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Abstract. The formation of regular stripe patterns during the transfer of
surfactant monolayers from water surfaces onto moving solid substrates can
be understood as a phase decomposition process under the influence of the
effective molecular interaction between the substrate and the monolayer, also
called substrate-mediated condensation (SMC). To describe this phenomenon,
we propose a reduced model based on an amended Cahn–Hilliard equation.
A combination of numerical simulations and continuation methods is employed
to investigate stationary and time-periodic solutions of the model and to
determine the resulting bifurcation diagram. The onset of spatiotemporal pattern
formation is found to result from a homoclinic and a Hopf bifurcation at small
and large substrate speeds, respectively. The critical velocity corresponding
to the Hopf bifurcation can be calculated by means of the marginal stability
criterion for pattern formation behind propagating fronts. In the regime of low
transfer velocities, the stationary solutions exhibit snaking behavior.
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1. Introduction

Coating solid substrates with regularly patterned surfactant monolayers is exemplary for
the purposeful utilization of self-organized patterns formation. Using the Langmuir–Blodgett
technique, i.e. withdrawing a substrate from a water-filled trough covered by a monolayer of the
phospholipid dipalmitoylphosphatdylcholine (DPPC), transfer of highly regular patterns with
periods down to a few hundreds of nanometers can be achieved [1–7]. The formation of these
structures is directly connected to the thermodynamics of the phospholipid monolayers and
in particular to the first-order phase transition between the liquid-expanded (LE) and liquid-
condensed (LC) phases. In fact, the observed patterns consist of alternating LE and LC domains.
The domains form stripes that are either parallel or perpendicular to the water–substrate contact
line [3]. The phase transition distinguishes these patterns from similar patterns formed in the
Langmuir–Blodgett transfer of fatty acids that does not involve any phase transition [8–11].
Remarkably, before the transfer the floating monolayer is in the pure LE phase. Thus, the
partial condensation necessary for the formation of the observed patterns has to occur during
the transfer process itself. In fact, it results from an effective molecular interaction between the
substrate and the monolayer and is commonly referred to as ‘substrate-mediated condensation’
(SMC) [12–16]. In the present paper, we argue that the observed pattern formation can be
understood as a phase decomposition process under the influence of the SMC interaction field.
This implies that the formation of stripe patterns observed in the Langmuir–Blodgett transfer
of monolayers of binary phospholipid mixtures, which is ascribed to phase separation [17, 18],
should be amenable by a similar theoretical approach.

A recently developed model describes the monolayer transfer process using a set of two
coupled nonlinear partial differential equations for the time evolution of the height of the liquid
sub-phase and the density of the covering surfactant layer [19, 20]. The hydrodynamics of the
thin liquid layer is treated within the framework of lubrication theory [21] and is coupled to
the monolayer thermodynamics via a surfactant equation of state. This equation quantifies the
dependence of the surface tension of the liquid–air interface on the density of the surfactant
monolayer and results in variations of the Laplace pressure and a Marangoni force. It can be
derived from a free energy functional of the type proposed by Cahn and Hilliard [22] in the
context of phase decomposition when applied to describe monolayers in the vicinity of a first-
order phase transition [23].
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Figure 1. Schematic drawing of a surfactant-covered meniscus on a solid
substrate. The height profile h(x, y, t) indicates the film thickness at location
(x, y) and time t , whereas γ (x, y, t) describes the surfactant density at the
surface above (x, y).

The results obtained using this model indicate that in this case the hydrodynamics in the
meniscus is not essential for the formation of stripe patterns. Instead, the patterns form by phase
decomposition under the influence of an external field that describes the interaction between
the substrate and the monolayer [19, 20]. Therefore, this effect may be captured by a simplified
model that allows for a more profound mathematical analysis and, as a consequence, a deeper
understanding of the physical mechanisms. Here, we propose to describe the process using a
variant of the prototypical model equation for phase decomposition, namely the Cahn–Hilliard
equation [24]. Within this reduced model the SMC effect is incorporated via a spatially varying
free energy and the moving substrate is modeled by an advective transport term. Similar
problems have been investigated by Krekhov [25] as well as Foard and Wagner [26]. Both
consider the pattern formation behind a propagating quench front which results, within certain
parameter ranges, in similar structures to those observed here. This implies that the analysis that
we develop below may be adapted to their systems.

Following a brief outline of the previously developed full thin-film model of monolayer
transfer in section 2, the reduced model is introduced in section 3 together with a presentation
of the resulting basic two-dimensional (2D) deposition patterns. Subsequently, in section 4 we
focus on stripe patterns parallel to the contact line and analyze various steady and time-periodic
solutions of the reduced model equations in one dimension and summarize the results in a
bifurcation diagram. A detailed analysis of the bifurcations leading to the onset of the formation
of stripe patterns at low and high velocities is given in sections 4.2 and 4.3 respectively.

2. Monolayer transfer in the vicinity of a first-order phase transition

To motivate the following investigation, first a short account of the full model of monolayer
transfer with SMC will be given. For more details of the derivation of the model, see [19]
and [20].

Consider an evaporating thin film of water on a solid substrate which is withdrawn with
constant velocity v in the x-direction from a water reservoir that ensures a constant film height
at the left boundary of the system (see figure 1). The balance of evaporation and the supply
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of fresh water dragged from the reservoir defines a meniscus and a contact line region that
are steady in the laboratory system but move relative to the substrate. As in the corresponding
Langmuir–Blodgett experiments [1–7], the water reservoir is assumed to be covered with a
surfactant monolayer in the pure LE phase. The flow carries the surfactant towards the contact
line where it is eventually subjected to the interaction with the substrate so that SMC sets in. The
employed geometry of the liquid meniscus is similar to that used in the deposition experiments
with polymer solutions of Yabu and Shimomura [27].

Here, we describe the liquid film by its height profile h(x, t), which indicates the local film
thickness, whereas the surfactant density at the surface above the point x = (x, y) is described
by the function γ (x, t). By the choice of a proper set of scales h0, l0, t0, γ0 and σ0 for height,
length, time, surfactant density and surface tension, the time evolution equations for the height
profile H(X, T ) := h(Xl0, T t0)/h0 and the surfactant density 0(X, T ) := γ (Xl0, T t0)/γ0 can
be written in dimensionless form as [20]

∂T H = −∇ ·

(
−

H 3

3
∇ P̄ +

H 2

2
∇6̂ + V EeX H

)
− Eevδµ, (1)

∂T0 = −∇ ·

(
−
0H 2

2
∇ P̄ +0H∇6̂ + V EeX0

)
(2)

with the generalized pressure P̄ = −(1 − ε2 Phom(0))∇
2 H +5(H) comprising the Laplace

pressure ∼ ∇
2 H , which reflects the relation of the surface curvature to the pressure difference

between the liquid and vapor, as well as the disjoining pressure5(H) that describes the wetting
properties of the substrate, i.e. the substrate–liquid interaction [28, 29]. Here, Phom(0) is the
surface pressure of a homogeneous surfactant layer of density 0.

The spatial variations of the surfactant density 0 lead to surface tension gradients that
induce Marangoni forces. They are accounted for by the terms involving ∇6̂ = −∇ Phom(0)+

ε−20∇
30. Here, the dimensionless number ε =

√
σ0/(γ

2
0 κ)(a6/a3)

1/3 relates the forces acting
at the monolayer covered surface, characterized by σ0, γ0, and the surfactant domain line
tension κ to the forces acting between the substrate and the liquid, characterized by the
corresponding Hamaker constants a3, a6 [20]. Both equations (1) and (2) contain an advective
term proportional to the transfer velocity V that describes how the liquid and surfactants are
dragged by the moving substrate.

The non-mass-conserving contribution Eevδµ to equation (1) arises from the evaporation
of the water film. Here δµ= µw −µv denotes the difference of the chemical potentials of the
water film and the ambient vapor phase, whereas Eev = ηl2

0 Qe/h3
0 is the evaporation number

with effective rate constant Qe. The pressure in the vapor above the film is assumed to be close
to the saturation pressure, allowing us to identify the chemical potential of the water film with
the generalized pressure [30, 31]; that is, µw = P̄ and µv = const.

In the literature, different expressions for the disjoining pressure 5(H) have been
considered (see [21, 32] and references therein for a discussion of possible choices). Here, we
employ the dimensionless expression [33–35]

5(H, X)= A
(
H−3

− H−6
)
. (3)

With this choice the substrate is always covered with a microscopic precursor film of height Hp

defined by5(Hp)= 0 even if it is macroscopically dry. In the chosen scales Hp = 1, so that the
precursor height is the unit of film thickness.
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Further, the value 0 = 1 corresponds to the critical density of the monolayer, i.e. the density
at the center of the coexistence region of the first-order LE–LC phase transition. The dependence
of the surface tension on the surfactant density is determined by the equation of state

Phom =
M1

M2
2

0̃

[
0̃2

− M2
2

(
1 +

0̃

2

)]
+ S(H), (4)

where 0̃ := 0− 1 denotes the deviation of 0 from the critical value 0 = 1. Two coefficients,
M1 and M2, characterize the free energy of the surfactant layer that is modeled as a symmetric
double-well centered around the critical density (see [20] for details). By choosing S(H)=

B9(H), where 9(H)=
∫

dH5(H) with integration constant zero is the potential of the
substrate–liquid interaction and B is a positive coupling constant, SMC acts on length scales
comparable to the substrate–liquid interaction [19, 20].

Note that the model given by equations (1) and (2) assumes that the monolayer covered
surface is perfectly mobile; that is, the rigidity of the surfactant layer is not taken into account.
It can, however, be estimated that the monolayer rigidity does not play a significant role for
phospholipids such as DPPC in the vicinity of the LE–LC phase transition [20]. For other
materials, the deformation of the surface layer may involve a significant amount of work. In
that case, our model has to be extended following the approach outlined in [36].

The model given by equations (1) and (2) is solved using the boundary conditions

0(0)= 00, ∂2
X0(0)= ∂X0(L)= ∂2

X0(L)= 0,

H(0)= H0, ∂2
X H(0)= ∂X H(L)= ∂2

X H(L)= 0,

where the constant boundary values H0 and 00 correspond to the film height and the monolayer
density of the reservoir. The latter is kept at a value corresponding to the LE phase. In
the Y -direction, periodic boundary conditions are applied. The properties of the transferred
monolayer depend on the transfer velocity V . For small velocities, the substrate is coated
with a homogeneous LC monolayer. Increasing the velocity beyond a critical value Vl, the
homogeneous transfer becomes unstable and a periodic spatiotemporal pattern is created.
This pattern consists of alternating domains of the LE and the LC phases (see figure 2).
Beyond an upper velocity bound Vu, the transfer becomes homogeneous again and the substrate
is coated with a homogeneous LE monolayer. In the remainder of this paper, the range
(Vl, Vu) is referred to as the patterning range. Within the patterning range, two main transfer
modes have to be distinguished: stripes perpendicular to the contact line are observed for
lower velocities, while stripes parallel to the contact line are generated for higher V . When
decreasing V from large values where the parallel stripes are deposited, they become unstable
to transversal instability modes. Therefore, the perpendicular stripes may be seen as resulting
from a secondary instability. In a time simulation, parallel stripes always emerge first, i.e.
they occur at least as transient states that then transform into perpendicular stripes through
an orientation transition [19, 20]. Note that the perpendicular stripe pattern is stationary in the
laboratory frame, while the parallel stripe pattern is time periodic and consists of domains that
are perpetually generated and grow at the contact line, detach from it and finally are advected
with the moving substrate.

Once the meniscus has taken a shape that depends on the transfer velocity, it remains almost
static and exhibits only small oscillations with the formation of every new domain in the case
of stripes parallel to the contact line [19, 20]. It turns out that the meniscus oscillations are

New Journal of Physics 14 (2012) 023016 (http://www.njp.org/)

http://www.njp.org/


6

Figure 2. The basic modes of monolayer transfer with SMC. The height
information represents the film profile H while the colors indicate the phase
of the monolayer. Liquid expanded domains are shown in blue, while liquid
condensed domains are red. For low velocities, stripes perpendicular to the
contact line are transferred, yielding a stationary structure in the comoving
frame. For higher velocities, the orientation of the stripes switches and becomes
parallel to the contact line. This means that new stripes are perpetually formed
at the contact line and then advected with the moving substrate.

not a vital part of the mechanism of pattern formation but a mere consequence. The patterns are
still observed in numerical simulations with an artificially frozen static meniscus. Therefore, the
essential mechanism of the formation of the LE–LC stripes is the decomposition of the initially
homogeneous layer due to SMC.

The described main findings of the full thin-film model motivate us to develop in the
next section a reduced model that (i) still captures the main features of the patterning process
and (ii) also allows for a profound analysis of its solution structure and therefore for a better
understanding of the onset of patterning.

3. The reduced model

The fact that the meniscus is nearly static means that the interaction field S(H(X, T )) may
be approximated by a static field S(X). From this perspective, the SMC phenomenon arises
because the monolayer is pulled by the moving substrate through a spatially varying free energy
landscape. Far to the left of the contact line, the film height is large; therefore the free energy is
not affected by SMC and the LE phase is stable. As the monolayer approaches the contact line,
the free energy is tilted towards higher densities: the minimum corresponding to the LC phase
is lowered, so that condensation is energetically favored. The influence of the hydrodynamics
is therefore restricted to the determination of the details of the spatial variation of S. As a
result, one is able to capture the essence of the LE–LC domain formation under the influence
of SMC by a variant of the prototypical model equation for phase decomposition, namely the
Cahn–Hilliard equation, which is augmented by the addition of a space-dependent external field
and a dragging term. Let a scalar field c(X, T ) evolve according to

∂T c = −∇ ·

[
∇

(
1c −

∂F

∂c

)
+ Vc

]
, (5)

where V is a constant vector describing the velocity of substrate withdrawal. Due to the space-
dependent SMC field, the free energy F(c, X) is a function of c and the spatial coordinates X .
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It is given by

F(c, X)= −
c2

2
+

c4

4
+µζ(X)c. (6)

By inserting this expression into equation (5), the evolution equation for c finally becomes

∂T c = −12c + 6c (∇c)2 +
(
3c2

− 1
)
1c +µ1ζ − V∇c. (7)

Note that in the present problem the advective term Vc cannot be removed from this equation by
simply performing a Galilei transform because there exists one privileged frame of reference:
the frame in which the contact line is at rest.

For simplicity, we focus here on the case of a straight contact line that is chosen, without
loss of generality, to be perpendicular to the X -axis, so that ζ(X)= ζ(X) and V = V eX . The
function ζ smoothly interpolates between the region of the symmetric free energy to the left
of the contact line, where LE and LC phases are energetically equivalent, and the region of the
tilted free energy to the right of the contact line, where the LC phase is energetically favored.
That is, ζ models the field S that is determined in the full model (equations (1) and (2)) by the
meniscus shape. It turns out that the results are not very sensitive to the particular form of ζ .
Here, the smooth transition is modeled by a hyperbolic tangent centered at X = Xs, where Xs

denotes the position of the meniscus.

ζ(X)= −
1

2

(
1 + tanh

(
X − Xs

ls

))
, (8)

and the width of the transition is determined by the constant ls. The boundary conditions are
similar to those in the full model, i.e.

c(0)= c0, ∂X X c(0)= ∂X c(L)= ∂X X c(L)= 0, (9)

and periodic in the Y -direction. Although closely related to the problem considered here, the
models investigated by Krekhov [25] as well as Foard and Wagner [26] differ from our approach
as they use symmetric free energies that switch the sign of the c2 term at the location of the
moving front; that is, the free energies change from a single-well to a double-well potential.
Furthermore, in the here considered monolayer transfer with SMC, the inflow of the surfactant
is controlled by the transfer velocity V and is not an independent parameter.

Equations (7)–(9) are solved numerically in one (1D) and two (2D) spatial dimensions on a
domain of size [0, L] and [0, L] × [0, L], respectively. Finite differences are used for the spatial
discretization, whereas an adaptive Runge–Kutta–Fehlberg scheme of orders 4 (5) is used for
time stepping [37]. The 2D simulations are performed on an NVIDIA GeForce480 using the
CUDA framework. For parallelized computation, the grid consisting of 384 × 384 points is
decomposed into blocks of 16 × 16 points [38]. The numerical parameter values used in the
calculations are: the smooth step function ζ is centered around Xs = 10, the step width is ls = 2
and the strength of the free energy tilt is µ= 0.5. The boundary value is chosen to be c0 = −0.9,
i.e. slightly above c = −1, the equilibrium value in the absence of external fields, but still far
from the spinodal value at c = −1/

√
3 ≈ −0.5774.

The numerical solutions show that the reduced system qualitatively behaves as the full
model given by equations (1) and (2). If the transfer velocity V is below a certain critical value
Vl ≈ 0.0242, only homogeneous transfer of a layer with c ≈ 0.9 is observed, corresponding
to the transfer of a homogeneous LE monolayer. Within a patterning range from Vl to an
upper critical velocity Vu ≈ 0.0572, patterns consisting of alternating domains in the two phases
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Figure 3. The basic transfer modes as obtained from direct numerical simulation
of the reduced model (7)–(9) in two dimensions. The arrows indicate the pull
direction. Domains of the phase with higher density (analogue of the LC phase)
are shown in red, while the lower-density phase (analogue of the LE phase) is
shown in blue. Left: perpendicular stripes obtained at V = 0.027; right: parallel
stripes obtained at V = 0.04. Compare the corresponding images in figure 2.
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Figure 4. Snapshots from the transition between the stripes parallel to the
‘contact line’ and the perpendicular stripes obtained in a 2D simulation of the
reduced model at V = 0.027. As in figure 3, red and blue indicate domains of
the phases with higher and lower densities, respectively.

c = ±1 form to the right of the contact line. Within the patterning range, stripe patterns oriented
perpendicular to the contact line are observed for velocities V . 0.03, whereas stripes parallel
to the contact line are formed for higher values of V (see figure 3).

As for the full model (equations (1) and (2)) [19, 20], the formation of the perpendicular
stripes is always preceded in time by the formation of a number of parallel stripes which develop
a transversal instability, eventually break up and transform into perpendicular stripes. This can
be seen in figure 4 that gives snapshots at four different times from the transient stage of the
transfer process at V = 0.027. This observation indicates that the onset of the formation of
parallel stripes coincides with the onset of patterning in general.

The formation of the parallel stripes can be conveniently investigated by solving the model
equations (7)–(9) in one spatial dimension. A plot of the ‘wavenumber’ k (obtained from the
period P by k = 2π/P) of the transferred structures against the transfer velocity V is given in
figure 5. The diagram shows that the branch of periodic solutions emerges very steeply from
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Figure 5. Wavenumbers k of the patterns observed in the simulation of the
modified Cahn–Hilliard equation in one dimension against the transfer velocity
V . The letters α–γ correspond to the same letters in figure 6. We define k as 2π
divided by the spatial period of the pattern.

the V -axis at Vl. As explained in section 4.2, the corresponding bifurcation is an infinite period
bifurcation, so that the branch actually extends down to k = 0. At the upper critical velocity
V = Vu, the branch ends with a finite wavenumber. For comparison, see the analogous diagram
for the full model given in figure 3 of [19].

4. Bifurcation analysis for the one-dimensional case: parallel stripes

4.1. Stationary solutions and bifurcation diagram

To complement the results of the direct numerical simulations, stationary solutions are
calculated using the method of pseudo-arclength continuation [39]. The continuation algorithm
is implemented in MATLAB and based on the same spatial discretization as the direct numerical
simulations. A solution has to be supplied as a starting point of the continuation. For this
purpose, a direct numerical simulation is performed for V = 0.02, i.e. at a velocity for which
c relaxes to a stationary state. This state is then used as the first solution of the continuation
process. The solution branch that passes through this solution is then traced in both directions.
In a second step, a linear stability analysis of all stationary states obtained along the branch is
performed. Writing equation (7) in the form

∂T c = L[∇, V ]c (10)

with a nonlinear operator L, infinitesimal perturbations η = c − ĉ, where ĉ is a stationary
solution, are governed by the linearized equation

∂Tη = L′

cη

with the linear operator L′

c := L′[∇, V ]|c=ĉ given by

L′

c = −12 +
(
3ĉ2

− 1
)
1+

(
12ĉ∇ ĉ − V

)
∇ + 6

(
ĉ1ĉ +

(
∇ ĉ
)2
)
. (11)

The stationary states ĉ(X) are not homogeneous and therefore L′

c is space dependent. Moreover,
L′

c is not self-adjoint so that its eigenfunctions and eigenvalues are in general complex. Here,
they are calculated numerically using MATLAB. By this procedure, the spectrum of each
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Figure 6. L2 norms of stationary and time-periodic 1D solutions against the
transfer velocity V . The solid and dashed lines are obtained by numerical
continuation and mark the stable and unstable parts of the branch, respectively.
The crosses correspond to solutions obtained by direct numerical simulation.
The solutions corresponding to the points marked with the letters a–l are shown
in figure 7. The Greek letters α–γ correspond to the labels in figure 5. S1–S4

label particular saddle-node bifurcations (see text). Note the coexistence of up to
three stable solution branches for V < 0.054.

solution on the branch can be determined. Note that although the stability problem itself does
not depend explicitly on the space-dependent external field ζ(X), the function ζ(X) determines
the stationary states ĉ(X) and therefore implicitly controls the linear stability.

We are now in a position to draw a bifurcation diagram combining the information gathered
from the direct numerical simulations and the continuation. Because of the high dimensionality
of the system the norm

L2[c] =

√
1

L

∫ L

0
dXc2(X)

is used as a solution measure. In figure 6, it is plotted against the control parameter V . One
finds that the branch of stationary solutions exhibits a large number of folds. However, only
in the saddle-node bifurcations S1(V = 0.0541, L2 = 1.133), S2(V = 0.0161, L2 = 1.137) and
S3(V = 0.0256, L2 = 1.006) do stable and unstable states meet. At the other folds, more and
more eigenvalues cross the imaginary axis, and on all involved branches there is at least one
eigenvalue with a positive real part.
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Figure 7. Stationary solutions of the reduced model equations from different
parts of the solution branch. The labels a–l correspond to the labels in figure 6.
Except for the profiles (a, c, l) all shown profiles are linearly unstable.

Twelve profiles from different parts of the branch of stationary solutions are shown in
figure 7. The uppermost stable part of the branch (left of S1) consists of stable solutions of the
type shown in figure 7(a). The profile c directly goes from its boundary value c = −0.9 to a
higher value c ≈ 1.23. The variation of the external field strength around Xs = 10 yields merely
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a small undulation of the profile. Along the unstable part of the branch between S1 and S2 (for
a typical profile see figure 7(b)), the position of the step from low to high c is continuously
shifted to Xs = 10. On the next part (between S2 and S3), stable solutions of the type shown
in figure 7(c) are found. In the context of the LB transfer, these solutions can be associated
with the homogeneous transfer of a condensed layer. Following the stable part further, the step
is shifted away from Xs to the right until the solutions become unstable again in the saddle-
node bifurcation S3. Note that there is exactly one eigenvalue with a positive real part along the
unstable part of the branch between the two saddle-node bifurcations S3 and S4 (V = 0.00964
and L2 = 0.924), so that the corresponding solutions on the branch are saddle points in the
function space. As can be seen from the solutions presented in figures 7(d)–(i), beyond S4

each pair of subsequent saddle-node bifurcations (folds) of the branch results in the addition
of another bump to the structure that develops in the transition region between low and high
concentration. The new bump is always formed at Xs and then ‘moves’ to the right as the
next bump forms. A related solution behavior is known from an investigation of other model
equations of pattern formation, such as the Swift–Hohenberg equation [40]. There, localized
structures with different numbers of bumps or holes may be observed for the same value of
some control parameter, just as we observe different numbers of bumps for the same transfer
velocity. Usually such localized structures are investigated for large domains with the same
conditions at all boundaries or for large period periodic systems, so that all localized solutions
are homoclines. Due to this homoclinic character and the snake-like appearance of the solution
branches of localized states in the bifurcation diagrams the phenomenon has been termed
homoclinic snaking [41–43]. Therefore, here it is tempting to use the term heteroclinic snaking
to describe the solution structure found, as the localized trains of bumps connect regions of a
low and a high value of c. However, even if the states on the boundaries may formally be seen
as fixed points of the Cahn–Hilliard equations with different respective homogeneous external
potentials, due to the spatial change of the external potential the localized solutions found do
not represent heteroclinic orbits of any autonomous system of ordinary differential equations.
They do, however, still represent fronts that mediate the transition between different states. As
a consequence, the phenomenon observed here could be called front snaking. The snaking of
the branch in the bifurcation diagram ends when the whole domain right of the change in the
external field is filled with bump structures (cf figure 7(i)). The amplitude of the bumps becomes
smaller and smaller as one follows the branch further until finally the profile becomes monotonic
again. Increasing V further, the slope in c and its value at the right boundary decrease (see
figures 7(j) and (k)). Finally, the branch stabilizes again when at (V = Vu = 0.0572, L2 = 0.607)
a pair of complex conjugate eigenvalues crosses the imaginary axis. The branch remains linearly
stable for higher velocities. Figure 7(l) shows a typical solution found for V > Vu. In the context
of LB transfer, these solutions can be associated with the homogeneous transfer of a surfactant
layer in the LE phase.

An averaging of the L2-norms of the time-periodic solutions obtained from direct
numerical simulations with respect to time allows us to include them into the bifurcation
diagram in figure 6. The corresponding branch emerges at (V = 0.0242 and 0.980) from the
unstable part between S3 and S4 of the branch of steady solutions. The bifurcation is not related
to a change of linear stability of the steady branch. The branch of time-periodic solutions ends
at the bifurcation point at (V = Vu = 0.0572 and L2 = 0.607). In the following two subsections
the two bifurcations will be investigated more closely.
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Figure 8. Close-up showing the homoclinic bifurcation of the branch of periodic
solutions (blue crosses) from the branch of unstable stationary solutions (red
dashes).

4.2. The onset of pattern formation at low velocities

Figure 8 shows a close-up of the bifurcation point at which the time-periodic solutions emerge
at small velocities. Since no eigenvalue of the linearized operator crosses the imaginary axis in
the relevant region of the branch of stationary solutions, the bifurcation has to be a global one.
The type of bifurcation can be identified by determining the scaling behavior of the temporal
period of the oscillations in the vicinity of the bifurcation point [44]. To this end, a large number
of direct numerical simulations with V close to the critical velocity is performed. In the velocity
range Vl ≈ 0.0242. V . 0.0256, the branch of the periodic solutions coexists with two other
stable branches (see figure 6) and it depends on the initial conditions onto which branch a
solution settles. Therefore, it is necessary to follow the branch of the periodic solutions very
carefully. One has to start with a profile obtained in the region V > 0.0256 and then decrement
the velocity in small steps in a series of simulation runs, whereupon each run uses the final
state of the previous run as its initial condition. Close to the bifurcation point, the velocity
decrement has to be chosen smaller and smaller, because even a tiny 1V results in a significant
change of the temporal period. In this way, the critical velocity has been determined up to 12
significant digits: Vl = 0.024 186 808 7724. Figure 9 shows a logarithmic plot of the temporal
period TP of the solutions against the distance from the bifurcation point V − Vl. Clearly, TP

diverges logarithmically as Vl is approached. This scaling behavior indicates a homoclinic
bifurcation [45, 46]. In such a bifurcation, a limit cycle (the time-periodic solution) collides
with a saddle point (the stationary solution). This leads to the following scaling law of the
temporal period:

TP ∼ −
ln (V − Vl)

λu
,

where λu is the eigenvalue of the unstable direction of the saddle point. From the linear stability
analysis of the stationary solution at Vl, one calculates λu = 1.001 81 × 10−3, yielding a slope
of −λ−1

u = −998.191. A straight line TP = −2880 − 998.191(V − Vl) is drawn in figure 9. The
value of the offset 2880 cannot be calculated within a linear theory; it is estimated from a fit.
Obviously, the scaling behavior agrees very well with the theoretical expectations. Thus, the
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direct numerical simulations close to the bifurcation point Vl. The straight
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predicted scaling behavior.

bifurcation leading to the onset of the formation of parallel stripes at low velocities is indeed
identified as a homoclinic bifurcation.

Here it seems pertinent to point out that the observed transition at Vl from stationary
solutions to the deposition of stripes on the moving substrate can as well be seen as a depinning
transition. However, the details of our transition are unlike the depinning via a homoclinic
bifurcation described in [46] where a drop depins from a substrate heterogeneity under the
influence of an external driving force, and the entire drop slides along the substrate. Here,
after depinning the concentration profile at the static meniscus does not move in its entirety
with the dragging substrate. Instead, only a part of it (a depression) starts to move, resulting
in the deposition of a line. This process then repeats periodically. Note that in the context
of drops, for other parameter values the depinning transition may also be due to a Hopf or a
sniper bifurcation [47, 48]. The former is related to what we find here at large V (see the next
subsection).

4.3. The onset of pattern formation at high velocities

4.3.1. Amplitude equation. The branch of the periodic solutions related to the deposition of
stripe patterns ends at (V = Vu = 0.0572 and L2 = 0.607). There, according to linear stability
analysis, a pair of complex conjugate eigenvalues crosses the imaginary axis. Actually, this
bifurcation is the last one of a series of consecutive Hopf bifurcations as illustrated in figure 10
where selected eigenvalue spectra for V 6 Vu are given. The occurrence of several of these
bifurcations in the vicinity of Vu explains the very long transients that are observed in time
simulations close to Vu: several modes decay very slowly around this point. Furthermore,
the presence of so many eigenvalues close to the imaginary axis limits the applicability of
an asymptotic theory to a very narrow range of velocities. Nevertheless, the bifurcation can
be investigated perturbatively by means of standard tools: we first determine the amplitude
equation for the critical mode. At the bifurcation point V = Vu the corresponding eigenvalues
are purely imaginary; that is, λc = ± iωc. Thus, close to the final bifurcation at V = Vu, i.e. for
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Figure 10. Eigenvalues of the linearization operator of stationary states close
to the bifurcation at the right end of the patterning range. (a) V = 0.0433,
(b) V = 0.0501 and (c) V = 0.0572. Black and red dots denote eigenvalues
with negative and positive real part, respectively.

V = Vu + ε, ε < 0, the solution can be written as

c(X, T )= ĉ(X)+ η(X, T )

with the perturbation η(X, T ) given by the expansion of the eigenfunctions

η(X, T )= ξu(T )φ(X)e
iωcT +92(X, T )e2iωcT + c.c.+90(X, T ), (12)

where ĉ(X) denotes the stationary solution at the bifurcation point and ξu(T ) denotes the
complex amplitude of the critical mode that becomes unstable at the bifurcation. Note that this
approach is based on a separation of timescales; that is, T is a ‘slow time’, so that ∂T ξu ∼ εξu

(see chapter 2.2 of [49]). The complex eigenfunction corresponding to ξu is denoted by φ(X)
and the imaginary part of the corresponding eigenvalue at the bifurcation point is the frequency
ωc. The functions 90(X, T ) and 92(X, T ) describe the contributions of the stable modes of the
spectrum due to the harmonics e0iωcT and e2iωcT . The evolution equation for the perturbation η
can be expanded as

∂Tη = L′

cη +
1

2
L′′

cηη +
1

3!
L′′′

c ηηη + · · · , (13)

where the operators L′

c, L′′

c and L′′′

c denote the Frechet derivatives of the nonlinear operator
defined in equation (10) evaluated at ĉ. The operator L′

c depends on the control parameter V
(see equation (11)). Close to the bifurcation point, it can be approximated by

L′

c(Vu + ε)= L′

c(Vu)+ ε
∂L′

c

∂V

∣∣∣
V =Vu︸ ︷︷ ︸

=: L′

ε

.

Now, we insert expression (12) into equation (13) and discuss the different orders in eiωcT

separately. By using the eigenvalue equation L′

cφ = iωcφ at the bifurcation point, the resulting
equation for O(eiωcT ) is

ξ̇uφ = εξuL′

εφ + ξuL′′

cφ90 + ξ ∗

uL
′′

cφ
∗92 +

ξu|ξu|
2

2
L′′′

c φφφ
∗, (14)
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where the asterisk denotes complex conjugation. For O(e2iωcT ), the equation

∂92

∂T
+ 2iωc92 = L′

c92 +
1

2
ξ 2

uL
′′

cφφ

is obtained. The time derivative of 92 can be eliminated adiabatically [50] and the amplitude
92 can be expressed in terms of ξu as 92 = X2ξ

2
u , where X2 denotes a function living in the

same space as the eigenfunction φ and ξ 2
u is the corresponding amplitude. Then, one obtains the

solvability condition for the function X2(
2iωc −L′

c

)
X2 =

1
2L

′′

cφφ.

For O(e0·iωcT ), the equation reads

∂90

∂T
= L′

c90 +
1

2
L′′

c9090 + |ξu|
2L′′

cφφ
∗.

Again, the time derivative is eliminated and90 is rewritten as90 = X0|ξu|
2. Therefore, the

term ∼92
0 is of order |ξu|

4 and is negligible. This yields

L′

c X0 = −L′′

cφφ
∗.

To obtain an evolution equation for ξu, the state vectors have to be projected. As the
operator L′

c is not self-adjoint, its eigenfunctions do not obey an orthogonality relation. Instead,
the components of the modes have to be calculated by projection on the eigenfunctions of
the adjoint eigenvalue problem L′†

c φ
†
= λ∗φ†. Here, L′†

c is the adjoint operator of L′

c and its
eigenvectors are denoted by φ† By the use of the scalar product

〈φ|ψ〉 =

∫ L

0
dXφ∗(X)ψ(X),

equation (14) is then projected onto φ†, the mode of the adjoint operator L′† belonging to the
eigenvalue λ∗

= −iωc. This yields

ξ̇u = εa1ξu + a2ξu|ξu|
2 (15)

with the complex coefficients

a1 =
〈φ†

|L′

εφ〉

〈φ†|φ〉
(16)

and

a2 =
〈φ†

|L′′

cφX0〉 + 〈φ†
|L′′

cφ
∗ X2〉 + 1

2〈φ
†
|L′′′

c φφφ
∗
〉

〈φ†|φ〉
. (17)

Equation (15) is the lowest-order normal form of a Hopf bifurcation [49]. If εRe a1 < 0, the
solution ξu = 0 is linearly stable and perturbations are damped. For εRe a1 > 0, the solution
ξu = 0 is linearly unstable. Then, for Re a2 < 0 the Hopf bifurcation is supercritical and a stable
periodic solution exists (for εRe a1 > 0) that has the form ξu = ReiωcT with the radius

R =

√
−ε

Re a1

Re a2
.
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Figure 11. The four critical modes corresponding to the eigenvalues with the
largest real parts. The solid line shows the real part and the dashed line the
imaginary part of the complex eigenfunctions. The mode φ becomes unstable
at the bifurcation point, while the modes χ1, χ2 and χ3 are stable. The modes χi

show a tendency to form large bumps close to the right boundary.

However, if Re a2 > 0 the Hopf bifurcation is subcritical and to lowest order no stable
periodic solution exists for εRe a1 > 0. Instead, an unstable periodic solution exists for
εRe a1 < 0 [49, 51].

In our case, the derivatives of the operator L acting on arbitrary states φ, ψ and χ are given
by equation (11) and

L′′

cφψ = 6
(
ĉψ1φ +ψφ1ĉ + ĉφ1ψ + 2ĉ (∇ψ) · (∇φ)+ 2ψ

(
∇ ĉ
)
· (∇φ)+ 2φ

(
∇ ĉ
)
· (∇ψ)

)
,

L′′′

c φψχ= 6 (χψ1φ+χφ1ψ+ψφ1χ+2χ (∇ψ) · (∇φ)+2ψ (∇χ) · (∇φ)+ 2φ (∇χ) · (∇ψ)) ,

L′

εφ = −∇φ.

The vectors φ, φ†, X0 and X2, as well as the coefficients a1 and a2, are calculated from the
discretized versions of L′

c, L′′

c and L′′′

c . This discretization is performed in the same way as in the
direct numerical simulation of the problem, i.e. by finite differences. Inserting the results into
equations (16) and (17), one obtains

a1 = −8.7e−2 + 2.8e−1i,

a2 = 1.5e−3 + 1.5e−4i,

respectively. As Re a1 < 0, the stationary solutions are unstable for ε = V − Vu < 0, i.e. for
velocities below Vu. This is in agreement with our time simulations and the linear stability
results. The finding that Re a2 > 0 indicates that the final Hopf bifurcation is subcritical. Higher
order asymptotics would be needed to obtain further information on the system behavior.
However, as such an approach needed to take into account the influence of the other Hopf
bifurcations occurring nearby, it would be rather cumbersome and is not pursued here (also see
the discussion below).

In fact, the behavior of the solutions slightly below the bifurcation shows no trace of a stable
limit cycle. Starting a simulation at V = 0.057 191 33, a velocity that lies only 2 × 10−8 below
Vu, a long phase of slow exponential growth of the unstable mode is observed, corresponding
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Figure 12. Phase plot showing the projection of the dynamics at V =

0.057 191 33 onto the unstable mode. Spiraling behavior alternates with large
excursions. For clarity of the representation, only a time interval of1T = 15 000
from a longer simulation is shown.

to the very small real part of the eigenvalue close to the bifurcation. The unstable mode φ has
the shape of an almost sinusoidal wave traveling to the right, whereas the amplitude grows
slowly from left to right (see figure 11). The regime of linear growth ends abruptly and further
modes are excited. In parallel, one observes the formation of larger bumps or even complete
domains with c ≈ 1 close to the right boundary of the integration domain. These bumps leave the
integration domain quickly at the right and the dynamics settles back to the linear behavior for
some time. Sooner or later, however, the formation of a larger bump occurs again. By projection
of the solution onto the unstable mode φ†, the complex amplitude ξu can be calculated and a
phase plot (Re ξu, Im ξu) can be drawn, as shown in figure 12. The linear phases of the dynamics
correspond to a slowly growing spiral. The formation of bumps can be seen from the excursion
from these planar spirals that follow an obviously higher-dimensional trajectory that eventually
comes back to the plane and begins to follow a spiral again. The absolute value of the amplitude,
|ξu|, is shown in figure 13. From these results the following picture emerges: for V < Vu the
stationary solutions become unstable due to a Hopf bifurcation. The related unstable linear mode
results in a time evolution corresponding to an unstable spiral in the phase plane. In the nonlinear
regime, the spiral motion is caught by a higher-dimensional structure due to the influence of
the stable modes that are next to the imaginary axis. A possible scenario involving two pairs
of complex conjugate eigenvalues λ1,2 = −γ ± iω and λ3,4 = λ± iα with λ, γ, α, ω > 0 and
λ 6= γ has been investigated by Ovsyannikov and Shilnikov (see case 3 in [52]). However,
explicit calculation shows that it does not suffice to extend the above calculation by the addition
of one pair of stable modes ξs,1, as the resulting dynamical system for the two amplitudes
ξu, ξs,1 does not exhibit the characteristic dynamics shown in figure 12. As can be seen from
the absolute values of the ξs,i shown in figure 13, even the third stable pair of modes seems to
influence significantly the dynamics during the large excursions that correspond to the domain
formation. Thus, it can be concluded that even though the description of the behavior close to
the bifurcation in terms of amplitude equations is possible, it will probably be too complicated
to be of practical use.
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Figure 13. Absolute values of the amplitudes of the unstable mode φ and the
first three stable modes χ1, χ2, χ3 calculated by projection of the dynamics at
V = 0.057 191 33. The peaks correspond to the excursions in the phase plot
shown in figure 12.

4.3.2. Marginal stability analysis. However, a change of perspective allows us to derive
additional analytic results regarding the considered transition. By switching from the fixed
laboratory frame to a frame comoving with the substrate, one can consider the location of
the domain formation to be a propagating front which closely follows the contact line. This
idea is particularly appealing, since it allows us to calculate the front velocity analytically. It
also provides an intuitive explanation of the cessation of the patterning: when the pull velocity
exceeds the front velocity, the meniscus escapes the front.

However, the proposed picture also has some limitations. First of all, normally, analytical
results for front propagation are based on the assumption that the front moves into a
homogeneous unstable state [53]. This is not given in our case, since the front moves into the
meniscus region which is determined by the boundary conditions at X = 0 and which is clearly
non-homogeneous. Nevertheless, the stationary states that develop for velocities V ≈ Vu are
almost constant at the rear end, i.e. for X ≈ L . If this almost constant value corresponds to an
unstable state, one can—at least approximately—calculate the velocity of a front that propagates
into the integration domain from the right.

This calculation is based on the marginal-stability criterion [53]. Consider the leading
edge of the front, where it deviates only slightly from the homogeneous state, so that it is
well described by the linearized version of the evolution equations. The linear equations can
be solved by a superposition of plane waves with wavenumber k and amplitude c̃(k) in the
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form

c(X, T )=

∫
∞

−∞

dk c̃(k) ei(k X−ω(k)T ),

where ω(k) is the dispersion relation of the linearized system. Assuming the existence of a finite
front velocity Vf, it is possible to switch to a comoving reference frame yielding

c(X, T )=

∫
∞

−∞

dk c̃(k) ei(k X+kVfT −ω̃(k)T ), (18)

where ω̃(k)= ω(k)− kVf is the dispersion relation in the comoving frame. If the exponent
is sufficiently large, integrals like equation (18) can be evaluated by performing a contour
integration in the complex plane, thereby using the saddle point approximation [53]. This is
convenient in our case, as we are interested in the asymptotic behavior for T → ∞. If the
contour is deformed so that it passes through the saddle point and does so in the direction
of steepest descent, then the largest contributions of the integrand are located around the saddle
point itself. Thus, the integral can be approximated by its value at k0.

Here, it is not necessary to carry out the integration. Instead it suffices to know that the
integral will be dominated by the contribution around the saddle point. We therefore look for a
wavenumber k0 with

∂ω̃

∂k

∣∣∣
k0

= Vf. (19)

Since the leading edge of the front is stationary in the comoving frame, its envelope will be
stationary, so that there is neither growth nor decay; that is,

Im[ω̃(k0)− k0Vf] = 0. (20)

The conditions (19) and (20) allow us to calculate k0 and Vf.
Linearization of equation (7) in a comoving frame yields

ω̃(k)= ik2
(

k2 + F̂cc

)
,

where we use the shorthand notation F̂cc := (∂2 F/∂c2)|c=ĉ. Note that the inhomogeneity
described by ζ does not appear in this equation, because we are considering the rear end of
the integration domain where ζ can be assumed constant.

For propagation into an unstable state, i.e. for F̂cc < 0, one obtains

Vf = ±
2

3
|F̂cc|

3/2
(

2 +
√

7
)√√

7 − 1

6
.

Here, only the absolute value of Vf is important to answer the question of whether or
not the front can keep up with the moving contact line. Now we consider the situation close
to the final Hopf bifurcation at Vu discussed in section 4.3.1. Away from the contact line region,
the profiles obtained by continuation are almost completely flat (see figure 7(k)) and can thus
be approximately regarded as homogeneous with c = cL = const, where cL denotes the value
of c at the right boundary of the integration domain. Figure 14 shows the values cL of the
stationary solutions obtained by continuation as a function of the pull velocity Vf. With this
information, it is possible to establish a direct relation between the pull velocity V and the front
velocity Vf in the form of the function Vf(cL(V )). Of course, the front can only keep up with
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Figure 15. The relation between the front velocity and the pull velocity
Vf(cL(V )). The intersection with the bisecting line Vf = V (dashed) marks the
point beyond which the contact line escapes the front. The dotted vertical line
shows the location of the bifurcation at the right boundary of the patterning
range.

the contact line as long as Vf > V . Figure 15 shows the plot of Vf(cL(V )) together with the
bisecting line Vf = V . Both lines intersect at V = 0.0575, a value that differs by less than 0.6%
from the exact location of the bifurcation as determined from the linear stability analysis of the
stationary solutions. Given the approximations involved in the calculation outlined above, the
achieved level of agreement is considerable and leads to the conclusion that it is indeed justified
to conceive the pattern formation process at the moving contact line as pattern formation in the
wake of a propagating front.

5. Conclusions and outlook

We have shown that the essential dynamics of the transfer of surfactant monolayers from
a water sub-phase onto a solid substrate can be captured by a reduced model based on an
amended Cahn–Hilliard equation. It incorporates the SMC effect—which is responsible for
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the patterning—via a spatially varying free energy and the moving substrate by an advective
transport term. The analysis of the reduced model has shown that it qualitatively reproduces all
the main features of the patterning process as obtained with the full thin-film model in [19, 20].
Furthermore, the reduced model has allowed for a deeper analysis of its solution structure and
therefore for a better understanding of the onset of patterning. In particular, the results of direct
numerical simulations and continuation methods have been combined into a bifurcation diagram
that has allowed us to discuss how the time-periodic solutions related to the formation of stripes
parallel to the contact line emerge from the stationary solutions. The onset at low velocities has
been identified as a homoclinic bifurcation based on an analysis of the characteristic scaling of
the temporal period. This implies the existence of a hysteresis; that is, there exists a range of
substrate velocities where one may find transferred monolayers that are either homogeneous or
patterned, depending on initial conditions.

Furthermore, it has been found that when at high velocities the stripe patterns cease to
exist several Hopf bifurcations are involved. As the final one is a subcritical bifurcation a
lowest-order perturbation approach is not sufficient to describe the system behavior close to the
transition. As higher order asymptotics would need to take into account the influence of the other
Hopf bifurcations occurring nearby, it has not been pursued here. However, using an alternative
approach the upper critical transfer velocity has been calculated independently. Switching into
the frame comoving with the substrate, we have employed the marginal stability criterion for
fronts propagating into unstable states to calculate the maximal substrate velocity that allows for
the formation of stripes in very good agreement with the linear stability analysis of the stationary
states. Therefore, the formation of stripe patterns in the transfer of phospholipids close to a first
order phase transition can be understood as pattern formation in the wake of a propagating front.

Although hardly accessible in experiments, the snaking of localized states near a front that
is exhibited by the unstable steady solutions obtained for low velocities is highly interesting
from the mathematical point of view and will be the subject of future investigations.

The clear theoretical picture of the onset of the stripe pattern formation at low velocities
needs to be substantiated by experimental data. Careful measurement should allow us to resolve
the hysteresis behavior resulting from the coexistence of stationary and time-periodic solutions
at the same velocities (see figure 6). Such experiments are particularly challenging in the small
velocity regime as there the parallel stripes are unstable with respect to transversal instability
modes, resulting in a transition of the orientation from parallel to perpendicular stripes. Our
2D calculations show, for both the full and the reduced model, that within the low velocity
range only a limited number of parallel stripes are obtained as a transient state. This raises the
question of whether the transversal instability might be suppressed deliberately as would be
desirable for applications. It has been shown that prepatterned substrates can be used in order
to modify the orientation transition [20], but this approach alters the properties of the primary
instability as well.

From these considerations it is clear that the orientation transition needs to be further
investigated theoretically and experimentally in order to gain a complete understanding of the
pattern formation during monolayer transfer. At low velocities fully time-periodic 2D solutions
corresponding to the deposition of parallel stripe patterns could be constructed from their 1D
counterparts that are available as numerical results. By analyzing the linear stability of these
solutions with respect to transversal perturbations the stability of the parallel stripes may be
determined. However, this is beyond the scope of this paper and will be the subject of future
research.
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A further promising task would be the application of the techniques we have employed
here to a similar problem of pattern formation in the wake of a quench front as studied by
Krekhov [25] and Foard and Wagner [26]. This would allow one to investigate the structure
of the stationary solutions as well as the bifurcations leading to the formation of the various
patterns observed by these authors.

The formation of stripe patterns at the contact line during the Langmuir–Blodgett transfer
is prototypical for a variety of other physical systems that exhibit pattern formation at a receding
contact line due to mechanisms that are at the moment not yet well understood. Thus our
mathematical approach could be extended to models that describe the experimentally observed
formation of regular microscopic stripe patterns of metallic monolayers, e.g. of gold and
silver [54], the deposition of stripe-like patterns of polymers or micro- and nanoparticles from
solution [27, 55–57] and microstripes of organic semiconductors [58]. In particular, we expect
a similar bifurcational structure in a recent model of line deposition from evaporating films of
colloidal suspensions and polymer solutions [59].

As already pointed out at the end of section 4.2, the system shows similarities to different
classes of systems. One example is pinned drops on heterogeneous substrates that show
depinning transitions via sniper, homoclinic and Hopf bifurcations [46–48]. We have argued
that the onset of the deposition of stripes can also be regarded as a depinning transition. Another
example is systems related to waterjet cutting processes using abrasive particles. There, in a
certain parameter range, the surface of a solid substrate that is moving through the cutting jet
is patterned periodically [60] and the pattern is formed behind a front that is localized at the
position of the waterjet.

The ubiquity of forced patterning caused by imposed moving fronts and its importance for
various technical applications indicates that our reduced model and the analysis we propose
might constitute a useful stepping stone toward a more general understanding of pattern
formation in such systems.
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