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Abstract. We study chemically driven running droplets on a partially wetting solid substrate by means of
coupled evolution equations for the thickness profile of the droplets and the density profile of an adsor-
bate layer. Two models are introduced corresponding to two qualitatively different types of experiments
described in the literature. In both cases an adsorption or desorption reaction underneath the droplets
induces a wettability gradient on the substrate and provides the driving force for droplet motion. The
difference lies in the behavior of the substrate behind the droplet. In case I the substrate is irreversibly
changed whereas in case II it recovers allowing for a periodic droplet movement (as long as the overall
system stays far away from equilibrium). Both models allow for a non-saturated and a saturated regime of
droplet movement depending on the ratio of the viscous and reactive time scales. In contrast to model I,
model II allows for sitting drops at high reaction rate and zero diffusion along the substrate. The transition
from running to sitting drops in model II occurs via a super- or subcritical drift-pitchfork bifurcation and
may be strongly hysteretic implying a coexistence region of running and sitting drops.

PACS. 68.15.+e Liquid thin films – 47.20.Ky Nonlinearity (including bifurcation theory) – 47.70.Fw
Chemically reactive flows – 68.43.-h Chemisorption/physisorption: adsorbates on surfaces

1 Introduction

The movement of droplets in external gradients fascinates
scientists and laymen alike at least since Newton’s descrip-
tion [1] of Hauksbee’s experiment with drops of orange oil
that move between two non-parallel glass plates towards
the point of smallest plate distance [2]. In another ex-
ample a drop of liquid freely immersed in another liquid
subject to a temperature gradient will move towards the
higher-temperature region due to Marangoni forces caused
by surface tension gradients [3]. A drop sitting on a solid
substrate also moves in a temperature [4] or wettability [5–
7] gradient. Especially, the Marangoni force is already used
to manipulate droplets, for example in light-induced drop
movement [8]. Similar concepts of a directed movement of
small amounts of soft matter in a given gradient are also
realized in models of cell motility [9].

However, even more intricate are situations where mat-
ter spontaneously starts a directed movement in initially
homogeneous settings. Small pieces of camphor that move
on a liquid surface by emitting a surfactant have also been
studied for centuries [10–13]. More recently oil droplets

a e-mail: john@pks.mpg.de (corresponding author)
b e-mail: markus.baer@ptb.de
c e-mail: thiele@pks.mpg.de; http://www.uwethiele.de

containing volatile additives and interacting droplets of
different volatile oils have been reported to move on solid
surfaces due to the solutal Marangoni effect caused by
evaporation/condensation [14]. Also intricate is the spon-
taneous movement of a juxtaposed pair of droplets with
different wetting properties, so-called bi-slugs, along a cap-
illary tube [15]. This effect was already mentioned by
Marangoni [16]. Another example are drops immersed in
a second liquid. If the drops contain a soluble surfactant
undergoing an isothermal chemical reaction at their sur-
face the drops may start to move [17]. Apart from chem-
ical reactions, drop movement can also be driven by sur-
face phase transitions [18,19]. The movement is possible
because such active drops change their surrounding and
produce a gradient that drives their motion.

Recent experiments also found chemically driven run-
ning droplets on solid substrates [20–26]. In these cases
small droplets of solution are put on partially wettable
substrates. A droplet changes the substrate by adsorption
or desorption of a solute rendering the substrate under-
neath the droplet less wettable than the bare substrate.
The radial symmetry still assures an equilibrium posi-
tion that is, however, unstable. As a result, fluctuations
break the symmetry and the drop starts to move in a self-
sustained manner. In the course of its movement it changes
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Fig. 1. Sketch of a right moving droplet driven by a self-
produced wettability gradient.

the substrate and leaves a less wettable trail behind (see
Fig. 1). We distinguish two types of experiments: In case I
the substrate is changed in an irreversible way whereas in
case II it recovers its initial state after the droplet has
passed. The droplet does not rest again and follows a ran-
dom trajectory until trapping itself between self-produced
less wettable patches (type I) [21,23]. Alternatively, a run-
ning drop may perform a periodic movement (type II) [24,
25]. The droplet often moves with nearly constant velocity
for a rather long time (tens of minutes). However, in all
cases the motion ceases when the overall system reaches
thermal equilibrium. Next, we shortly recall the specific
results of different sets of experiments, yielding running
droplets.

In reference [21] droplets of n-alkanes (n-octane and
n-dodecane) are used that contain 1,1,2,2-tetrahydroper-
fluorodecyltrichlorosilane (CF3(CF2)7(CH2)2SiCl3). The
silane molecules form dense crafted monolayers on sili-
con or glass and render these surfaces hydrophobic. The
droplet motion is stalled when no further hydrophilic
surface is available. No limitation due to silane deple-
tion inside the droplet is observed. For millimeter-sized
drops (smaller than the capillary length) droplet veloci-
ties between 1mm/s and 10 cm/s are observed, depend-
ing on liquid viscosity, silane concentration and droplet
size. The velocity increases with the silane concentration
and the droplet size. The reaction rate is estimated to
be 1100 s−1 mol−1. Typical reaction times are given as
0.01–0.2 s.

Another experiment is performed in a chemically
different system [22,23] using millimeter-sized droplets
of a non-polar solution of n-alkylamine (1mM solution
of C6NH2 or C18NH2) in decahydro-naphthalene (γ =
41mJ/m2, µ = 0.001Ns/m2). Therein, silicon substrates
with microprinted high-energy surfaces are employed that
expose a dense packing of carboxylic acid functionalities
(CO2H). The amines dissolved in the droplet adsorb at
the substrate and produce a surface of lower energy expos-
ing methyl groups. The effect of different adsorbates [22]
and reaction kinetics [23] is investigated. The velocity de-
creases with increasing droplet size.

The only example of a type-II experiment [24] fea-
tures droplets of oil (5mM iodine solution of nitrobenzene
saturated with potassium iodide) on glass substrates im-
mersed in aqueous solution of a cationic surfactant (1mM
stearyl trimethyl ammonium chloride). In this system the
stearyl trimethyl ammonium ion (STA) absorbs at the
glass substrate outside the oil droplet and renders the glass

lyophilic. When the oil droplet moves on top of the coat-
ing the STA desorbs into the oil. In this way a wettability
contrast between front and back of the moving droplet is
created and sustained. In contrast to the type-I case the
substrate recovers its lyophilic state soon after the droplet
has passed, because “new” STA absorbs at the glass. The
aqueous phase can be seen as an infinite reservoir of ad-
sorbent. Movement only finally stops when the oil droplet
is saturated with STA.

Similar phenomena can be seen in metallurgic systems
where droplets of liquid metals or alloys react with the
metallic substrate, for instance, by alloying. The layer be-
tween the droplet and the substrate may be less wettable
than the bare substrate resulting in the migration of re-
active islands. This was studied for tin islands on copper
surfaces that move and leave tracks of bronze behind [27].
Contrariwise, the layer can be more wettable than the bare
substrate. This is typical for the related process of reactive
spreading (also called reactive wetting) where a droplet of
liquid on a (nearly) non-wettable surface starts to spread
after forming a more wettable layer underneath [28–33].
Variants are possible in which during spreading the sub-
strate becomes less wettable in the center of the drop [34].
However, reactive spreading processes do normally not re-
sult in running droplets (but see the “suddenly displaced”
droplets in Ref. [35]).

For type-I experiments an implicit equation for the
velocity v of the droplet was derived [36,37] from a sim-
ple theoretical argument. Based on a balance of fric-
tion force and driving capillary forces one obtains v =
C tan θ∗(1− exp(−rL/v)), where r is the reaction rate, L
the size of the droplet and C a constant. The dynamic
contact angles at the advancing and receding ends of the
droplet are then assumed to be identical (θ∗), i.e. the
droplet profile is approximated by a spherical cap with
θ∗ given by cos θ∗ = (cos θae + cos θre)/2. The static con-
tact angles at the advancing edge θae and at the receding
edge θre > θae are different due to the chemical gradient.
The expression for the velocity is found from a first-order
reaction on the substrate that yields chemical concentra-
tions αa = 0 and αr = 1 − exp(−rL/v) at the respective
ends of the droplet. The expression for the velocity pre-
dicts a monotone increase of the droplet velocity with the
droplet length L and the reaction rate r in line with exper-
imental observations [21]. The droplet velocity in the lim-
iting case of a saturated chemical reaction was also given
in [38]. However, the experiments of reference [23] show
the opposite trend; the velocity decreases with increasing
drop sizes and effective reaction rate. In the framework of
reference [36] the decrease is explained as a result of the
flattening of the drops by gravity. Related works discuss
running droplets in a random medium [39] and the forced
wetting of a plate immersed into a reactive fluid [40].

In this paper we propose and analyze dynamical mod-
els for self-propelled running droplets for both, type-I and
type-II experiments. Our models consist of coupled evolu-
tion equations for the film thickness profile and the sub-
strate coverage. Thereby the wettability of the substrate
is modeled by a coverage-dependent disjoining pressure.
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The different types of experiments are taken into account
by incorporating different reaction terms. The models are
capable of reproducing the different experimentally found
regimes. A short account of a variant of the model for
the type-I experiments, i.e. for the case of a irreversibly
changed substrate was recently presented [41]. There it
was found that the dynamic contact angles at the advanc-
ing and receding ends of the droplet are not identical but
rather resemble the corresponding static ones. Even for a
strong driving force the deviation between dynamic and
static angles is only about 10%. The bifurcation leading
from sitting to running droplets for a finite reaction rate
was identified as a drift-pitchfork bifurcation. Here we an-
alyze the type-I model in more detail and extend our anal-
ysis to the type-II model.

In Section 2 the type-I and type-II dynamical models
are presented. Results for the two models are discussed in
Sections 3 and 4, respectively. Stationary running droplets
and sitting droplets are characterized in dependence of the
control parameters reaction rate, droplet volume, diffusion
constant of the adsorbate field and desorption rate of the
adsorbate (for type-II model only). The resulting families
of solutions and their linear stability are used to derive
phase diagrams that describe the existence regions for run-
ning and sitting droplets. To further elucidate the drift-
pitchfork bifurcation that mediates the transition from
sitting to running droplets also in the type-II model we
analyze the linear modes that destabilize sitting droplets
close to the bifurcation. Before we conclude in Section 5,
we use numerical simulations to illustrate and analyze pe-
riodic droplet motion that is possible in the type-II model.
The simulations are compared with our continuation re-
sults and the type-II experiment of reference [24].

2 Model

2.1 Evolution equations

The evolution of a thin liquid film on a horizontal smooth
solid substrate is described by an equation for the thick-
ness profile h(x, y, t) derived from the Navier-Stokes equa-
tions using long-wave or lubrication approximation [42]

∂t h = −∇ ·

{

h3

3η
∇ p

}

. (1)

The parameters γ and η are the surface tension and vis-
cosity of the liquid, respectively. They define the viscous
time scale τv = γL/η, where L is a typical length for the
system. The change in time of the film thickness profile
equals the gradient of a flow that results as the product
of a mobility and a pressure gradient. The mobility h3/3η
corresponds to a parabolic velocity profile

u(x, z) =

(

z2

2
− zh

)

∇p (2)

within the film. The velocity component orthogonal to the
substrate w can be obtained using the continuity equation

∂xu+ ∂zw = 0 . (3)

The pressure
p = γ∆h + Π(h, φ) (4)

contains the curvature (or Laplace) pressure −γ∆h and
the disjoining pressure Π(h, φ). The latter comprises ef-
fective molecular interactions between the film surface and
the substrate and accounts for the wetting properties of
the substrate [43–45]. As discussed in detail below, here
a mathematically simple function Π(h, φ) is used that is
common in the literature. In many situations the qualita-
tive outcome only depends on very general characteristics
of the disjoining pressure [46]. The used form allows for
solutions of equation (1) that represent static (i.e. sit-
ting) droplets with a finite mesoscopic equilibrium con-
tact angle. The disjoining pressure is chosen such that the
droplets coexist with an ultrathin precursor film.

The evolution of the density of the adsorbed layer on
the substrate determines the wettability and is modeled
by a reaction-diffusion equation for the dimensionless field
0 < φ(x, y, t) < 1

∂t φ = R(h, φ) + d′∆φ, (5)

where the function R(h, α) describes adsorption or des-
orption on the substrate. The second term allows for a
diffusion of the chemical species along the substrate. For
simplicity we assume that the adsorbate has the same dif-
fusion constant on the bare and the droplet covered sub-
strate. However, assuming different constants would not
change the presented results qualitatively. Note that for
type-I experiments φ directly corresponds to the substrate
coverage. However, in a type-II experiment the droplet dis-
solves a more wettable coating. In this case the coverage
corresponds to 1− φ. Also here one can use equation (5),
however, the signs of adsorption and desorption term are
switched. With this convention, in both cases the wetta-
bility decreases with increasing φ.

One can neglect the dynamics of the concentration
field of the chemical in the bulk of the droplet by as-
suming a fast equilibration of the solute concentration
within the moving droplet as compared to the reaction
at the substrate. The fast equilibration is caused by dif-
fusion and convective motion within the droplet whereas
the latter is driven by the lateral movement of the droplet
along the substrate. It corresponds to the limit of a small
Damköhler number Da = rc0/(D/L) giving the ratio of
reaction velocity at the substrate and diffusion velocity
in the droplet [47]. The parameter r is a typical reaction
rate, c0 stands for a typical concentration of the chemical
species in the droplet and D is the diffusion constant in
the droplet.

2.2 Reaction term

Corresponding to the two different sets of experiments
that the model shall describe we use two different reac-
tion terms. For type I the initial coverage of the substrate
is zero (i.e. φ = 0) and we only allow for adsorption un-
derneath the droplet

R1(h, φ) = rin ξ(h) (1− φ) . (6)
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The reaction saturates at φ = 1 because this is the max-
imal possible coverage. The function ξ(h) represents a
(smooth) step function that approaches one and zero in-
side and outside the droplet, respectively. For type II the
“rest” state of the substrate without any droplet is the
fully covered substrate (again corresponding to φ = 0, see
above Sect. 2.1) and we allow for desorption underneath
the droplet and adsorption outside the droplet

R2(h, φ) = rin ξ(h) (1− φ) − rout [1− ξ(h)]φ. (7)

The time scales of the reactions at the substrate inside
and outside the droplet are defined by the effective rate
constants rin and rout, respectively. Note that they have
the dimension s−1. The function ξ(h) may be the step
function

ξ1 = Θ(h− hc), (8)

or the smooth function

ξ2 = {tanh[(h− hc)/∆] + 1}/2. (9)

The value of hc is chosen slightly larger than the thick-
ness of the precursor film and the maximal drop height is
always hmax À hc. A small value of ∆ ¿ hmax ensures
that the switch between a predominant adsorption reac-
tion and a predominant desorption reaction occurs over a
small film thickness range. Note, that ξ2 → ξ1 for ∆→ 0.
Changes in the details of the reaction term do not affect
the results qualitatively.

2.3 Disjoining pressure

For the disjoining pressure we use throughout the present
work

Π(h) =
2Sld

2
0

h3
+

(

1−
φ

g

)

5Ssd
5
0

h6
, (10)

where d0 = 0.158 nm is the Born repulsion length that de-
fines a lower cut-off for the film thickness. The parameter
Sl and Ss are the long- and short-range components of
the total spreading coefficient S = Sl + Ss (for φ = 0).
We use Sl < 0 and Ss > 0 corresponding to a destabiliz-
ing long-range van der Waals and a stabilizing short-range
interaction [48]. For φ = 0 the pressure allows for drops
sitting on a stable precursor film as can be seen studying
the corresponding densities of the excess surface energy f ,
related to the disjoining pressures by Π = −∂hf .

The short-range interaction contains the influence of
the coating and crucially influences the static contact an-
gle [49]. To account for the varying wettability caused by
the different substrate coverage we let the short-range part
of the spreading coefficient Ss depend linearly on the field
φ(x, y, t). The signs are chosen in a way that for both
types of experiments g > 0 assures that an increase in φ
corresponds to a lower wettability, i.e. to a larger equi-
librium contact angle θe given by cos θe = S/γ + 1 [49].
The constant g relates the coverage to the wettability and
therefore defines the magnitude of the possible wettabil-
ity gradient. Note, that our equation (10) corresponds to
the linear relation between cos θe and φ assumed in refer-
ences [21,23,36].

2.4 Dimensionless equations

We rewrite equations (1) to (10) by introducing scales

3γη/lκ2,
√

γl/κ, and l for t, (x, y), and h, respectively.
Then one obtains 2|Sl|d

2
0/l

3 for the scaled spreading coeffi-
cient κ. As length scale l we use the value of the film thick-
ness where the local free energy f(h) has its minimum,
i.e., where Π(h) = 0. This gives l = (5Ss/2|Sl|)

1/3d0 and
implies that the ratio of the strength of the two antago-
nistic effective molecular interactions is only an implicit
parameter of the system. The length l also corresponds to
the thickness of the precursor film for a sitting drop on
the bare substrate.

Defining the dimensionless overall reaction rate r =
3rinγη/lκ

2, diffusion constant d = 3d′η/κl2, and ratio of
reaction rates s = rin/rout, we obtain from equations (1)
to (10) the dimensionless coupled evolution equations for
the thickness profile h and the field φ

∂t h = −∇
{

h3∇ [∆h+Π(h, φ)]
}

, (11)

∂t φ = r R(h, φ) + d∆φ (12)

with the disjoining pressure

Π(h, φ) = −
1

h3
+

(

1−
φ

g

)

1

h6
(13)

and the options for the reaction term

R1(h, φ) = ξ(h) (1− φ) , (14)

R2(h, φ) = ξ(h) (1− φ) − s [1− ξ(h)]φ. (15)

To give an impression of the influence of the coverage we
give in Figure 2 droplet profiles for different values of the
coverage φ. Thereby, φ is assumed to be independent of
time and constant along the substrate. Increasing the ratio
φ/g clearly leads to increasing contact angles and decreas-
ing droplet length.

In the following we explore the full non-linear behav-
ior of the dynamical models presented above. The main
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Fig. 2. Profiles of sitting droplets without reaction for different
constant values of the wettability measure φ/g as given in the
legend. The coverage is assumed to be independent of time and
constant along the substrate. The system size is L = 10000 and
all droplets have volume V ≈ 3 · 104.
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interest lies in an exploration of the existence regions of
qualitatively different solutions depending on control pa-
rameters like reaction rate r, ratio of desorption and ad-
sorption rates s, and droplet volume V . It was already
shown that a type-I model allows for three-dimensional
running droplets that move with constant velocity v and
droplet shape [41]. Here, we restrict our attention to two-
dimensional drops to be able to explore a large part of the
parameter space. To determine such droplets we therefore
use equations (11,12) replacing ∇ by ∂x. Then contin-
uation techniques [50–52] are employed to calculate two-
dimensional running droplets moving with constant speed.
This is achieved by switching to the comoving frame x−vt
and imposing appropriate boundary conditions. In the co-
moving frame running droplets correspond to steady solu-
tions. Integration in time of the full system is also used in
some cases. Details on all numerical techniques used can
be found in the appendix.

3 Results for model I (only adsorption)

We start with model type I, where adsorption takes place
only underneath the droplet, i.e. we combine the evolution
equations for the film thickness profile (11) and the field of
adsorbate coverage (12) with the reaction term (14) and
the disjoining pressure (13).

3.1 Thickness and coverage profiles

First, we focus on the characterization of the changing so-
lution behavior in dependence of the overall reaction rate
r. Without diffusion along the substrate (d = 0) one finds
unstable sitting droplets and stable running droplets for
all r. The droplets and the coverage profile move with con-
stant velocity v and constant shape. We emphasize that
this state corresponds to a subtle dynamical equilibrium
given that coverage profile and droplet velocity depend on
each other.

Figure 3 shows for two different reaction rates profiles
of moving droplets ((a) and (b)) where the streamlines
correspond to contour lines of the stream function

ψ(x, z) =

(

z3

2
−

3z2h

2

)

∂xp− vz , (16)

and indicate the flow in the comoving coordinate system.
Note that the velocity fields are obtained by (u,w) =
(∂zψ,−∂xψ). Also shown are the corresponding profiles
for the coverage φ (Figs. 3(c) and (d)).

The two sets of profiles belong to two qualitatively dif-
ferent regimes that are prominently visible in the profiles
of the coverage (corresponding to the results obtained for
a different disjoining pressure in [41]).

3.2 Dependence on reaction rate

For low reaction rates (Figs. 3(a) and (c)) the coverage
starts to increase at the advancing contact zone and con-
tinues to increase up to the receding contact zone where

0

50

100

h

0 300 600

x

0

0.5

1

φ

0 300 600

x

a b

c d
more

wettable
less wettable

v v

v v

Fig. 3. Profiles of running droplets in the comoving frame.
Shown are (a, b) the droplet profiles h and (c, d) the substrate
coverage φ for two different reaction rates r. Droplets on the
left and right correspond to the non-saturated (r = 10−5) and
saturated (r = 0.001) regime and move with velocities v ≈
0.006 and v ≈ 0.016, respectively. The streamlines plotted in
(a) and (b) indicate the convective motion inside the droplets
in the comoving frame and have the spacing ∆ψ = 0.025 and
0.1, respectively. The direction of the movement is indicated
by arrows. The remaining parameters are g = 2, d = 0.001,
L = 10000, h̄ = 3.8, hc = 2.0, ∆h = 0.2 and the droplet
volume is V ≈ 3 · 104.

it is still well below the saturation value of φ = 1. We
call this the non-saturated regime. For high reaction rates
(Figs. 3(b) and (d)) the coverage starts to increase at the
advancing contact zone as in the non-saturated regime.
However, it increases much faster and reaches the satura-
tion value φ = 1 already underneath the droplet. At the
receding contact zone it is always at the saturation value.
We call this the saturated regime. The droplets in the two
regimes behave qualitatively different when the reaction
rate is changed as shown in Figure 4.

For low reaction rates in the non-saturated regime the
coverage does not reach the saturation value φ = 1 at the
rear of the droplet. This implies that the driving wetta-
bility gradient between front and rear of the droplet has
not yet reached its maximally possible value. Therefore an
increase in the reaction rate leads to a steeper increase in
the spatial profile of the coverage underneath the droplet.
In consequence a larger wettability gradient results imply-
ing a larger velocity. However, again it is subtle to deter-
mine the dynamic equilibrium. First, the higher velocity
reduces the contact time of the droplet with a given point
of the substrate. Second, it also reduces the length of the
droplet (see below). Both effects restrict the growth of the
wettability gradient. The resulting increase of the velocity
with increasing reaction rate can be seen in Figure 4(a)
for r < 0.0001. Note that it does only weakly depend on
the diffusion along the substrate.

Figure 4(b) shows the corresponding dynamical con-
tact angles at the advancing and receding edges of the
moving droplets. Below r ≈ 0.0001 both angles increase,
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Fig. 4. Given is a characterization of stationary running
droplets in dependence of the reaction rate r (logarithmic scale)
for different strengths of the diffusion of the coverage φ along
the substrate d. Shown are (a) the velocity v for different diffu-
sion constants d (see legend) and (b) the advancing (θa, dashed
lines) and the receding (θr, solid lines) dynamic contact angles
for d = 0.001 (heavy lines) and d = 0.1 (thin lines). The arrows
with the labels rmax, rdp and rsn in (a) indicate the locations
for the maximum velocity, drift-pitchfork bifurcation and the
saddle-node bifurcation, respectively, for d = 0.1. The remain-
ing parameters are as in Figure 3.

implying a decrease in the length of the droplet (that has
constant volume). Because in the non-saturated regime
the coverage in the contact zone at the advancing edge
does effectively not depend on r, the increase in the ad-
vancing contact angle is caused by the larger velocity only.
Seeing the full dynamic contact angle at a moving contact
line as a superposition of a static (or equilibrium) part
and a dynamic part, one can say that only the dynamic
part of the advancing contact angle increases with r. The
increase at the front is in line with the increase with ve-
locity found for sliding drops on an incline (see for exam-
ple Ref. [53]). However, at the receding edge the coverage
in the contact zone depends strongly on r. Therefore the
rather strong increase in the receding contact angle with
increasing r is caused by changes in both, the static and
the dynamic part. For a larger r the wettability at the
back is smaller, i.e. the “local equilibrium contact angle”
increases. However, the dynamic receding contact angle
normally decreases with increasing velocity [53]. This im-
plies that the increase in the receding angle found here
results from an increase of the static part only. It is even
counteracted by a decrease of the dynamic part. Also in
the contact angles, a relatively small d has no visible in-
fluence in the non-saturated regime.

The maximum wettability gradient, i.e. driving force,
and therefore the maximum droplet velocity is reached for
the bare substrate (φ = 0) at the advancing edge and max-
imum coverage (φ = 1) at the receding edge. The point
of largest velocity (Fig. 4(a)) corresponds to the point of
the largest difference between the receding and advanc-
ing contact angles (Fig. 4(b)). We call the corresponding
reaction rate rmax.

Next we discuss the behavior in the saturated regime
(r > 0.0001 in Fig. 4). For larger reaction rates the cov-
erage at the rear of the droplet remains at its satura-
tion value. However, the driving force and in consequence
the velocity decrease slightly with increasing r (cf. also
Ref. [41]). Note, that for small d in Figure 4(a) this is
barely visible. The decrease from rmax to r = 0.1 corre-
sponds to about 2% of the maximal velocity.

As detailed next this slight decay is caused by the dy-
namics in the advancing contact zone. In the saturated
regime the time scale of the reaction is short compared
to the one of the droplet movement. Therefore the cover-
age increases very steeply underneath the droplet leading
to an elevated coverage already in the advancing contact
zone (see Fig. 3(b)). The resulting decrease of the overall
wettability gradient felt by the droplet causes the slight
decrease of the velocity. In this regime the slight increase
of the advancing contact angle results from an increase
of the static part (because of the decreasing wettability)
that overcomes a decrease of the dynamic part (decreasing
velocity). The slight increase of the receding angle comes
from the dynamic part only.

We emphasize here that Figure 4(b) clearly shows that
the advancing contact angles are always smaller than the
receding ones. As was already shown in reference [41] also
here the differences between the static and the dynamic
contact angles at the front and the rear, respectively, are
an order of magnitude smaller than the difference between
the two static (or the two dynamic) contact angles.

3.3 Phase diagrams

3.3.1 Influence of diffusion

Let us finally discuss the influence of diffusion along the
substrate on the dependencies shown in Figure 4. The re-
sult without diffusion (not shown) coincides nearly per-
fectly with the shown curves for d = 0.001. Only the de-
cay in the saturated regime is slightly slower. We mention
here that the decay also depends slightly on the used cut-
off hc (cf. Eq. (8) and Ref. [41]). Increasing the diffusion
has a rather small influence on the non-saturated regime
but changes the saturated regime even qualitatively. The
velocity decreases with the reaction rate because the ad-
sorbate produced underneath the droplet close to the ad-
vancing edge diffuses onto the bare substrate ahead of
the moving droplet. This effectively reduces the wetta-
bility there, implying a slower movement. In fact, running
droplets cease to exist above a reaction rate rdp where the
velocity drops to zero again, corresponding to a supercrit-
ical bifurcation for large diffusion (see curve for d = 1.0).
The bifurcation structure can, however, be more involved.
For a smaller d = 0.1 one finds that the branch of running
droplets joins the branch of sitting drops in a subcritical
bifurcation at rdp, i.e. decreasing v the running droplet
branch first turns back in a saddle-node bifurcation at rsn
and then joins the sitting droplet branch at rdp. We in-
dicate the definition of rsn and rdp in Figure 4(a) using
the curve for d = 0.1 as example. However, the subcritical
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Fig. 5. Existence of running and stationary droplets depend-
ing on the reaction rate r and the diffusion constant d. The
solid line indicates a drift-pitchfork bifurcation where a running
droplet solution branches off a stationary droplet solution. The
dotted line indicates a saddle-node bifurcation where two run-
ning droplet solutions merge. Shown is also the transition be-
tween non-saturated and saturated regime (dashed line). The
remaining parameters are as in Figure 3.

part of the branch is difficult to see. We refer the reader
to the discussion of model II in Section 4 for more de-
tails. Between rdp and rsn both the large velocity running
droplet and the sitting droplet are linearly stable and cor-
respond to metastable states. The branch emerging from
the subcritical bifurcation is linearly unstable and corre-
sponds to threshold solutions that separate the two stable
solutions. The prominent features (rmax, rdp and rsn) of
the solution branches shown in Figure 4 can be used to de-
termine phase diagrams by continuation techniques [52].
The phase diagrams show existence regions for the differ-
ent types of solutions in the parameter space spanned, for
instance, by the reaction rate and the diffusion constant
(see Fig. 5). To this end we followed the maximum of the
v(r)-dependence at rmax, which marks the transition be-
tween the non-saturated and saturated regime for running
droplets (dashed line in Fig. 5). Continuation of the loci of
the saddle-node bifurcation at rsn and the drift-pitchfork
bifurcation at rdp gives the border of the existence region
for stable running droplets (dotted line) and stable sit-
ting droplets (solid line), respectively. The region between
the two latter borders corresponds to a coexistence region
where running and sitting droplets are metastable. Note,
that unstable sitting drops do also exist everywhere in
the existence region of the running droplets. Such sitting
droplets are steady solutions of the governing equations.
However, because they are unstable, even infinitely small
perturbations will grow with a characteristic rate. In con-
sequence the droplets start to move and adopt the shape
and speed of the stable running droplet solution.

3.3.2 Influence of volume

Practically, it is difficult to change the reaction rate over
orders of magnitude. Experiments normally only cover
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Fig. 6. The transition between non-saturated and saturated
regime is most clearly seen in the dependence of the veloc-
ity v on drop size, i.e. droplet volume V (logarithmic scale).
Curves are plotted for different reaction rates r (see legend).
Remaining parameters are as in Figure 3.

a much smaller range [21,23]. Nevertheless, the analy-
sis of the v(r)-dependence (Fig. 4) for droplets of fixed
volume gives a very good characterization of the general
system behavior. An experimentally important parame-
ter is the size or volume of the droplet. The velocity may
increase [21] or decrease [23] with increasing volume de-
pending on the parameter regime [41]. We show in Fig-
ure 6 the dependence of velocity on droplet volume (log-
arithmic scale) for a variety of reaction rates. Also there
one can well distinguish a saturated and a non-saturated
regime. In the non-saturated regime the droplet velocity
increases with increasing size, whereas in the saturated
regime it decreases. For small droplets one always finds a
non-saturated regime whereas droplets of a very large size
are always in a saturated regime (in Fig. 6 the latter is not
yet reached for the curve with r = 10−5). The explanation
for this behavior is closely related to the one given for the
v(r)-dependence. For small droplets the reaction does not
reach saturation until the rear of the droplet has passed.
This implies that an increase in droplet size gives more
time for the reaction leading to a larger value of φ at the
back and, in consequence, to a larger velocity.

For very large droplets the reaction has enough time
to reach saturation (φ = 1) at the rear, i.e. an increase in
size does not increase the driving wettability gradient. It
may even decrease slightly due to an increase of φ in the
contact zone at the advancing edge (see above). However,
a larger droplet has a larger viscous dissipation leading to
a decreasing velocity with increasing size. Inspecting Fig-
ure 6 shows that for r ≥ 5 · 10−4 and V = 30 000 (i.e. the
volume used in Fig. 4) one is well in the saturated regime.

The volume Vmax, where the maximal velocity is ob-
tained, can be followed in the space spanned by droplet
volume and reaction rate. The obtained existence re-
gion for non-saturated and saturated running droplets are
shown in Figure 7.

Having studied the type-I model describing experi-
ments where the passing droplet irreversibly changes the
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Fig. 7. Existence of running and stationary droplets depending
on the reaction rate r and the droplet volume V (in units of
104) for two diffusion constants in the φ-field d = 0.001 (a) and
d = 0.1 (b). The solid and dotted lines indicate a drift-pitchfork
and a saddle-node bifurcation, respectively. The dashed line
indicates the transition between non-saturated and saturated
regime. Remaining parameters are as in Figure 3.

substrate we next report on results for our type-II model
where the substrate recovers. In contrast to type I this
allows for the description of a periodic droplet movement
as experimentally observed in reference [24].

4 Results for model II (adsorption and
desorption)

This section is devoted to the type-II model that ex-
tends and generalizes the model of type I discussed above.
Model II accounts for experimental situations where both,
the droplet and its surrounding medium are able to change
the substrate by adsorption or desorption. In this way
a moving droplet makes the substrate less wettable, but
after the droplet has passed the substrate may relax to
its initial state. Such systems are modeled by extend-
ing the reaction kinetics for the φ-field (14) by an ad-
ditional desorption term, i.e. we combine the evolution
equations for the film thickness profile (11) and the ad-
sorbate field (12) with the reaction term (15) and the dis-
joining pressure (13). We will refer to this set of equations
as type-II model. The reaction term (15) is chosen such
that adsorption and desorption of φ take predominantly
place underneath and outside the droplet, respectively.

4.1 Thickness and coverage profiles

As above for model I, we use continuation techniques to
calculate running droplet solutions of model II as solutions
stationary in a comoving frame. Examples of the result-
ing droplet profiles along with the profiles of the φ-field
are shown for a very small diffusion d in Figures 8 and 9.
Thereby, Figure 8 displays the results for several values
of the reaction rate r for a fixed ratio s of the desorp-
tion to adsorption rates. The drop profiles change only
slightly but the φ-profile undergoes prominent changes.
As in model I there is practically no φ-field in front of
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Fig. 8. Results of model II incorporating adsorption and des-
orption. Shown is the influence of the reaction rate r (see leg-
end) for (a) the profiles of moving droplets and (b) the corre-
sponding profiles in the φ-field. The drop profiles at different
r differ only slightly by visual inspection. The differences are
more prominent in the φ-profiles. Parameters are s = 1, hc = 2,
∆h = 0.2, g = 2, d = 0.001, V ≈ 30000 (L = 10000, h̄ = 3.8).

the droplet (φ = 0). The field increases (i.e. the wettabil-
ity decreases) underneath the droplet as in model I, but
in contrast the φ-field decreases behind the droplet due
to the desorption. The concentration of the φ-field at the
rear of the droplet is increasing with r until it reaches
saturation. Because r is the overall reaction rate also the
desorption of φ behind the droplet becomes faster, i.e. the
tail of the φ-field becomes shorter.

Figure 9 displays droplet and φ-profiles for a fixed re-
action rate r but different values for the desorption-to-
adsorption ratio s. The droplet shape and the form of the
φ-field underneath the droplet are almost independent of s
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Fig. 9. Shown is the influence of the ratio s of desorption and
reaction (see legend) on (a) the profiles of moving droplets and
(b) the corresponding profiles in the φ-field for model II. The
drop profiles at different s differ only slightly by visual inspec-
tion. The differences are prominent in the tail of the φ-profile
behind the droplet. r = 10−4 and the remaining parameters
are as in Figure 8.



K. John et al.: Self-propelled running droplets on solid substrates driven by chemical reactions 191

as one would expect. However, the decay of the elevated φ
value occurring behind the droplet is strongly influenced.
For a small s, i.e. slow desorption as compared to adsorp-
tion, φ decays slowly approaching qualitatively the behav-
ior of model I. Increasing s reduces drastically the length
of the φ tail behind the droplet. The length of the tail is
very important when studying the periodic movement of
a droplet on a finite stripe-like substrate (see below).

4.2 Phase diagrams

In the following the existence regions of running and sit-
ting droplets are determined in their dependence on the
control parameters reaction rate, desorption-to-adsorption
ratio, diffusion constant and droplet volume. This is done
along the lines explained in Section 3. Continuation gives
branches of stationary solutions depending on one control
parameter. On these branches special points that separate
qualitatively different behavior are identified and followed
in the space of parameters. The linear stability of the sta-
tionary solutions is also determined. Details on the used
techniques can be found in the appendix.

4.2.1 Influence of the desorption/adsorption ratio

Studying first the influence of r and s we present in Fig-
ures 11(a) and (b) branches of stationary solutions in de-
pendence of r for different values of s characterized by
their velocity and the resulting existence regions of run-
ning and sitting droplets in the r-s parameter plane, re-
spectively. Beside the moving droplets there exist sitting
droplets (steady states) for all values of r and s. They are
symmetrical with respect to the droplet maximum and
may be stable or unstable. An example is shown in Fig-
ure 10.

The curve for s = 1 in Figure 11(a) is used to bet-
ter illustrate special values of the reaction rate introduced
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Fig. 10. Shown are profiles of (a) the film thickness and (b)
the φ-field for running and sitting droplets (see legend) for
model II. The drop profiles differ only slightly by visual in-
spection. The differences are more prominent in the φ-profiles.
r = 10−4 and the remaining parameters are as in Figure 8.
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Fig. 11. (a) Velocity of running droplets depending on the
reaction rate r. The branch of running droplets emerges from
zero reaction rate and undergoes a subcritical drift-pitchfork
bifurcation at finite r > 0. The reaction rate-velocity curve is
shown for three different values of the ratio between desorp-
tion and adsorption s. The labels rmax, rdp and rsn indicate
the locations for the maximum velocity, drift-pitchfork bifurca-
tion and the saddle-node bifurcation, respectively, for s = 1.0.
(b) Existence of running and sitting droplets depending on the
reaction rate r and the ratio between desorption and adsorp-
tion s. Shown is also the boundary between non-saturated and
saturated regime (dashed line). The remaining parameters are
as in Figure 8.

above in Section 3. They mark the loci of the maximum
of the v(r)-dependence at rmax, of the saddle-node bi-
furcation at rsn and of the drift-pitchfork bifurcation at
rdp. As before, continuation in r of these loci when chang-
ing s gives the phase diagram Figure 11(b). In particu-
lar one obtains the border between the non-saturated and
saturated regime for running droplets (rmax), the border
of the existence region for stable running droplets (rsn),
and the border of the existence region for stable sitting
droplets (rdp). In the small region where both, running
and sitting droplets are stable, one finds metastability.
There noise, for instance, in the form of substrate inho-
mogeneities may lead to intermittent droplet movement.
The sitting droplets existing in the gray shaded area of
Figure 11(b) are all unstable.
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Inspection of Figure 11 reveals the rather strong influ-
ence of the desorption/adsorption ratio s especially on the
transition from the non-saturated to the saturated regime
and the slowing down in the saturated regime. The ex-
tension in r of the saturated regime is drastically reduced
with increasing s. For decreasing s the maximum of the
v(r)-curve slowly transforms into a plateau and reaches
for s = 0 the form typical for model I. Comparing the
strong decrease of the velocity with increasing r in the
saturated regime (Fig. 11 (a)) to the slight decrease found
for s = 0 (model I, Fig. 4(a), curve for d = 0.001) poses
the question why s has such a strong influence.

The influence of s parallels the influence of the diffu-
sion d in model I. There for large d the adsorbate diffuses
in front of the advancing droplet rendering the substrate
there less wettable. Thereby it decreases the overall wetta-
bility gradient between front and rear of the droplet. Here,
for large s the φ-field is removed behind the rear of the
droplet rendering the substrate there more wettable. That
also implies a reduction of the overall wettability gradient.

4.2.2 The drift-pitchfork bifurcation

To elucidate the mechanism of the transition between
moving and sitting drops we focus for a moment on
the drift-pitchfork bifurcation at rdp that separates the
metastable and the running-droplet region. This type of
bifurcation is well known from reaction-diffusion (see, for
instance, [54–58] and references therein) and hydrody-
namic systems (see, for instance, [59–62] and references
therein), where it mediates the transition between steady
and travelling structures. In our system it breaks the
reflectional symmetry of the sitting droplets leading to
moving asymmetric droplets and acompanying travelling
asymmetric adsorbate profiles. At the bifurcation a real
eigenvalue switches sign, i.e. at rdp the velocity of the mov-
ing drops is zero. Beyond the bifurcation sitting droplets
become unstable and start to move slowly. That makes it
unlike a Hopf bifurcation (associated with the zero cross-
ing of the real part of a pair of complex eigenvalues) where
the travelling structure has a finite velocity at the bifurca-
tion (for waves on flowing thin liquid films see the discus-
sion in Ref. [63]). The bifurcation may be subcritical or
supercritical (see Figs. 4, 11 and 12) and in consequence
the bifurcating branch corresponds to unstable or stable
moving drops. Approaching the bifurcation their respec-
tive velocity goes to zero as

√

|r − rdp| providing an un-
ambiguous signature of the drift-pitchfork bifurcation.

The basic mechanism of the drift-pitchfork bifurcation
is connected to the behavior of the neutral (or Goldstone)
mode related to the translational symmetry of the sys-
tem. This mode with eigenvalue zero is obtained by an-
alyzing the linear stability of the stationary solutions. In
general, each continuous symmetry is related to such a
neutral mode. In a sense, the neutral modes are the modes
that are “closest” to zero. This implies that a perturbation
or modulation of these modes in an additional degree of
freedom (if existing) gives modes that are probable can-
didates to cross zero and become instability modes. For
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Fig. 12. (a) Velocity of running droplets depending on the
reaction rate r. The branch of running droplets emerges from
zero reaction rate and undergoes a subcritical drift-pitchfork
bifurcation at finite r > 0.The reaction rate-velocity curve is
shown for three different values of the diffusion constant in the
φ-field d. (b) Existence of running and stationary droplets de-
pending on the reaction rate r and the diffusion constant of the
φ-field d. Shown is also the transition between non-saturated
and saturated regime (dashed line). Remaining parameters are
as in Figure 8.

instance, the transversal (fingering) instability of a liquid
front results from a transversal modulation of the longi-
tudinal translational neutral mode [64]. Also one of the
two coarsening modes of two liquid droplets is the com-
bination of translational neutral modes of the individual
droplets directed in opposite directions [65].

Here, the drift instability is associated with a mode
representing a relative shift between the translational
modes of the height and the φ-profiles. Right at the bifur-
cation this mode corresponds exactly to the translational
neutral mode. Although elsewhere one can still identify
the translational mode when only looking at the sub-mode
for the height profile or the one for the φ-profile, looking
at the complete mode one realizes that the relative weight
of the two sub-modes is shifted in favor of one of them.
This corresponds to the introduction of a relative shift
between the two fields. The relative shift breaks the over-
all reflection symmetry and leads to the movement of the
drops.
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4.2.3 Influence of diffusion

Next we discuss the influence of r and d presenting in Fig-
ure 12 dependences of droplet velocities on reaction rate
for different diffusion constants and the resulting phase di-
agram in the r-d plane for a fixed desorption/adsorption
ratio s. One notes first that the strength of diffusion has
nearly no influence on the non-saturated regime and the
transition value rmax (the dashed line in Fig. 12(b) is prac-
tically vertical). Note that Figure 12 focuses on relatively
small diffusion. For large diffusion the droplets will also
stop as shown for model I in Figure 5. However, the sat-
urated regime does depend on d quantitatively as well as
qualitatively. For fixed r, with increasing d the stable run-
ning droplets become slower. In parallel its existence range
in r shrinks slowly. As in model I this behavior is mainly
caused by the diffusion of the φ-field in front of the ad-
vancing droplet. There it increases the coverage thereby
reducing the overall wettability gradient, i.e. slowing down
the droplets. The qualitative change concerns the charac-
ter of the drift-pitchfork bifurcation. With increasing d it
becomes less subcritical and at a critical dc it becomes
supercritical, i.e. there exists no coexistence region for
sitting and running drops anymore. For small diffusion,
d < dc, the existence range of stable sitting drops shrinks
with increasing d whereas for larger diffusion, d > dc, it
grows.

4.2.4 Influence of volume

Finally, in Figure 13 we present the phase diagram for
the dependence on reaction rate and droplet volume for
fixed desorption/adsorption ratio s and diffusion constant
d. The locations of the saddle-node, the drift-pitchfork bi-
furcation and the velocity maximum are all shifted slightly
towards smaller r when increasing the droplet volume. The
range in r of the non-saturated regime shrinks slightly,
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Fig. 13. Existence of running and stationary droplets depend-
ing on the reaction rate r and the droplet volume V (in units of
104). Shown is also the transition between non-saturated and
saturated regime (dashed line). Remaining parameters are as
in Figure 8.

but the range of the saturated regime and the metastable
region remain practically constant, they are only shifted
towards smaller r.

Obviously the two contact regions and the substrate
outside the droplet are not affected by a change in the
droplet volume. However, an increase in droplet size in-
creases the viscous forces and therefore stalls the droplet
movement at smaller reaction rates.

4.3 One-dimensional numerical simulations

Finally, we employ numerical simulations of running
droplets and show that the type-II model is able to de-
scribe different experimentally found modi of periodic
droplet movement [24,25]. To perform the simulations we
use the routine “d02cjc” provided by the NAG library [66].
It is based on a variable order, variable step size Adam’s
method. The simulations either utilize periodic boundary
conditions (to model droplets on a ring-like track [24]) or
boundary conditions that mimick non-wettable borders
of an otherwise wettable channel (to model droplets on
finite stripe-like tracks) [24,25]. Simulations are started
from steady droplet solutions which develop in the ab-
sence of a chemical field, i.e. imposing φ = 0. Then the
droplet movement is initiated by breaking the symmetry
of the φ-field by imposing a small gradient and starting the
adsorption/desorption reaction. After a short initial tran-
sient the running droplets follow periodic trajectories that
do not depend on details of the initial symmetry breaking.
For the periodic boundary condititions the initial solution
was one stationary droplet, whereas in the case of non-
wettable boundaries the initial solution were two station-
ary droplets.

In the case of periodic boundary conditions the
droplets move with constant speed and shape after an ini-
tial phase. Figure 14(a) shows space-time plots of the evo-
lution of the film thickness for different reaction rates r.
The droplet velocity increases with the reaction rate as ex-
pected from our continuation results. Figure 14(b) shows a
comparison of the droplet velocities obtained in the sim-
ulations and by continuation. The values for the simu-
lations are estimated after the droplets have reached a
constant speed and shape. One finds that both velocities
match fairly well. However, for higher reaction rates the
simulations slightly overestimate the velocities compared
to the continuation results. This results from the lower and
equidistant discretization used in the simulation in time.

Experiments with droplets in a finite wettable channel
found “regular rhythmic motion” [24] or different types
of “shuttling motion” along with slowing and stopping
behavior [25]. The here performed simulations show a
smooth transition between the different types of periodic
movements depending on our control parameters.

In general, the droplets in a wettable channel with non-
wettable walls move periodically between the two walls
as shown for different reaction rates r in the space-time
plots in Figure 15(a). The initial solution of two station-
ary droplets quickly coarses upon starting the chemical
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Fig. 14. Simulations of running droplets on a one-dimensional
circular stripe (periodic boundary conditions). Shown are (a)
space-time plots of the film thickness for different reaction rates
r (indicated on the right) and (b) a comparison of drop veloc-
ities obtained by numerical simulation (♦) and continuation
(solid line) for different values of the reaction rate r. Remain-
ing parameters are g = 2, s = 1, d = 0.001, L = 100, h̄ = 1.5,
hc = 2 and ∆h = 0.2. Dark (light) colors correspond to small
(large) film thickness.

reactions. The prevailing droplet oscillates between the
channel walls with a frequency that depends on r.

The droplet movement can be classified into two identi-
cal but antisymmetric half-cycles (i.e. with different signs
in the velocity, and profiles that are related by reflec-
tion). Figure 15(b) shows the droplet velocity depending
on time during one half-cycle exemplary for two reaction
rates r. We find that each half-cycle typically contains
three phases, distinguishable by their different velocities.
After meeting the non-wettable boundary (phase I) the
droplet velocity is very low or even zero in the case of very
small reaction rates r. In this phase, the φ-field, which has
been produced by the passing droplet has first to decrease,
until the droplet can return on its own path. This phase
of very small velocity is followed by a short phase of a
very high velocity (phase II) until the droplet returns to
a medium velocity (phase III), that is kept until it meets
the opposite wall and the next half-cycle begins. The sub-
phases can also be very well distinguished in Figure 16,
were we show hidden line plots of the film thickness pro-
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Fig. 15. Simulations of running droplets on a one-dimensional
finite stripe bounded by non-wettable borders. Shown are (a)
space-time plots of the film thickness for different reaction
rates r (indicated on the right) and (b) the velocity of the cen-
ter of mass of the film thickness depending on time examplary
for r = 0.001 (top) and r = 0.0001 (bottom). The thin-dotted
line in (b) at v = 0 is meant to guide the eye. Remaining pa-
rameters are as in Figure 14. Dark (light) colors correspond to
small (large) film thickness.

files (top) and coverage profiles (bottom) for one period
of droplet movement. One can clearly see that in phase I
(velocity close to zero), after the droplet has encountered
the non-wettable wall, the concentration in the φ-field is
very high and drops steeply in phase II when the droplet
starts moving again. Similar subphases of droplet motion
have also been observed in reference [25]. In the context
of that work the continuous transition from Figure 15(a)
between r = 0.002 (top) and r = 0.0001 (bottom) can be
seen as their transition between “shuttling motion” and
“intermittent shuttling motion”.

A simple bead-spring model based on a mechanical
analogy is used in reference [25]. It models the different
experimentally observed regimes varying the wettability of
the walls. Although it well captures the overall behavior
it cannot resolve the more hydrodynamic aspects of the
motion like the flow field inside the running droplets or
the dynamical contact angles.
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Fig. 16. Hidden-line space-time plots showing one half-cycle
of the periodic movement of a running droplet on a one-
dimensional stripe bounded by non-wettable borders. Shown
are the film thickness (top) and the φ-field (bottom). r =
0.0005 and remaining parameters are as in Figure 14.

5 Conclusions

In the present work we have developed and analysed
two models for chemically driven self-propelled running
droplets on solid substrates. Such moving droplets were
described for several experimental systems using different
liquids, substrates and reacting substances [20–25]. The
movment of the droplets is driven by a self-produced wet-
tability gradient that is perpetuated with the droplet itself
by means of a desorption or adsorption reaction under-
neath the droplet.

Two types of experimental systems were reported on:
(I) adsorption underneath the droplet decreases the wetta-
bility of the substrate irreversibly [21–23]; and (II) desorp-
tion underneath the droplet removes a more wettable coat-
ing that is recovered behind the droplet through an ad-
sorption from a surrounding medium [24,25]. We have de-
scribed the droplet dynamics for both types of experimen-
tal systems using coupled evolution equations for the pro-
files of the film thickness and the adsorbate coverage. The
equations can be derived from the Navier-Stokes equa-
tions using a long-wave or lubrication approximation [42]
and assuming a small Damköhler number. The two types
of experiments have been mapped onto two types of mod-
els. In type-I model a wettability-decreasing reaction takes

place underneath the droplet. In type-II model this mecha-
nism is extended by additionally introducing a wettability-
increasing reaction that takes place at the substrate out-
side the droplet.

The wettability of the substrate enters both models
through a disjoining pressure supplementing the Laplace
pressure in the thin-film equation. We have chosen here a
disjoining pressure consisting of a long-range destabilizing
part ∼ h−3 and a short-range stabilizing part ∼ h−6 used,
for instance, in reference [67] to study coarsening in dewet-
ting. The long-range part corresponds to van der Waals
interaction and is not influenced by the adsorbate. All the
influence of the adsorbate goes into the short-range part
that in the simplest case selected here depends linearly on
the adsorbate coverage.

Using continuation techniques and numerical simula-
tions we have analyzed the solution behavior of both mod-
els. Thereby we have focused on stationary running and
sitting droplets in two dimensions. Both models display a
transition from a non-saturated to a saturated regime with
increasing reaction rate. The transition is also obtained
when increasing the droplet volume. In the non-saturated
regime an increase in the reaction rate leads to a larger
wettability gradient implying a larger droplet velocity. In
the saturated regime an increase in the reaction rate does
not increase the coverage at the rear of the droplet, i.e.

it does neither lead to a larger wettability gradient nor to
a larger droplet velocity. However, it has turned out that
the driving force and in consequence the velocity are de-
creasing slightly with increasing reaction rate. This effect
is due to a rise in the adsorbat concentration in the ad-
vancing contact zone. A similar behavior occurs when the
droplet volume increases. There, however, in the saturated
regime the velocity clearly decreases with increasing vol-
ume because the constant driving force (wettability gradi-
ent) is counteracted by an increasing viscous friction. The
latter dependences found for the non-saturated and the
saturated regime correspond very well to experimental re-
sults of reference [21] (Fig. 5) and reference [23] (Fig. 7(a)),
respectively. To our knowledge there exist, however, no
experimental results for a physico-chemical system that
show the qualitative change between the two regimes in
dependence of the droplet velocity on its volume. With the
combination of materials used in reference [23] this should
be possible because their Figure 6(a) shows the transition
from the non-saturated to saturated regime for increasing
solute concentration within the droplet. This corresponds
directly to the dependence on the reaction rate shown here
in Figure 4.

Allowing for diffusion of the adsorbate along the sub-
strate does not affect the results in the non-saturated
regime too much. However, it leads to a stronger de-
crease of the velocity in the saturated regime because
adsorbate is transported to the substrate in front of the
running droplet thereby decreasing the overall wettability
gradient. This may even lead to a transition towards sit-
ting droplets. This transition occurs either continuously
through a supercritical drift-pitchfork bifurcation or dis-
continuously through a saddle-node bifurcation. In the
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latter case a metastable parameter region exist where run-
ning and sitting drops can coexist.

We have determined the existence regions of running
droplets depending on the reaction rate, the diffusion
constant in the surface coating, the droplet volume and
the desorption/adsorption ratio (only for model II). Both
models show a strong dependence of the existence regions
of sitting and running droplets on the diffusion constant
and only a week dependence on the droplet volume. The
strong dependence on the diffusion constant results mainly
from the diffusion of the φ-field in front of the advancing
droplet, thereby greatly affecting the driving force and the
droplet velocity. The type-II model also shows a strong de-
pendence on the desorption/adsorption ratio, which is due
to a decreased substrate coverage in close proximity be-
hind the droplet, effectively decreasing the driving force.
The primary effect of the desorption reaction is the pos-
sibility for the droplet to return on its own path, which
we have illustrated by numerical simulations of droplets
moving on a wettable stripe with non-wettable borders in
an oscillatory manner, which has also been observed ex-
perimentally [24,25]. Finally, we have shown that differ-
ent modes of periodic movement called “shuttling motion”
and “intermittent shuttling motion” in reference [25] are
covered by the presented model.

The analysis of both models has shown that for the
chemically driven running droplets the advancing contact
angle is always smaller than the receding one. As was al-
ready shown in reference [41] also here the differences be-
tween the static and the dynamic contact angles at the
front and the rear are one order of magnitude smaller
than the difference between the two dynamic contact an-
gles. This challenges the assumption of equal dynamic con-
tact angles at the front and the rear that was used in
references [36,37] to develop a simple description of self-
propelled running droplets. A simple quantitative theory
should instead be based on the assumption that the re-
spective dynamic contact angles equal the different static
contact angles at the front and rear.

The proposed type-I and type-II models based on thin
film or lubrication theory can very well reproduce the
main features of droplet motion that have been observed
experimentally. However, they fail to reproduce the re-
ported damped oscillations in the droplet shape overlay-
ing the continuous droplet movement [25]. These oscilla-
tions could be on the one hand the result of a weakly
inhomogeneous surface, since the authors of reference [25]
themselves suggested that they have no full control of the
experimental surface properties. On the other hand, the
oscillations could be a sign of a Hopf bifurcation along the
solution branch of running droplets. We are well aware
that the models presented in this paper are minimal mod-
els that, however, reproduce qualitatively most aspects of
the behavior of chemically self-propelled droplets. Refine-
ments of the presented theory could include the viscous
motion of the ambient medium as present in type-II ex-
periments. This extension can still be based on the lu-
brication approximation, for instance, along the lines of
the two-layer systems studied in references [65,68]. A sec-

ond important extension could cover the case of a higher
Damköhler number. Such a model has to include a de-
scription of the transport of the solute within the droplet.

We thank E. Knobloch for his comments on the drift-pitchfork
bifurcation, and acknowledge support through the EU RTN
“Unifying principles in non-equilibrium pattern formation”
(Contract MRTN-CT-2004–005728).

Appendix A. Numerical techniques

Appendix A.1. Continuation

Sitting and running droplets are steady solutions in the
laboratory and comoving frame, respectively. They can be
followed in parameter space using numerical continuation
techniques [50,51], for instance, employing the continua-
tion software AUTO97 [52]. The following section high-
lights some technical details of the employed techniques.

The basic idea behind continuation is that unknown
solutions of an algebraic system for a certain set of con-
trol parameters are obtained by iterative techniques from
known solutions nearby in parameter space. Differential
equations of the form

u′(x) = f(u(x), p) with f, u ∈ R
n (A.1)

subject to initial, boundary and integral constraints are
discretized in space and then the resulting algebraic sys-
tem is solved iterativly. Here the dash indicates the first
derivative with respect to x and p denotes the set of
control parameters. The presence of boundary conditions
and/or integral conditions requires the presence of free
parameters which are determined simultaneously and are
part of the solution to the differential equation. The pack-
age AUTO97 is limited to the continuation of ordinary
differential equations (ODEs), thus it can only be used to
compute droplet solutions in two dimensions. As an ex-
ample we consider the continuation of stationary running
droplets, steady in a comoving frame. After transform-
ing equations (11) and (12) into the comoving frame with
velocity v and integrating the resulting time-independent
thin-film equation we have the system of ODEs

h′1 = h2 , (A.2)

h′2 = h3 , (A.3)

h′3 =
µ− vh1

h3
1

−Πx(h1, φ1) , (A.4)

φ′1 = φ2 , (A.5)

φ′2 = −
1

d
(R(h1, φ1) + vφ2) , (A.6)

where µ is an integration constant. It has the physical
meaning of a mean flow in the comoving frame. h1, h2, h3,
φ1 and φ2 denote h, ∂xh, ∂xxh, φ and ∂xφ, respectively.
The dashed quantities denote first derivatives with respect
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to x. The system is flux conservative, thus we need to
specify the integral condition

0 =
1

L

∫

h1 dx− h̄ , (A.7)

where L is the system length and h̄ is the mean film thick-
ness. Furthermore, for a complete description of the sys-
tem we introduce periodic boundary conditions for the
film thickness

h1(0) = h1(L) , (A.8)

h2(0) = h2(L) , (A.9)

h3(0) = h3(L) , (A.10)

and the mixed boundary conditions

0 = ξ(h1(0))λ1 + {ξ(h1(0)) + s [1− ξ(h1(0))]}

× (φ2(0)− φ1(0)λ1) , (A.11)

0 = ξ(h1(0))λ2 + {ξ(h1(L)) + s [1− ξ(h1(L))]}

× (φ2(L)− φ1(L)λ2) , (A.12)

for the φ-field (see App. A.2). Since translation of a
running-droplet solution in the x-direction also yields a
valid solution one needs to introduce a pinning condition
in the form of an additional boundary or integral condi-
tion, which will not be specified further in here.

As mentioned earlier, the number of boundary con-
ditions (NBCD) and integral conditions (NINT) imposes
a constraint on the number of parameters (NPAR), that
have to be varied during the continuation process. Specif-
ically NPAR=NBCD+NINT-NDIM+1, where NDIM is
the dimensionality of the system of ODEs. This condition
leaves us here with three free parameters, which are the
principal continuation parameter (e.g., the reaction rate
r), the mean flow µ and the droplet velocity v. AUTO97
uses the method of orthogonal collocation for discretizing
solutions, where the solution is approximated by piecewise
polynomials with 2–7 collocation points per mesh interval.
The mesh is adaptive as to equidistribute the discretiza-
tion error. Having specified the ODE system in standard
form with boundary and integral conditions AUTO97 then
tries to find stationary solutions to the discretized system,
by using a combination of Newton and Chord iterative
methods. Once the solution has converged AUTO97 pro-
ceeds along the solution branch by a small step in the
parameter space defined by the free continuation param-
eters and restarts the iteration.

The challenge usually is, to provide AUTO97 with a
non-uniform starting solution for the continuation. For our
purpose it is sufficient to start the continuation close to the
point of the primary bifurcation point, where the stable
uniform solution of the ODE system (A.2–A.6) or a system
similar to (A.2–A.6) with periodic boundary conditions
undergoes a Hopf bifurcation. In the vicinity of the bi-
furcation one can determine analytically small-amplitude
sinusoidal stationary traveling waves. By selectively using
reaction, boundary or integral conditions as primary con-
tinuation parameters one finally computes fully non-linear
solutions for the film thickness and the coverage.

AUTO97 is not only able to follow solution branches
but can also detect bifurcations, like saddle-node bifurca-
tion or branching points, and can then follow these bifur-
cations in parameter space.

Appendix A.2. Boundary conditions

The use of periodic boundary conditions does not rule out
interactions between droplets in consecutive periods either
via the film thickness or the φ-field. Interactions through
the φ-field arise if the desorption of the coating is slow
compared to the drop movement. One way to avoid this
problem is to use very large periods, such that the φ-field
has enough time to recover. This approach is successful in
suppressing interactions but is very costly from a compu-
tational point of view. An alternative approach is to use
other than periodic boundary conditions for the φ-field.
The following paragraphs illustrate this approach.

We generally consider a running droplet steady in a co-
moving frame, that has its maximum approximately in the
center of the computational domain of length L. We as-
sume that the film thickness profile obeys periodic bound-
ary conditions hb ≡ h(0) = h(L) and ∂zh(0) = ∂zh(L) ¿
1. The latter restriction ensures that the minimal film
thickness is close to equilibrium and the period is large
compared to the droplet.

Appendix A.2.1. Model I

In model I we assume that there is no chemical reaction
taking place outside the droplet. Therefore, outside the
computational domain for x ≤ 0 and x ≥ L the following
ordinary differential equation holds:

0 = dφxx + vφx , (A.13)

which has the general solution

φ(x) = c+ c′e−
v
d
x (A.14)

with c and c′ being yet undetermined constants. For sim-
plicity, we assume that v > 0, i.e. the droplet is moving
to the right. In front of the droplet it is assumed that
φ → 0 as x → ∞. Furthermore, we assume that the φ-
field adopts a finite value behind the droplet such that
φ→ φ∞ as x→ −∞. First, we consider the boundary at
x = 0 with the boundary value for the φ-field φ(0) = φ0

and the first derivative of the φ-field φx(0) = φx0. Since
φ∞ is a finite value we find c′ = 0, which leads to the
Neumann boundary condition

φx0 = 0 . (A.15)

Next, we consider the boundary at x = L with the bound-
ary value for the φ-field φ(L) = φL and the first derivative
of the φ-field φx(L) = φxL. Integrating (A.13) we find

0 = dφx + vφ+ c′′ , (A.16)

where c′′ is an integration constant. Since φ→ 0 as x→∞
and also φx → 0 as x→∞ we find c′′ = 0, which leads us
to the mixed boundary condition

0 = φLv + φxLd . (A.17)
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Appendix A.2.2. Model II

We assume for the h-field outside the computational do-
main with x ≤ 0 or x ≥ L h(x) = h(0) = h(L) = hb =
const. Then the concentration profile for the φ-field for
x ≤ 0 or x ≥ L can be computed analytically by solving a
linear 2nd-order ordinary differential equation in x of the
form

0 = R2(hb, φ) + dφxx + vφx , (A.18)

which has the general solution

φ(x) = c+ c′eλ1x + c′′eλ2x , (A.19)

where

c =
ξ(hb)

ξ(hb) + s [1− ξ(hb)]
, (A.20)

λ1,2 = −
v

2d
±

√

v2

4d2
+
r

d
{ξ(hb) + s [1−ξ(hb)]} (A.21)

and c′ and c′′ are yet undetermined constants. For x →
±∞ φ adopts a small but finite value φ∞.

First, we consider the boundary at x = 0. This leaves
us with c′′ = 0. Using the boundary values for the φ-
field φ(0) = φ0 and the first derivative of the φ-field
φx(0) = φx0 at the boundary x = 0 the following system
of equations holds:

0 = φ0 − c− c
′ , (A.22)

0 = φx0 − c
′λ1 . (A.23)

Solving for c′ one finds the following mixed boundary con-
dition:

0 = ξ(hb)λ1 + {ξ(hb) + s [1− ξ(hb)]} (φx0 − φ0λ1) .
(A.24)

The same procedure can be performed at the boundary
x = L with φ(L) = φL and φx(L) = φxL yielding the
condition

0 = ξ(hb)λ2 + {ξ(hb) + s [1− ξ(hb)]} (φxL − φLλ2) .
(A.25)

In the continuation algorithm the two periodic bound-
ary conditions for the φ-field were substituted by the two
mixed boundary conditions obtained above.
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