing amplitude of
the oscillations in the φ1-field. Similar swallow-tail structures
are also visible in the phase diagrams shown below, where
they connect binodal lines. A hysteretic transition between two
phases of identical symmetry, such as the one between the
alloy and the φ2-crystal in figure 4, corresponds in the ther-
modynamic limit to a first order phase transition. Following
the loci of the saddle-node bifurcations (displayed in figure 4)
in a two-parameter continuation, we obtain figure 5. It shows
the loci in the (μ1, r)-plane. We see that on increasing r for
fixed μ2 = 0, they approach each other until they annihilate
in a hysteresis bifurcation at r ≈ −0.53, thus terminating the
phase coexistence between the φ2-crystal and the alloy. In the
thermodynamic limit, this corresponds to a critical point at this
value of r, where the first order phase transition ceases to exist.
At higher temperatures (higher r values) one can go smoothly
from the alloy to the φ2-crystal, without passing through a
distinct phase boundary. This is further discussed below.

In figure 4(a) we display corresponding branches for the
liquid-to-crystal transition, for μ2 = −2. The region of mul-
tistability is larger as compared to the one in figure 4(b). In
contrast to the transition via two folds in a swallow-tail struc-
ture observed for the crystal-to-alloy transition, the liquid-to-
crystal transition occurs via a subcritical (symmetry break-
ing) pitchfork bifurcation where the crystalline state emerges
from the liquid one. Similarly to the equivalent case in the
one-component PFC model, at some higher temperature the
pitchfork bifurcation becomes supercritical, and the liquid-
to-crystal transition changes its character from first order to
second order transition.

For the binodal lines to be calculated in the thermodynamic
limit, i.e. for an infinite size domain, the simulation boxes for

6



J. Phys.: Condens. Matter 33 (2021) 115401 M P Holl et al

the crystalline phases have to correspond to an integer number
of unit cells of the crystal (one unit cell is sufficient). Thus,
the domain size has to be chosen such that it minimises the
Helmholtz free energy at each step. However, since in practice
the difference between the results obtained using an approach
with a variable domain size and with a fixed one having the size
of the unit cell at onset is too small to be resolved on the scale
of our figures, we keep the domain size fixed at that value.

3.2. One-mode approximation

The one-mode approximation is probably the most widely
used approach applied to determine phase diagrams of PFC-
type models. For the crystalline phases in 1D, the fields are
approximated by the harmonic ansatz φ j ≈ φ̄ j + A j eikx + c.c.
with complex amplitudes Aj and c.c. denoting the complex
conjugate. This ansatz automatically allows for a phase shift
between the fields. Introducing it into equation (1) and inte-
grating over a unit cell yields the mean free energy:

f̄ =
∑

j

{
φ̄2

j

2
(r + q4) + [r + (q2 − k2)2]A jĀ j

+
1
4

(6A2
jĀ

2
j + 12A jĀ jφ̄

2
j + φ̄4

j)

}

+ c(A1Ā2 + Ā1A2 + φ̄1φ̄2). (15)

Minimising equation (15) with respect to k yields the critical
wavelength kc = q. A further minimisation with respect to the
real and imaginary parts of the amplitudes gives the amplitude
equations

0 = rA1 + 3A1|A1|2 + 3A1φ̄
2
1 + cA2

0 = rA2 + 3A2|A2|2 + 3A2φ̄
2
2 + cA1.

(16)

For the liquid state they are trivially solved (Aj = 0). The
constraints

0 = (r + 1)φ̄1 + 6|A1|φ̄1 + φ̄3
1 + cφ̄2 − μ1

0 = (r + 1)φ̄2 + 6|A1|φ̄2 + φ̄3
2 + cφ̄1 − μ2

(17)

relate the chemical potentials to the values of φ̄ j. The
grand potential density is obtained using equation (6) with
equations (15) and (17).

In general, at fixed parameters there can be several solu-
tions to the amplitude equation (16). This reflects that in certain
parameter regions several phases can simultaneously exist, e.g.
the alloy and φ j-crystal phase. Of course, this is a condition
for the coexistence of phases. The main task is to identify the
physically relevant states out of the possibly many solutions of
the four coupled algebraic equation (16) for the real and imag-
inary parts of the A j. Here, we employ numerical continuation
as a convenient tool. This allows us to use equation (17) either
to measure the μ j or to impose them via a constraint. The same
applies for the equation defining the grand potential.

Hence, the general continuation procedure described in
section 3.1 is specified as follows: starting from the liquid state,
i.e. A j = 0 for particular values of the φ̄ j with corresponding

μ j and ω, we keep one of the chemical potentials fixed, e.g.
μ2, and change the other one, e.g. μ1, adapting the φ̄ j and ω
in the process. Thus we calculate the branch of liquid states.
Eventually, a pitchfork bifurcation is detected where the liquid
state changes stability. At this point we switch to the emerg-
ing branch, which is a physically relevant periodic (crystalline)
state corresponding to a nontrivial solution of the amplitude
equation (16). Then a binodal point is identified as described
in section 3.1. Subsequently, the binodal-tracking routine is
then initialised by populating the two boxes with the two deter-
mined coexisting states. Each box has its own set of ampli-
tude equations [equation (16)] and constraints [equation (17),
and—depending on the phases considered—translation con-
straints]. To follow the binodal lines, the mean grand potential
ω̄ and both chemical potentials μ j of the two states are held at
identical values. Therefore, in total 14 (15, if both states are
crystalline) algebraic equations are solved in parallel to deter-
mine the 15 (16, if both states are crystalline) unknowns, one
of which is used as the control parameter. Typical results are
given below in section 4.

3.3. Fully nonlinear approach

In the fully nonlinear approach we also calculate the phase
diagram using numerical continuation techniques. However, in
this case it is done by solving coupled ODEs [equation (3) in
1D] and coupled PDEs [equation (3) in 2D]. Auxiliary condi-
tions/constraints are employed to break the translational sym-
metry in systems with periodic boundary conditions. Addi-
tional constraints enforce the coexistence conditions of equal
pressure [equation (12)]

0 = ω̄A − ω̄B + δω, (18)

and of equal chemical potentials. These determine the mean
concentrations. As described above, the auxiliary continuation
parameter δω allows us to employ continuation to equilibrate
the pressure. For the numerical continuation of steady states
we use equation (3), rather than the steady-state equations
before integration. This reduces the computational complex-
ity as fewer derivatives need to be calculated. Additionally,
it gives direct access to the chemical potentials. Thus, the
mean concentrations φ̄ j are not used as control parameters but
are just measured in order to observe how they vary accord-
ing to the given chemical potentials. If Neumann boundary
conditions are used, the only additional constraint needed is
the equal-pressure condition (18), since the chemical poten-
tials are directly controlled. The system we need to solve is
therefore

0 = (r + (q2
1 +Δ)2)φA

1 + (φA
1 )3 + cφA

2 − μ1 (19)

0 = (r + (q2
2 +Δ)2)φA

2 + (φA
2 )3 + cφA

1 − μ2 (20)

0 = (r + (q2
1 +Δ)2)φB

1 + (φB
1 )3 + cφB

2 − μ1 (21)

0 = (r + (q2
2 +Δ)2)φB

2 + (φB
2 )3 + cφB

1 − μ2 (22)

0 = ω̄A − ω̄B + δω. (23)
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Thinking of the system as consisting of two boxes,
equations (19) and (20) describe the first box, and
equations (21) and (22) the second one. Each box contains
one of the states of interest, i.e. the states whose coexistence
is investigated. As described previously (section 3.1), in a
preliminary run, the pressure in the two boxes is equilibrated,
i.e. a continuation is performed to find the point where
δω = 0. Then, a continuation in the chemical potentials at
fixed δω = 0 follows the binodal in the parameter plane. In
the following section we present typical results from this
approach.

4. Phase behaviour of two-field PFC in 1D

4.1. Two-phase coexistence and phase diagrams

Now we present the phase behaviour of the two-field PFC
model in 1D thereby comparing the results obtained with the
fully nonlinear approach to the one-mode approximation. As
effective temperature we first choose r = −0.9, as used in the
study of the one-field PFC model in reference [38]. Based on
the existing results for the one-component model [13, 38], at
such a value we expect a first-order phase transitions to occur
between liquid and crystalline states. Additionally, there are
phase transitions between different crystalline states, since we
can set the mean concentrations to values where one species
forms a crystal, while the other one stays liquid and only shows
small modulations due to the coupling. We keep the remaining
parameters fixed at q1 = q2 = 1 and c = −0.2.

Figure 6(a) shows the resulting phase diagram displayed
in the (μ1, μ2)-plane, while figure 7 displays magnifications
of two particular portions of this phase diagram. Figure 6(b)
shows how the phase diagram changes as the temperature
parameter r is varied. Figure 8(a) shows the same phase dia-
gram displayed in the (φ̄1, φ̄2)-plane, while figure 9 displays
one region of this in greater detail and figure 8(b) shows the
variations with r. Note that the phase diagrams in both figures 6
and 8 are symmetric with respect to reflections at the diagonals,
corresponding to the symmetries of equation (2) discussed
above. In figure 10 we display a selection of concentration
profiles.

In the phase diagram displayed in figure 6(a) and figure 11,
the black solid lines are the coexistence lines obtained via
the fully nonlinear solution of the model, while the red dot-
ted lines are the corresponding lines obtained from the one-
mode approximation. On the scale of figure 6(a) the agreement
between the two is quite good. However, the magnification
in figure 7 shows that there are differences in the locations
of essential features, which can be up to about 5% in terms
of the chemical potential values. In general, the one-mode
approximation overestimates (underestimates) the extent of
the regions occupied by the liquid (crystalline) phases. As a
consequence, the loci of the triple points and related features
are also not calculated accurately in the one-mode approxima-
tion. For the one-component PFC model, reference [38] shows
that a two-mode approximation is sufficient to exactly predict
the locus of the tricritical point of the model where the first
order transition becomes a second order one.

Figure 6. Phase diagrams of the binary PFC model in 1D
represented in the (μ1, μ2)-plane. (a) Phase boundaries calculated
using the one-mode approximation (red dotted lines) are compared
to the fully nonlinear approach (solid black lines). On the given
scale they show good agreement. Regions close to the two triple
points bounded by dashed boxes are shown in greater detail in
figure 7. The parameters are r = −0.9, q1 = q2 = 1 and c = −0.2.
In (b) we display corresponding numerically exact phase diagrams
for (from the left) r = −0.7, −0.52, and −0.3. The remaining
parameters are as in panel (a).

In total, there are nine thermodynamically stable liquid and
crystal phases. The example concentration profiles in figure 10
are arranged in the same way as the phases in the phase
diagrams. In the four corners of figure 6(a) (and figure 10)
one finds four fluid phases, namely, (top right) a high-φ1 and
high-φ2 liquid phase (short ‘high concentration mixture’); (top
left) low-φ1, high-φ2 liquid phase (short ‘φ2-liquid’); (bot-
tom left) low-φ1, low-φ2 liquid phase (short ‘low concen-
tration mixture’); and (bottom right) high-φ1, low-φ2 liquid
phase (short ‘φ1-liquid’). In between the four liquid phases
there are five crystal phases: (bottom centre) and (top centre) a
φ1-crystal with low and high, only weakly modulated φ2

concentration profile, respectively (short ‘φ1-crystal’); (left
centre) and (right centre) φ2-crystal with low and high, only
weakly modulated φ1 concentration, respectively (short ‘φ2-
crystal’); and (centre) a crystal of φ1 and φ2 peaks that are
in phase (short ‘alloy’). Note that if we change the sign of
the coupling constant so that c > 0, then the arrangement is
anti-phase.

All nine phases can pair-wise coexist with their direct
neighbours, giving in total sixteen phase coexistence lines.
Some of them are rather short, such as the ones between
the alloy on one side and the φ1-liquid or φ2-liquid on the
other side. The coexistence is best seen in the (μ1, μ2)-plane
[figure 7(a)] where one can also clearly see how trios of coexis-
tence lines meet at triple points, where all three phases pairwise
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Figure 7. Magnifications of regions close to the two triple points
marked by dashed boxes in figure 6(a). The fully nonlinear (black
lines) and approximate one-mode (red dotted lines) results are
shown, as in figure 6(a), but here enriched with additional details.
We see that coexistence between two states can extend well into
regions where neither of the coexisting states has the lowest free
energy. An example is the metastable coexistence of alloy and
φ2-crystal in the area where the liquid is energetically favoured. The
triple points are marked by blue crosses (see section 4.2 for further
detail). Additional dashed black lines show ‘unstable coexistence’,
e.g. in (a) on a line connecting the metastable liquid and φ2-crystal
coexistence line with the metastable alloy and liquid coexistence
line.

fulfil the coexistence conditions (12)–(14). Note that all of the
triple points consist of the coexistence of a liquid, a one-field
crystal and the alloy phase. Leading up to the triple points,
the solid lines represent two-phase coexistence in the thermo-
dynamic limit, i.e. the coexistence of two thermodynamically
stable phases. However, in addition the continuation method
that we use allows us to follow the coexistence beyond the
triple points (see the magnifications in figure 7 for a more
detailed look at two examples).

The resulting short pieces of solid line that seem to end
slightly beyond the triple points in figure 6(a) indicate the
coexistence between two states where neither is the state
of lowest free energy. Thus, this portion of the lines corre-
sponds to a ‘metastable coexistence’ of metastable phases.
An example displayed in figure 7(a) is the metastable coex-
istence of the alloy and φ2-crystal in the region where the
liquid is actually the global energy minimum, i.e. the ther-
modynamically stable phase. Additional dashed black lines in
figure 7 indicate ‘unstable coexistence’, e.g. in (a) on a line
connecting metastable liquid and φ2-crystal coexistence with
the metastable alloy and liquid coexistence. On this line, the
crystal state corresponds to an unstable state as one field is
fully developed while the second field increases in amplitude
to reach the alloy state (see figure 4). For clarity, the coexis-
tence lines with unstable phases are not shown in figure 6 and
are only displayed in figure 7. In this way, each line of unstable
coexistence connects the ends of two lines of metastable coex-
istence and acts as a threshold (or saddle of the free energy
landscape) that has to be crossed when going from a metastable
coexistence to a thermodynamically stable one. In particu-
lar, when studying the dynamics of phase transitions, e.g. via
the motion of fronts, it is important to know which states are
metastable and which are linearly unstable. Metastable coex-
istence is discussed in the context of the liquid–vapour phase
behaviour of a symmetric binary fluid mixture in reference

Figure 8. Phase diagrams from the fully nonlinear approach of the
binary PFC model in 1D displayed in the (φ̄1, φ̄2)-plane. The hatched
regions correspond to two-phase coexistence of adjacent phases,
with the grey tie lines connecting coexisting states on the binodals.
The triangular grey-shaded areas correspond to three-phase
coexistence. Tie lines are only displayed for true thermodynamic
coexistence, not for metastable coexistence. The region marked by
the dashed box is magnified in figure 9. The parameter values are the
same as in figure 6. In (b) we display corresponding numerically
exact phase diagrams for (from the left) r = −0.7, −0.52, and −0.3.
The remaining parameters are as in panel (a).

[43]. There the metastable binodals are referred to as ‘hidden
binodals’.

Further insight can be gained by inspecting the phase dia-
gram in the (φ̄1, φ̄2)-plane, displayed in figure 8. In this rep-
resentation, pairs of coexisting states from along the phase
boundaries in figure 6 lie on a pair of binodal lines (black solid
lines). Particular coexisting states of equal chemical potentials
and pressure are connected by tie lines (grey lines), corre-
sponding in each case to a Maxwell construction. In figure 8
they are only shown for thermodynamically stable coexis-
tence while the magnification in figure 9 also provides them
for the metastable coexistence. States in the two-phase region
between the binodals are unstable w.r.t. separation of phases
and would evolve along the tie lines. The eight triple points of
figure 6(a) become extended triangular regions (grey shaded
areas). States within these regions separate into the three coex-
isting phases with concentrations φ̄l

j, φ̄
c
j and φ̄a

j situated at the
corners of the respective triangle. Note that this occurs in the
thermodynamic limit and also in finite domains large enough
to accommodate regions of all three phases. This results in
an intricate bifurcation behaviour to be presented elsewhere.
The volume fraction each phase occupies is determined by the
choice of parameters φ̄ j.

The eight triple points merit special attention. They can be
determined directly and accurately by extending the two-box
method to a three-box method. This then allows one to track
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Figure 9. Magnification of the area marked by the dashed box in
figure 8, enriched with further details. In particular, we include
several metastable two-phase coexistence lines that extend beyond
triple points and eventually become unstable coexistence lines
(dashed lines). The blue crosses indicate coexisting states of
three-phase coexistence—i.e. triple points—see also section 4.2.
Note that here, in contrast to figure 8, tie lines are also displayed for
metastable coexistence.

Figure 10. Typical concentration profiles for the nine different
phases observed in the binary PFC model in 1D. Their positions in
the 3 × 3 array corresponds to the arrangement of the phases in the
phase diagram, displayed in figures 6 and 8. Namely, the corner
profiles represent fluid states, while the central profile is the alloy.
The remaining profiles show the four different one-species crystals.

the triple points in a space spanned by three parameters as done
below in section 4.2.

Figure 6(b) shows how the phase behaviour changes
with increasing effective temperature, i.e. when increasing r
towards less negative values. The three panels display the fully
nonlinear solution phase diagrams in the (μ1, μ2)-plane for
r = −0.7, −0.52, and −0.3, respectively. Only the thermo-
dynamically stable coexistence lines are shown. The corre-
sponding sequence of phase diagrams in the (φ̄1, φ̄2)-plane
representation is displayed in figure 8(b). For r = −0.7 the
coexistence lines between the alloy and all four φ j-crystals

Figure 11. Phase diagrams of the two-field PFC model in 1D
represented in the (φ̄1, φ̄2)-plane. The parameter values are the same
as in figure 8(a). Here we compare the phase boundaries calculated
using the one-mode approximation (red dotted lines) and the
numerically exact ones obtained via our fully nonlinear approach
(solid black lines).

still connect the eight triple points and the overall arrange-
ment of the phase diagram is identical to the one at r = −0.9
in figure 6(a). The metastable parts of the coexistence lines
have become shorter, i.e. hysteresis becomes less important
(not shown). Also the two-phase coexistence regions in the
(φ̄1, φ̄2)-plane have decreased in size [see figure 8(b)]. At a
certain effective temperature the coexistence lines connecting
the triple points break-up at a point on the interval between the
triple points. This break-up creates eight critical points at the
ends of the lines of first order phase transitions. Increasing r,
these critical points recede towards the triple points shortening
the corresponding lines of coexistence between the alloy and
the various other crystals. An example is shown in the panel for
r = −0.52 in figure 6(b). The finite-size equivalent of such a
critical point is the hysteresis bifurcation discussed at figure 5.

At the critical points, the mean concentrations φ̄ j of the two
coexisting crystalline states become equal, i.e. the two corre-
sponding binodal lines in figure 8(b) meet. Beyond the critical
points, there is no longer a phase transition between the alloy
and φ j-crystal and one can go smoothly from one to the other.
Further increase of r results in the complete disappearance
of the alloy-crystal coexistence lines, namely, when the crit-
ical points meet (and annihilate with) the corresponding triple
points. An example is the final panel in figure 6(b). It shows
that for r = −0.3 the first order phase transitions between the
alloy and φ j-crystal have all completely vanished, as have all
triple points. As a result, one can go from all the single-species
crystals into the alloy state continuously in the whole param-
eter plane, without encountering any phase transitions. The
behaviour of the triple points and three-phase coexistence is
discussed further in the next section.

4.2. Three-phase coexistence and triple-point continuation

To track triple points, we extend the two-box continuation
method for the determination of lines of coexistence to a three-
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Figure 12. Plots of the triple-points (blue lines) and phase
boundaries (black lines) in the (μ1, μ2, r)-space. The phase
boundaries are displayed for r = −0.9,−0.7,−0.52 and −0.3. The
results are all obtained with the fully nonlinear approach. The
triple-points cease to exist at higher temperatures (for r � − 0.495
and r � − 0.444), where the transition between the alloy and the
various other crystal phases becomes a smooth gradual change and
there is no longer a phase transition. The remaining parameters are
as in figure 6.

box method. The fully nonlinear continuation approach then
allows us to directly follow them and the associated three-
phase regions in an extended parameter space spanned either
by μ1, μ2 and r or by φ̄1, φ̄2 and r. At three-phase coexistence,
where two two-phase coexistence lines cross, all three phases
have the same pressure and chemical potentials. In the case
of the phase boundaries at fixed temperatures studied above,
the two-parameter continuation in the chemical potentials μ1

and μ2 is facilitated by the equal pressure constraint. Including
a third phase, a second equal pressure constraint is added, to
enable us to perform the three-parameter continuation of the
triple points.

Typical results are displayed in figures 12 and 13. They
show the loci of the triple points in the (μ1, μ2, r)-space and
in the (φ̄1, φ̄2, r)-space, respectively. Figure 14 shows a mag-
nification of the three-phase region associated with one of
the triple-points. In addition to the triple points, figure 12
also displays the two-phase coexistence lines at four fixed
r-values, identical to the ones used in figure 6. With increasing
temperature the swallow-tail structure becomes smaller until
at the temperatures r ≈ −0.495 and r ≈ −0.444 the lines of
triple points end. This is also clearly visible in the (φ̄1, φ̄2, r)-
representation in figure 13 and the magnification for one of the
triple points in figure 14.

The coexistence lines between alloy and single-species
crystal break at slightly lower r than the r-value where the line
of triple points ends, creating pairs of critical points. The crit-
ical points then recede towards the triple points at the other
ends of the coexistence lines. At the transition temperature, the
triangular three-phase region reduces to a single line because
the mean concentrations φ̄a

j for the alloy and φ̄c
j for the single-

species crystals become equal, so that the alloy and the crystal
become indistinguishable. This reflects the fact that the former
triple point becomes just a normal point on a two-phase coex-
istence line. In other words, this is the point where the pairs of
a green and an orange line (each pair forming a parabola) in
figures 13 and 14 have their apex.

Figure 13. The three-phase coexistence regions in the
(φ̄1, φ̄2, r)-space. The grey triangles are slices at a sequence of fixed
values of r, corresponding to the triple-points in figure 12. The blue
lines correspond to φ̄l

j, the mean concentration of the liquid phase at
coexistence; the orange lines to φ̄c

j, the value for the one-species
crystals; and the green lines to φ̄a

j, the values for the alloy. In
figure 14 we display a magnification of a portion of this diagram.
The remaining parameters are as in figure 6.

Figure 14. A magnification of one of the three-phase regions in
figure 13. Where the triple-point vanishes at high r, the triangular
three-phase region reduces to a single line. There, the mean
concentrations φ̄c

j and φ̄a
j become equal, as the two coexisting states

become identical. Parameters and line styles are as in figure 13.

5. Phase behaviour of the binary PFC in 2D

Having described the phase behaviour of the binary PFC model
in 1D, we now present results for the phase behaviour of
the model in 2D, as obtained via our continuation method
in the fully nonlinear approach. For the effective tempera-
ture, we again choose r = −0.9. At such a value we expect
first-order phase transitions to occur between liquid phases,
stripe phases and hexagonal crystalline phases, similar to what
is observed in the one-component PFC model [13, 38]. Fur-
ther, we expect phase transitions between different crystalline
hexagonal states, and additional transitions between different
stripe phases. The remaining parameters we keep as before,
fixed at q1 = q2 = 1 and c = −0.2.

Figures 15 and 16 show the resulting phase diagram in
the (μ1, μ2)- and the (φ̄1, φ̄2)-plane, respectively. As in 1D,
in 2D both are symmetric with respect to reflections at the
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Figure 15. The phase diagram of the binary PFC model in 2D in the
(μ1, μ2)-plane, calculated with the fully nonlinear continuation
approach. The black lines are the two-phase coexistence lines and
the grey lines are their continuations indicating metastable
coexistences. The various different phases are indicated using the
two-letter abbreviations given in table 1. The blue crosses mark the
locations of the triple-points, which are calculated with the
three-box approach. The remaining parameters are r = −0.9,
q1 = q2 = 1 and c = −0.2.

diagonals, as expected. We distinguish and denote the vari-
ous phases based on the patterns that each of the two fields
can form: uniform or weakly modulated (liquid states, as
in 1D), stripe pattern (as 1D crystal) and hexagonal pattern
(cf the discussions for one-component models, e.g. in refer-
ences [2, 39]). For the latter there exist two different versions:
up-hexagons and down-hexagons with density peaks and den-
sity troughs forming the triangular point lattice, respectively.

In the binary PFC model, the various phases known from
the one-component system can now appear for φ1 and φ2.
In principle, any combination is possible, including ‘alloys’
of stripes and ‘alloys’ of the various hexagons. The thermo-
dynamic phases that actually occur for the parameter values
chosen are listed in table 1, where we do not differenti-
ate between the low and high density liquid (as in 1D). Of
particular note is the case where the two uncoupled fields
would form up-hexagons and down-hexagons respectively, i.e.
the ‘ud’ and ‘du’ phases. There, the usual in-phase structure is
no longer energetically favourable and the two hexagonal pat-
terns are phase shifted and the unit cell is no longer reflection
symmetric. Figure 17 displays examples of concentration pro-
files for the phases that have no 1D equivalent. Profiles that
are not shown can be obtained by applying the various sym-
metries of the system. The abbreviations introduced in table 1
are employed in figures 15 and 16.6 Note that the above sym-
metries imply that under the two reflections, symbols exchange

6 Our naming convention is based on notions used in the pattern formation
literature, e.g. when discussing patterns for the Swift–Hohenberg equation [9,
23].

Figure 16. The phase diagram of the binary PFC model in 2D
displayed in the (φ̄1, φ̄2)-plane; see also the corresponding diagram
in figure 15. The solid black and thin light grey lines denote
thermodynamically stable and metastable binodal lines, respectively.
Thermodynamically stable coexisting states are connected by dark
grey tie lines. Triangular three-phase regions are shaded dark-grey.
The phases are abbreviated as defined in table 1. The parameters are
the same as in figure 15.

Table 1. Nomenclature of phases observed for the two-field PFC
model in 2D. Exchanging fields φ1 and φ2 gives four additional
phases (dl, ul, sl, du) not included here. The abbreviations
introduced here are employed in figures 15 and 16.

φ1 φ2 Abbreviation

Liquid Liquid ll
Weakly modulated Down-hexagons ld
Weakly modulated Up-hexagons lu
Weakly modulated Stripes ls
Down-hexagons Down-hexagons dd
Up-hexagons Up-hexagons uu
Up-hexagons Down-hexagons ud
Stripes Stripes ss

their place and ‘u’ becomes ‘d’ and vice versa. Note that states
other than those present in the phase diagram exist, but they are
only metastable or linearly unstable. Nevertheless, they can be
studied with the continuation methods we employ. An example
is stripes in φ1 and φ2 that are orthogonal to each other. They
exist as a metastable state in a small central region of the phase
diagram.

Compared to the 1D case where nine phases exist, the 2D
system exhibits many more, namely, twenty-one phases. At
r = −0.9 all neighbouring phases are separated by first order
phase transitions, i.e. in figure 15 there are forty-four coex-
istence lines that form an intricate polygonal network. The
twenty-four nodes of this network correspond to triple points
of three-phase coexistence. This implies that the accompany-
ing figure 16 features forty-four two-phase coexistence regions
bounded by pairs of binodals, which in the figure are connected
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Figure 17. Examples of profiles for the phases that have no 1D
equivalent. The left (right) panels give φ1 [φ2] in blue (red). The top
panels illustrate the uu-phase where both fields form up-hexagons.
In contrast, the bottom panels show the ud-phase where φ1 forms
up-hexagons and φ2 down-hexagons. Again, exchanging fields φ1
and φ2 gives additional solutions, as does inverting them. The grey
scale of the colour bar indicates the concentration values for both
fields.

by dark grey tie lines. Furthermore, there are twenty-four grey-
shaded triangular three-phase coexistence regions. Overall, a
very rich phase behaviour that promises an equally rich selec-
tion of possible phase change dynamics, e.g. through moving
fronts that replace one state by another neighbouring one.

Note, that at large values of one of the |μ j| (and similarly
of one of the |φ̄ j|) the corresponding field is only weakly mod-
ulated and effectively decoupled from the other field. Then, a
cut through the phase diagram, where the large value is fixed, is
equivalent to the phase diagram known for the one-component
PFC model. For instance, for increasing chemical potential
of the other field, one finds first the low-concentration liquid,
then the up-hexagon, stripes, down-hexagon, and finally the
high-concentration liquid phase (cf figure 10 in [38]).

As outlined above in section 4.2, the locations of the triple
points, which are marked by blue crosses in figure 15 can
be calculated employing the three-box continuation scheme.
Again, their loci can be followed in three-parameter space (not
shown).

6. Concluding remarks

We have presented a method to calculate the phase behaviour
of thermodynamic systems using numerical continuation that
incorporates obtaining the fully nonlinear solution for the
structure of each phase. It can be applied to any continuum
model and as an example here has been applied to a binary
(two-field) phase-field-crystal model. The model is related to
the two-field model introduced in reference [33] where two
‘vacancy phase-field-crystal’ models [8] were coupled. Here
we have employed the same coupling. Analogous DDFTs for
binary systems and other such PFC models can be found in
references [2, 14, 35, 36].

After briefly introducing the binary PFC model and con-
tinuation methods in general, we have first employed con-
tinuation to determine a number of bifurcation diagrams for

finite-size systems and have discussed how the notions from
pattern formation and dynamical systems relate to the thermo-
dynamic consideration of phase transitions. This part of our
discussion relates to aspects of reference [39] in the context
of two-field models. Second, we have introduced a two-box
continuation method that allows one to directly follow lines
of phase coexistence, i.e. to follow the Maxwell construc-
tion, in the thermodynamic limit, through parameter space.
Extending the method to include three-boxes allows one to
directly follow triple points in extended parameter spaces. The
methods that we have introduced work for both the com-
monly used simple one-mode approximation, where solutions
of an algebraic equation system are followed, and also the full
nonlinear model where solutions of a system of ODEs (1D
domain) or of PDEs (2D domain) are followed.

After introducing the method we have applied it to the
binary PFC model, employing on the one hand the one-
mode approximation and on the other hand the fully nonlinear
approach. The two approaches were compared in the case of
a 1D system. We have shown that the phase diagram obtained
via the one-mode approximation agrees qualitatively with that
from the fully nonlinear approach, but quantitatively differs,
which can be particularly important close to special features
of phase diagrams like critical points and triple points. The
binary PFC model shows a very rich phase behaviour, e.g. in
two dimensions it has twenty-one phases, forty-four lines of
two-phase coexistence and twenty-four triple points that can
all be obtained and continued quite smoothly with the method
that we have developed. The more traditional methods to solve
DFT-type models like Picard iteration techniques and direct
simulations in time are cumbersome in comparison and may
sometimes end up in metastable states. That said, the PFC
model used here is a relatively simple mean-field model, which
also helped to simplify the calculations. Recall too that the
PFC model, being mean-field in character, does not fully cap-
ture all the effects of fluctuations. For instance, 1D systems
of particles generally do not exhibit a genuine phase transi-
tion at finite temperatures. Similarly, in two-dimensions the
PFC model fails to describe a hexatic phase. However, were
an improved DFT-type model incorporating such fluctuation
effects to be developed, the present method may be applied in
a straightforward manner to determine the phase diagram.

Here, we have focussed on a binary PFC model in the case
of identical particle sizes [i.e. q1 = q2 = q in equation (2)].
An even richer phase behaviour is expected when the par-
ticle sizes differ—see e.g. the DDFT models in references
[2, 35, 36] and the PFC model in [33]. Such studies may now
be supplemented by the systematic determination of phase
diagrams employing the techniques presented here. Note that
for such systems the domain size also needs to be varied to
minimise the Helmholtz free energy. Some of these or other
amendments of the model that one can consider often break the
model symmetries discussed in section 2 and result in phase
diagrams that are not symmetric with respect to the diagonals
as observed here. For example, reference [37] presents results
for a binary PFC model with up to cubic coupling terms and
general quartic single-species energies. Our technique would
allow to complete their phase diagrams (figure 3 of [37]).
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To facilitate the wider application of the proposed method,
for the present binary PFC model we have deposited data
for most of the calculated coexistence lines and the contin-
uation of the triple points in a data repository [22]. There,
also the pde2path routines and suitable starting data for all
continuation runs can be found. This shall allow anyone inter-
ested to reproduce our results. It should then be straightfor-
ward to adapt the codes to study related PFC models, e.g.
as used in [33, 37]. For the analysis of the present model,
worthwhile next steps could be the investigation of cases with
q1 �= q2 and/or different critical points for the two sub-models,
i.e. Δr �= 0.

The general approach described here can be used to study
a broad range of thermodynamic systems. Foremost, these are
systems described by continuum models with time evolutions
described by a gradient dynamics that cannot be solved by
exact analytical methods. These include Swift–Hohenberg-
like PDE models like the ones used for membranes [45],
for diblock-copolymer layers [17, 42] and for patterns in
Bose–Einstein condensation [20]. An extensions to integro-
differential equations would cover classical DFT models such
as those in references [2, 35, 36], or even more sophis-
ticated functionals such as the fundamental measure-based
DFTs [34].

Also, as well as being applicable to all the various PFC
models and DDFT models, more generally, the approach may
be applied to any continuum model with a notion of pressure
and chemical potential, which are equal in different phases.
An example are binary and ternary liquid mixtures [24, 47] and
related wetting phase transitions [3, 46]. An extension to three-
dimensional systems is straight forward but still seems cum-
bersome due to limited computer power and the large number
of possible phases, even for a binary system.

As things currently stand, modelling approaches based on
microscopic simulations, e.g. molecular dynamics or (kinetic)
Monte Carlo models, that of course in principle capture all
fluctuation effects, are out of reach for the continuation based
approach for determining phase diagrams presented here.
However, stochastic continuation techniques do exist [16, 29]
that can be applied to deterministic or stochastic lattice mod-
els or other stochastic models [40, 44]. This implies that in the
future it should also be possible to apply the proposed method
to analyse the phase behaviour of a much broader class of
models, although we would suggest to start with simpler lat-
tice DFT and Monte Carlo models, such as e.g. the models
discussed in references [4, 7].
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