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We discuss the long-wave hydrodynamic model for a thin film of nematic liquid
crystal in the limit of strong anchoring at the free surface and at the substrate. We
rigorously clarify how the elastic energy enters the evolution equation for the film
thickness in order to provide a solid basis for further investigation: several con-
flicting models exist in the literature that predict qualitatively different behaviour.
We consolidate the various approaches and show that the long-wave model derived
through an asymptotic expansion of the full nemato-hydrodynamic equations with
consistent boundary conditions agrees with the model one obtains by employing a
thermodynamically motivated gradient dynamics formulation based on an underly-
ing free energy functional. As a result, we find that in the case of strong anchoring
the elastic distortion energy is always stabilising. To support the discussion in the
main part of the paper, an appendix gives the full derivation of the evolution equa-
tion for the film thickness via asymptotic expansion. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4816508]

I. INTRODUCTION

Thin films of nematic liquid crystals (NLC) have attracted attention over the years, as evidenced
by a number of experimental and theoretical studies.1–10 When thin nematic films are deposited
on solid or liquid substrates, they often exhibit antagonistic anchoring at the free surface and at
the substrate, i.e., the director orientation at the substrate is generally parallel to the substrate
(planar anchoring) but at the free surface the director is orthogonal to the surface (homeotropic
anchoring). As a consequence, the local director orientation changes across the film resulting in an
elastic contribution to the energy that should not be neglected: such films are called hybrid films.
Sometimes instabilities are observed that result in lateral periodic stripe patterns of the director
orientation1–6 and film height. However, this is only the case for thin films with thicknesses of
several hundred nanometer and below; the wavelength of the stripe patterns diverges at an upper
critical film thickness and so, for thicker films, only the usual defects of the nematic phases are
observed.3, 5 Note that spinodal patterns have also been observed,8, 11–13 normally, in the vicinity of
nematic-isotropic or smectic-nematic phase transitions. In contrast, the stripe patterns are observed
well inside the nematic region of the liquid crystal phase diagram.

In order to develop a theory for the behaviour of confined nematic liquid crystals, one may
calculate the director orientation profile for a given static free surface. Typically, either a flat film or
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a periodically deformed state is considered. Such a given static geometry is then used to investigate
the director field and to determine its stability. For an imposed flat film, an energy argument allows
one to show that there exists a critical thickness14

hc =
∣∣∣∣ K

A+
− K

A−

∣∣∣∣ , (1)

where K is the bulk elastic constant of the liquid crystal (in the one constant approximation) and
A+ and A− are the anchoring strengths at the free surface and at the substrate, respectively. For
thin films, with thickness h ≤ hc, the director profile is undistorted; the film is in the so-called
planar (P) state and the director is aligned parallel to the anchoring angle at the interface with the
stronger anchoring strength. For thick films, with film thickness h > hc, the state that minimises the
free energy is that where the director orientation changes continuously between the two anchoring
directions as one moves across the film; this is the Hybrid-Aligned-Nematic (HAN) state introduced
above and is the case for the strong anchoring situation considered here. If one assumes that the
system is invariant in one direction across the surface on which the film is deposited, so that the
film is effectively two-dimensional (2D), one finds that these states are linearly stable. To confirm
this assumption, much effort has gone into determining whether the film is laterally stable.1–3, 10

However, since the film geometry is imposed and static, such analyses cannot account for a possible
coupling of variations in film height and director orientation.

In alternative approaches, the long-wave hydrodynamic or so-called lubrication theory has been
used successfully in deriving the film thickness evolution equations for films of a variety of different
(simple) liquids and to explore the dynamics under the influence of gravity or other body forces, and
a variety of surface and interfacial forces.15–21 In order to extend this approach to describe films of
NLCs, Ben Amar and Cummings7 derived a model to describe the surface evolution of NLCs with
strong anchoring in 2D settings that was later adapted to model 2D spreading droplets,22 spreading
droplets with defects23 and to account for three-dimensional (3D) settings.24 Another long-wave
model was introduced by Carou et al.25–27 to study blade coating and cavity filling flows of NLC
in 2D. However, none of these long-wave evolution equations agree with models that use energy
arguments,9 when it comes to identifying the effect of the elastic distortion energy on the film
dynamics. Antagonistic anchoring is predicted to destabilise the film in Refs. 7 and 22–24, but in
Refs. 25–27 it is predicted to have no influence on the stability of the film. In Ref. 9 and 28, however,
it is argued on physical grounds that the elastic energy is stabilising. Thus, predictions based on the
theory of Refs. 7 and 22–24 are in direct conflict with those from the theory in Refs. 9 and 28.

On a different note, the energetic approach to deriving the long-wave theory mentioned above
is based on the fact that, as was noted some time ago, the evolution equation for the height of a thin
Newtonian film can be written in a variational form in situations where inertia can be neglected.
For nematic liquid crystals, it is not a priori clear whether or not this approach can be applied. In
Ref. 9, a model is derived based on an energy argument and a gradient dynamics ansatz that employs
a mobility typically for isotropic liquids. However, no mathematical justification was given.

The purpose of this note is to clarify these issues by reconciling the hydrodynamic long-wave
and energetic approaches in the case of layers of nematic liquid crystals with strong anchoring,
and so to provide a solid basis for further investigations. Our main results are as follows: (1)
In the case of strong antagonistic anchoring, the elastic energy contribution always acts so as
to stabilise the layer. This is found employing the long-wave approximation of the governing
nematohydrodynamic bulk equations with consistent interfacial boundary conditions, and as well
by employing a thermodynamically motivated gradient dynamics formulation. (2) The long-wave
models of Refs. 7 and 22–24 were derived by employing a stress balance at the free surface of the film
as in standard Newtonian flow that is inconsistent with the bulk equations. This leads to a change
in sign of the elastic contribution in the film thickness evolution equation. When this boundary
condition is modified to also include the elastic stress, results consistent with the energy approach
are obtained. (3) The mobility function in the gradient dynamics approach must be obtained from
hydrodynamics. Here, we show that the evolution equation for the height of a thin film of nematic
liquid crystals derived via asymptotic expansion of the full nematohydrodynamic equations can be
written in a variational form and so is consistent with the gradient dynamics approach.
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The paper is organised as follows: The continuum theory of NLC, including the elastic en-
ergy and Ericksen-Leslie bulk equations together with consistent boundary conditions, is given in
Sec. II. Focusing on the 2D case, the long-wave approximation of the governing equations and
boundary conditions is sketched in Sec. III while the full details are given in Appendix A. This
allows the reader to easily reproduce our main findings. In Sec. IV, a thermodynamically motivated
gradient dynamics formulation is employed to derive the evolution equation of a nematic film. The
stability of the free surface is studied through a linear stability analysis. Finally, in Sec. V we
compare the results of the two approaches and discuss the validity and limitation of the present
model. The note concludes with an outlook on related problems that could be studied based on our
results.

II. CONTINUUM DESCRIPTION OF NEMATIC LIQUID CRYSTAL

Nematic liquid crystals consist of rod-like molecules that have no positional order, but have
long-range orientational order. Thus, the molecules are free to flow as a liquid, but still maintain
their long-range directional order. The mean molecule alignment is described by the unit vector
n = (n1, n2, n3)T where the superscript T denotes matrix transposition. Further notation conventions
used here are presented in Appendix C.

Distortions of the director field result in a contribution to the free energy, that for NLC is known
as the Frank-Oseen elastic energy and reads29, 30

wF = 1

2
K1(∇ · n)2 + 1

2
K2(n · ∇ × n)2 + 1

2
K3(n × ∇ × n)2

+1

2
(K2 + K4)∇ · ((n · ∇)n − (∇ · n)n) , (2)

where K1, K2, and K3 are the splay, twist, and bend elastic constants, respectively, and (K2 + K4) is
called the saddle-splay constant. Note that the saddle-splay term is often omitted since it does not
contribute to the governing equations in the case of strong anchoring.

We use the one-constant approximation to simplify the problem. One assumes29, 30

K ≡ K1 = K2 = K3, K4 = 0 (3)

and obtains the simplified energy density

wF = K

2
∇n : (∇n)T = K

2
nl,knl,k (4)

that enters the nemato-hydrodynamic equations discussed next.

A. Ericksen-Leslie equation

The bulk flow of NLC may be described by the Ericksen-Leslie equations.29–32 The fluid is
incompressible, satisfying

∇ · v = 0, (5)

where v = (v1, v2, v3)T is the velocity field. The momentum balance equation is

ρ
D

Dt
v = ∇ · σ , (6)

where ρ is the density, D/Dt = ∂/∂t + v · ∇ is the material derivative, t is the time variable, and σ

is the stress tensor of the NLC. The stress tensor is defined as29

σ = −p I + σ E + σ V , (7)

where p is the pressure, I is the identity tensor, σ E is the elastic (Ericksen) stress tensor, defined by

σ E = −∂wF

∂∇n
· (∇n)T , (8)
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and σ V is the viscous stress tensor with components

σ V
i j = α1nkn pekpni n j + α2 Ni n j + α3 N j ni + α4ei j + α5eiknkn j + α6e jknkni , (9)

where

ei j = 1

2

(
vi, j + v j,i

)
, wi j = 1

2

(
vi, j − v j,i

)
, Ni = D

Dt
ni − wiknk . (10)

The αi are constant viscosities.
The equation for the balance of angular momentum is written as (neglecting director inertia)

∇ ·
(

∂wF

∂∇n

)
− ∂wF

∂n
+ g = λn, (11)

where the components of g are

gi = −γ1 Ni − γ2ei,knk, γ1 = α3 − α2, γ2 = α6 − α5. (12)

Furthermore, λ is the Lagrange multiplier ensuring |n| = 1.
Under the assumption of the one constant approximation, the Ericksen-Leslie equations,

Eqs. (5), (6), and (11), simplify to

∇ · v = 0, (13a)

ρ
D

Dt
v = −∇(p + wF ) − K ∇n · �n + ∇ · σ V , (13b)

K�n + g = λn, (13c)

respectively, where we have used that

σ E = −K ∇n · (∇n)T , (14)

and

∇ · (∇n · (∇n)T ) = 1

2
∇ (∇n : (∇n)T

) + ∇n · �n. (15)

As a result, the Ericksen-Leslie equations in the one constant approximation are given by Eq. (13)
and need to be solved subject to appropriate boundary conditions.

a. Remark 1: Note that sometimes the stress tensor for NLC is written differently from Eq. (7),
e.g., Ref. 33 uses

σ̃ = −( p̃ + wF ) I + σ E + σ V .

However, one may combine the two terms of the isotropic part of σ̃ and define a modified pressure
as p = p̃ + wF . Hence, with the exception of the modified pressure the derivations that follow are
not affected.

b. Remark 2: Equation (13b) can be rewritten as

ρ
D

Dt
v = −∇(p + wF ) + ∇n · g + ∇ · σ V

by using Eq. (13c) together with ∇n · n = 0. This formulation is more popular in the literature since
it only involves the first derivative of the director field.

1. Boundary conditions

We assume here that the NLC film sits on a solid substrate at z = 0 with the free surface (or film
thickness) described by z = h(x, y, t).
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For the director field n, we impose strong anchoring conditions such that the director is planar
at the solid substrate and is homeotropic at the free surface. Specifically, we have

n · z = 0, at z = 0, (16a)

n · t i = 0, at z = h(x, y, t), (16b)

where z = (0, 0, 1)T and t i are the surface tangent vectors,

t1 = 1√
1 + (∂x h)2 + (∂yh)2

(1, 0, ∂x h)T , t2 = 1√
1 + (∂x h)2 + (∂yh)2

(0, 1, ∂yh)T . (17)

For the velocity field v, we assume no-slip and no-penetration at the solid substrate,

v1 = v2 = v3 = 0, at z = 0. (18)

At the free surface, z = h(x, y, t), we have the kinematic condition and balance of normal and
tangential stresses. The kinematic condition is

v3 = ∂t h + v1∂x h + v2∂yh, at z = h. (19)

For normal stress, we assume that the jump across the interface is balanced by surface tension. That
is,

k · (σ − σ i ) · k = 2γ H, at z = h, (20)

where σ i = −p0 I is the stress tensor of the air phase, p0 is the atmospheric pressure, γ is the surface
tension, H is the mean curvature, and k is the surface normal vector

k = 1√
1 + (∂x h)2 + (∂yh)2

(−∂x h,−∂yh, 1
)T

. (21)

For tangential stress, we assume that there is no jump at the interface

k · (σ − σ i ) · t i = 0. (22)

That is, we assume that no tangential surface tension gradient exists, as is appropriate for strong
anchoring. For the case where surface gradient exists, see Ref. 34.

III. LONG-WAVE HYDRODYNAMIC DESCRIPTION IN TWO DIMENSIONS

In this section, we restrict attention to two space dimensions and focus on the long-wave
approximation of the governing equations presented previously in Sec. II. The full details are given
in Appendix A. The aim here is to study the contribution of nematic elasticity to the free surface
evolution, and to distinguish results obtained using different scalings and boundary conditions.

Assume the flow is two-dimensional and y-independent, so that the director field can be expressed
as n = (sin θ, cos θ )T where the angle θ is taken as the difference between the director orientation
and the positive z-axis, as shown in Fig. 1(a), and the velocity field is v = (u, w)T . We introduce
long-wave scalings to nondimensionalize the governing equations. The scalings are

(x, z) = (Lx̄, δLz̄), (u, w) = (Uū, δU w̄), t = L

U
t̄, p = μU

δ2L
p̄, (23)

where U is the scale of fluid velocity, δ = H/L � 1 is the ratio between the typical film thickness
scale, H, and a typical lateral length scale, L. In addition, in order to focus only on the nematic
elasticity, we approximate the nematic viscous stress tensor by its Newtonian equivalent, setting
σ V

i j = 2μei j , where μ = α4/2.
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FIG. 1. The coordinates used in this paper are given in (a). The angle θ of the director is measured with respect to the
positive z axis. In (b), we present two possible director profiles of a hybrid film. The molecules can bend either clockwise or
counterclockwise across the film. The solid (blue) top curve indicates the free surface, the solid (black) bottom curve indicates
the solid substrate, short (red) lines represent the orientation of the director field, and the dashed (black) line indicates the
defect location.

A. Weak elasticity

Assuming that the elastic free energy is weak compared to the pressure, we can introduce the
dimensionless number (inverse Ericksen number)

K̄ = K

δμU L
. (24)

The leading order bulk equations are then given by (after dropping the over-bars)

∂x p = ∂2
z u, (25a)

∂z p = 0, (25b)

K ∂2
z θ = 0, (25c)

∂x u + ∂zw = 0. (25d)

In addition, the leading order boundary conditions are

θ (z = 0) = π

2
, θ (z = h) = 0, (26)

p = p0 − C ∂2
x h, ∂zu = 0, at z = h, (27)

where C = δ3γ /μU is the inverse capillary number.
It is easily seen that the velocity field and the director field are decoupled. The film thickness

evolution equation is obtained as

∂t h + ∂x

(
C

3
h3 ∂3

x h

)
= 0, (28)

and the director field satisfies

θ = π

2

(
1 − z

h

)
. (29)

This corresponds to the approach taken in Refs. 25–27.
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B. Moderate elasticity

Instead, if we introduce the inverse Ericksen number as

K̄ = K

μU L
, (30)

the leading order bulk equations are given by (after dropping the over-bars)

∂x

(
p + K

2
(∂zθ )2

)
= ∂2

z u, (31a)

∂z p = 0, (31b)

K ∂2
z θ = 0, (31c)

∂x u + ∂zw = 0, (31d)

with leading order boundary conditions

θ (z = 0) = π

2
, θ (z = h) = 0, (32)

p = p0 − C ∂2
x h − K (∂zθ )2, −K (∂xθ ∂zθ + (∂zθ )2 ∂x h) + ∂zu = 0, at z = h. (33)

Under such a scaling, the director field is decoupled from the flow and is given by Eq. (29). The
tangential stress boundary condition in Eq. (33) is then reduced to ∂zu(z = h) = 0. We can therefore
solve for the pressure and velocity field exactly. As a result, the film evolution equation is given by

∂t h + ∂x

(
C

3
h3 ∂3

x h − K̃

3
∂x h

)
= 0, (34)

where K̃ = π2 K/4.
In contrast, Ben Amar and Cummings7 employ Eqs. (31a)–(32) and impose the normal stress

balance assuming that the jump of the pressure is balanced by surface tension alone, as is appropriate
for Newtonian fluids; that is, they use Eq. (27) instead of Eq. (33). As a result, they obtain an equation
much like Eq. (34) but with the opposite sign for the elasticity term. This issue will be discussed
later in Sec. V.

IV. GRADIENT DYNAMICS FORMULATION FOR A THIN FILM OF NEMATIC LIQUID
CRYSTALS IN TWO DIMENSIONS

It was noted some time ago that the time evolution equation for the height of a thin Newtonian
film on a solid substrate can be written in a variational form in situations where inertia can be
neglected.21, 35, 36 The evolution of the film thickness h follows a dissipative gradient dynamics
governed by equation

∂t h = ∂x

[
Q(h) ∂x

(
δF

δh

)]
, (35)

where δ/δh denotes functional variation with respect to h. The resulting relaxation dynamics is
governed by the free energy functional F with the mobility function Q(h).

Such an approach may also be used to obtain the evolution equation for a NLC film in the
limit of moderate elasticity discussed above in Sec. III B. Restricting our attention again to a 2D
geometry, we simplify the elastic distortion energy for the case of lateral long-wave distortions, i.e.,
we assume the scalings given in Eq. (23). The bulk elastic energy is to leading order

wF = K

2
(∂zθ )2. (36)

We further assume that the director adjusts instantaneously to its steady state as compared to the
fluid relaxation time, i.e., we assume K = O(μUL). Then, the director field can be exactly solved for
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to obtain a linear profile as shown in Eq. (29) assuming strong planar anchoring at the solid substrate
and strong homeotropic anchoring at the free surface. The corresponding director orientation across
the film is sketched in Fig. 1(b).

As a result, the bulk elastic energy wF (energy/volume) of the NLC can be rewritten as

wF = K̃

2h2
. (37)

The free energy functional is then expressed as

F =
∫

C ds +
∫ (∫ h

0
wF dz

)
dx ≈

∫ [
C

(
1 + (∂x h)2

2

)
+ K̃

2h

]
dx, (38)

where ds ≈ (1 + (∂xh)2/2) dx is the approximated surface element. The evolution equation of the
film is given in gradient dynamics formulation by introducing F into Eq. (35)

ht = −∂x

[
Q(h) ∂x

(
C ∂2

x h + K̃

2h2

)]
, (39)

where the mobility function Q(h) can be obtained from the Poiseuille NLC flow, Eq. (A25). One
should note that Eqs. (39) and (34) are identical when Q(h) = h3/3.

A. Linear stability analysis

To have a basic understanding of the elastic contribution to the stability of NLC free surface,
we analyse the linear stability of a flat film, h = h0. Assuming h = h0 + ξ , ξ � h0 in Eq. (39), to
leading order we have

∂tξ = −Q(h0)

(
C ∂4

x ξ − K̃

h3
0

∂2
x ξ

)
. (40)

With the harmonic mode ansatz ξ = exp (ikx + ωt), one obtains the dispersion relation

ω = −Q(h0)

(
C k4 + K̃

h3
0

k2

)
. (41)

Note that the constants C, K̃ and the film height h0 are always positive and therefore the growth rate
ω is negative for any wavenumber k. This implies that the elastic term is always stabilising and in
the case of strong anchoring the flat film h = h0 is always stable if only capillarity and elasticity are
taken into account.

V. DISCUSSION AND CONCLUSION

We have consolidated several approaches to derive the evolution equation for free surface
films of nematic liquid crystals with strong anchoring at both interfaces. We have demonstrated
the consistency between the long-wave approximation model, Eqs. (34) and (A24), and the model
derived through a thermodynamically motivated gradient dynamics formulation, Eq. (39). The elastic
energy contribution acts in a stabilising manner in each of these models, consistent with the physically
motivated arguments of, e.g., Refs. 9 and 28.

In contrast, the long-wave models of Refs. 7 and 22–24, which use an alternative normal stress
balance that is not consistent with the bulk equations, lead to qualitatively different results. The
normal stress boundary condition in these papers neglects the contribution of the elastic stress
tensor, which leads to a change in sign of the elastic contribution in the free surface evolution
equation. A third approach used by Carou et al.25–27 scales the nematic elasticity such that, to
leading order, the free surface is unaffected by the elasticity, and one recovers the Newtonian thin
film equation, Eq. (28).

One should note that the strong anchoring models presented here are only valid for rather thick
films as noted in Sec. I. First, the main assumption of the model – the strong anchoring of the
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director at both interfaces – is only valid for h � hc where hc is defined in Eq. (1). For moderate
film thickness h ≈ hc or even thinner, the surface anchoring energy has to be taken into account
(see Refs. 37 and 38 for the interfacial boundary conditions of static NLC). This may be done via
an ad hoc amendment of the free surface anchoring condition in Eq. (32) (cf. the approach taken in
Ref. 22, for the model with the “Newtonian” normal stress balance). Alternatively, it may be modelled
via the variational approach which will be the subject of future work.

Second, as for isotropic liquids with film thickness below about 100 nm, long- and short-range
effective intermolecular forces between the substrate and the free surface have to be taken into
account possibly through a Derjaguin or disjoining pressure that describes wettability effects.39

For nematic liquid crystals, the influence of van der Waals interactions has been discussed, e.g., in
Refs. 8 and 40. Additional Casimir-type forces may be induced by fluctuations of the director
orientation, most notably in very thin films with uniform director orientation, i.e., in the planar (P)
state.40, 41 Note, however, that the notions “disjoining pressure” or “structural disjoining pressure”
are used in Refs. 42–44 to denote the pressure contribution resulting from the elasticity of the liquid
crystal, i.e., the last term in Eq. (39).

We would also like to point out that, within the present long-wave scalings (Eq. (23)), there
is no distinction in the elastic energy whether the director is bent clockwise or counterclockwise.
The two director profiles shown in Fig. 1(b) (on the right hand side and on the left hand side of the
dashed (black) line) have exactly the same elastic energy, K̃/2h2. However, such a situation is still not
allowed even though the elastic energy is continuous across the dashed (black) line. The director field
is discontinuous and it breaks the long-wave assumption (∂2

x θ � ∂2
z θ ). A simple way to circumvent

this was proposed in Ref. 23, whereby the discontinuity of Fig. 1(b) is smoothed out over a given
range. More sophisticated models for real defects are needed. For instance, one may incorporate a
description of the dynamics of the scalar order parameter related to the nematic-isotropic transition.
Away from the phase transition, it can be employed to model defects. Such a model would also allow
one to tackle the structuring of films that occurs close to the nematic-isotropic transition.8, 11–13

In conclusion, we have clarified how the elastic contribution influences the free surface of
a nematic film under the strong anchoring assumptions. Within the long-wave scalings, we have
discussed two cases, corresponding to weak and moderate elasticity, respectively:

� K
μU L = O (δ): The bulk elasticity has only a minor influence on the free surface evolution. It
does not affect the stability of a film. The evolution of the film and the director field are given
by Eqs. (A18) and (A20), respectively.

� K
μU L = O (1): The strong antagonistic anchoring makes a significant contribution leading to a
diffusion-like term in the film surface height evolution equation – see Eq. (39). Furthermore,
the director always maintains its steady state, given by Eq. (29).

The models can be derived either from asymptotic expansion of the nemato-hydrodynamic
equations or from a thermodynamically motivated gradient dynamics formulation. The former
approach has the advantage of mathematical rigorousness, while the latter approach is much simpler
in deriving the evolution equations. It is found that the elastic distortion energy is always stabilising.
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APPENDIX A: LONG WAVELENGTH APPROXIMATION OF A THIN FILM OF NLC

1. Ericksen-Leslie equations in two spatial dimensions

Assume the flow is two-dimensional and y-independent, then the director field can be expressed
as n = (sin θ, cos θ )T and the velocity field is v = (u, w)T . The elastic energy reduces to

wF = K

2

(
(∂xθ )2 + (∂zθ )2

)
. (A1)

Without fluid inertia, the linear momentum equations are then given by (from Eq. (13b))

∂x

[
p + K

2

(
(∂xθ )2 + (∂zθ )2

)] = −K ∂xθ
(
∂2

x θ + ∂2
z θ

) + ∂xσ
V
11 + ∂zσ

V
12, (A2)

∂z

[
p + K

2

(
(∂xθ )2 + (∂zθ )2

)] = −K ∂zθ
(
∂2

x θ + ∂2
z θ

) + ∂xσ
V
21 + ∂zσ

V
22. (A3)

(The viscous stress tensor, σ V , is defined in Appendix B, Eq. (B1).) For the angular momentum
equation, Eq. (13c), one can eliminate the Lagrange multiplier λ by performing an inner product
with the vector n⊥ = (cos θ,− sin θ )T . We then have

K (∂2
x θ + ∂2

z θ ) = γ1

[
θ̇ − 1

2
(∂zu − ∂xw)

]
+γ2

2
[(∂x u − ∂zw) sin(2θ ) + (∂zu + ∂xw) cos(2θ )] . (A4)

The continuity equation, Eq. (13a), is rewritten as

∂x u + ∂zw = 0. (A5)

a. Boundary conditions

In 2D, the boundary conditions for the director field, assuming strong anchoring at both interfaces
(planar at the substrate and homeotropic at the free surface), are

θ (z = 0) = π

2
, θ (z = h) = cos−1

(
1√

1 + (∂x h)2

)
. (A6)

For the velocity field, we assume no-slip at the solid substrate,

u = w = 0, at z = 0. (A7)

At the free surface, we have the kinematic boundary condition

w = ∂t h + u∂x h, at z = h, (A8)

which can be combined with the incompressibility condition, Eq. (A5), to be

∂t h + ∂x

(∫ h

0
u dz

)
= 0, (A9)

or equivalently,

∂t h + ∂x

(∫ h

0
∂zu (h − z) dz

)
= 0. (A10)

(Note that the no-slip boundary condition, u(z = 0) = 0 was imposed in deriving Eq. (A10).)
For the balance of normal and tangential stresses, we first note that the stress tensor for a NLC

film is written as

σ = −p

[
1 0

0 1

]
− K

[
(∂xθ )2 ∂xθ ∂zθ

∂xθ ∂zθ (∂zθ )2

]
+

[
σ V

11 σ V
12

σ V
21 σ V

22

]
(A11)
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and the stress tensor of the air phase is σ i = −p0 I . We assume that the jump in the normal stress is
balanced by surface tension and the jump in tangential stress is zero. That is,

k · (σ − σ i ) · k = γ κ, k · (σ − σ i ) · t = 0, (A12)

where κ is the curvature, k is the normal vector at the free surface, and t is the tangent vector at the
free surface, defined as

κ = ∂2
x h(

1 + (∂x h)2
)3/2 , k = 1√

1 + (∂x h)2
(−∂x h, 1)T , t = 1√

1 + (∂x h)2
(1, ∂x h)T , (A13)

respectively.

2. Non-dimensionalisation and long-wave approximation

We make the usual long-wave scalings to nondimensionalize the governing equations as shown
in Eq. (23). Also we rescale the coefficients of nematic viscosity by the Newtonian equivalent,
setting αi = μᾱi where μ = α4/2. For the elastic constant, we assume K = εμU L K̄ where ε is a
parameter of order o(1/δ) that will be specified later.

The leading order equations are then given by (after dropping the over-bars)

∂x

(
p + εK

2
(∂zθ )2

)
= −εK ∂xθ ∂2

z θ + ∂z (q1(θ ) ∂zu) , (A14a)

∂z

(
p + εK

2
(∂zθ )2

)
= −εK ∂zθ ∂2

z θ, (A14b)

εK ∂2
z θ = −δq2(θ ) ∂zu, (A14c)

∂x u + ∂zw = 0, (A14d)

where q1(θ ) and q2(θ ) are related to the viscous stress tensor, their full expressions are given later in
Appendix A 2 b. The leading order boundary conditions are the kinematic boundary condition, Eq.
(A10), with

θ (z = 0) = π

2
, θ (z = h) = 0, (A15)

p = p0 − C ∂2
x h − εK (∂zθ )2, −εK (∂xθ ∂zθ + (∂zθ )2 ∂x h) + q1(θ ) ∂zu = 0, at z = h,

(A16)
where C = δ3γ /μU is the inverse capillary number.

a. Weak elasticity (ε = δ)

Assuming the elastic free energy is weak compared to the pressure, we can choose ε = δ.
Observing that Eq. (A14b) reduces to pz = 0 at leading order, one can solve the pressure exactly and
the velocity is then determined by

∂zu(x, z) = C

q1(θ )
(h − z) ∂3

x h. (A17)

Hence, by using Eq. (A10), we obtain the film evolution equation as

ht + C ∂x
(
Q(h) ∂3

x h
) = 0, (A18)

where

Q(h) =
∫ h

0

(h − z)2

q1(θ )
dz. (A19)
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In addition, the director field satisfies

∂2
z θ = C

K

q2(θ )

q1(θ )
(z − h) ∂3

x h (A20)

with boundary conditions defined in Eq. (A15).
One can see that the nematic elasticity as well as viscosity only have influence on the mobility

function Q, and thus have no influence on the stability of a free surface. This formulation has been
studied extensively by Carou et al.25–27 both analytically and numerically under the assumption of
small director variation.

b. Moderate elasticity (ε = 1)

On the other hand, if we have ε = 1, Eq. (A14c) reduces to ∂2
z θ = 0 at leading order and hence

the director field reaches a linear profile in z as shown in Eq. (29). Moreover, Eqs. (A14a) and (A14b)
are simplified to

∂x

(
p + K̃

2h2

)
= ∂z (q1(θ ) ∂zu) , (A21a)

∂z p = 0, (A21b)

with boundary conditions at the free surface

p = p0 − C ∂2
x h − K̃

h2
, ∂zu = 0. (A22)

We can therefore solve the pressure and velocity field as

p(x, z) = p0 − C ∂2
x h − K̃

h2
, ∂zu(x, z) =

(
−C ∂3

x h + K̃

h3
∂x h

)(
z − h

q1(θ )

)
. (A23)

As a result, the film evolution equation is given by

ht + ∂x

[
Q(h)

(
C ∂3

x h − K̃

h3
∂x h

)]
= 0, (A24)

where Q(h) can be evaluated explicitly as7

Q(h) = Q0 h3, Q0 =
(

2

π

)3 ∫ π/2

0

ξ 2

q1 (ξ )
dξ. (A25)

APPENDIX B: VISCOUS STRESS TENSOR OF NEMATIC LIQUID CRYSTAL
IN TWO DIMENSION

The viscous stress tensor of NLC in 2D is written as

σ V = α1
(
sin2 θ ∂x u + cos2 θ ∂zw + sin θ cos θ (∂zu + ∂xw)

) [
sin2 θ sin θ cos θ

sin θ cos θ cos2 θ

]

+α2

(
D

Dt
θ − ∂zu − ∂xw

2

) [
sin θ cos θ cos2 θ

− sin2 θ − sin θ cos θ

]

+α3

(
D

Dt
θ − ∂zu − ∂xw

2

) [
sin θ cos θ − sin2 θ

− cos2 θ − sin θ cos θ

]

+α4

2

[
2∂x u ∂zu + ∂xw

∂zu + ∂xw 2∂zw

]
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+α5

2

[
2 sin2 θ ∂x u + sin θ cos θ (∂zu + ∂xw) 2 sin θ cos θ ∂x u + cos2 θ (∂zu + ∂xw)

sin2 θ (∂zu + ∂xw) + 2 sin θ cos θ ∂zw sin θ cos θ (∂zu + ∂xw) + 2 cos2 θ ∂zw

]

+α6

2

[
2 sin2 θ ∂x u + sin θ cos θ (∂zu + ∂xw) sin2 θ (∂zu + ∂xw) + 2 sin θ cos θ ∂zw

cos2 θ (∂zu + ∂xw) + 2 sin θ cos θ ∂x u sin θ cos θ (∂zu + ∂xw) + 2 cos2 θ ∂zw

]
.

(B1)

Similarly, the coupling term, g, between the director and velocity field can be written as

g = −γ1

(
θ̇ − ∂zu − ∂xw

2

) [
cos θ

− sin θ

]
− γ2

2

[
2 sin θ ∂x u + (∂zu + ∂xw) cos θ

(∂zu + ∂xw) sin θ + 2 cos θ ∂zw

]
. (B2)

We also note that, within the long-wave scalings [Eq. (23)], to leading order we have

σ V
12 = μq1(θ ) ∂zu + O

(
μU

L

)
, n⊥ · g = −μq2(θ ) ∂zu + O

(
μU

L

)
, (B3)

where μ = α4/2, n⊥ = (cos θ,− sin θ )T and

μq1(θ ) = 1

2

[
α4 + 2α1 sin2 θ cos2 θ + (α5 − α2) cos2 θ + (α3 + α6) sin2 θ

]
, (B4)

μq2(θ ) = 1

2
[γ1 − γ2 cos(2θ )] . (B5)

As an example, for Newtonian fluids, q1(θ ) = 1 and q2(θ ) = 0.

APPENDIX C: NOTATION CONVENTIONS

For clarity, we list all the notations used. We write for a vector n = ni or m = mi , for a tensor
σ = σi j or κ = κi j ; as the superscript T denotes transposition one has σ T = σ j i . Further, εijk is the
alternator. The notations for operators and products are ∇n = n j,i , ∇ · n = nk,k , ∇ × n = εilknk,l ,
�n = ni,kk , ∇ · σ = σik,k , σ · κ = σikκk j , σ : κ = σklκlk , σ · n = σiknk , n × m = εilknkml , where
“i” denotes the partial derivative with respect to the ith component.
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