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ABSTRACT

The active Phase-Field-Crystal (aPFC) model combines elements of the Toner–Tu theory for self-propelled particles and the classical Phase-
Field-Crystal (PFC) model that describes the transition between liquid and crystalline phases. In the liquid-crystal coexistence region of
the PFC model, crystalline clusters exist in the form of localized states that coexist with a homogeneous background. At sufficiently strong
activity (related to self-propulsion strength), they start to travel. We employ numerical path continuation and direct time simulations to first
investigate the existence regions of different types of localized states in one spatial dimension. The results are summarized in morphological
phase diagrams in the parameter plane spanned by activity and mean density. Then we focus on the interaction of traveling localized states,
studying their collision behavior. As a result, we distinguish “elastic” and “inelastic” collisions. In the former, localized states recover their
properties after a collision, while in the latter, they may completely or partially annihilate, forming resting bound states or various traveling
states.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0019426

We employ numerical path continuation and direct time
simulations to investigate the existence regions and interaction
of traveling localized crystalline patches, i.e., traveling localized
states, in a one-dimensional active Phase-Field-Crystal (aPFC)
model. The aPFC system describes transitions between a liquid
phase and resting and traveling crystalline phases of ensembles
of active particles. Based on an extensive bifurcation analysis of
the parameter regions where the various localized states exist,
we focus on an exploration of their collision behavior. It ranges
from one-to-one collisions to interactions of ensembles of local-
ized states. This analysis allows us to distinguish “elastic” and
“inelastic” collisions and to introduce concepts as the critical free
path necessary for fully elastic collisions.

I. INTRODUCTION

The formation of patterns has always been an intriguing phe-
nomenon for scientists and laypersons alike. Regular spatial, tempo-
ral, and spatiotemporal patterns universally occur in nature ranging
from physical, chemical, and biological systems to geological and

even social systems.1–4 Classifying macroscopic physical systems,
one can distinguish, on the one hand, passive systems that are nor-
mally closed and develop toward thermodynamic equilibrium. The
resulting structures can show spatial patterns like, e.g., regular crys-
tal lattices, and one normally relates them to self-assembly as typical
structure lengths directly result from the properties of individual
constituents. On the other hand, there are active or out-of equi-
librium systems that are usually open systems and develop under
permanent energy conversion. They normally show self-organized
and dissipative structures whose typical length scales depend on
transport coefficients and rate constants.5 Such structures do not
persist when the driving fluxes are switched off. One example are
systems composed of active particles6–9 that transform, e.g., chemi-
cal into mechanical energy, resulting in their self-propelled directed
motion.10,11 Ensembles of such particles can show fascinating col-
lective phenomena. Long- and short-range interactions between the
particles can result in polar ordering and a synchronization of the
particle motion.12,13 The coordinated collective motion of many such
active particles is often called swarming.10 Striking examples are
schools of fish and flocks of birds, sometimes referred to as “living
particles.” Besides the naturally occurring examples of self-propelled
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organisms, artificial active particles are also developed. For instance,
there exist micro-swimmers that employ light,14,15 ultrasound,16,17 or
chemical energy18 to fuel their “engines.”

Similar to the case of equilibrium systems, for the active parti-
cles, one can distinguish different phases of the ensemble behavior.
Parameters like the particle density, the strength of the active driv-
ing of individual particles, and the strength and specific type of
interactions between neighboring particles determine whether one
encounters motility-induced clustering or random motion of indi-
vidual particles or moving swarms with a high degree of spatial
order. Such ordered swarms may be seen as a crystalline state,
while the disordered states may be seen as gas-like or liquid-like.11,19

Phase separation between such gas- and liquid-like states can be
induced by solely changing the particle motility.20–22 At very high
densities, highly ordered resting23,24 and traveling11,14,25–29 crystalline
states can also be formed. A distinction between gas-like or liquid-
like ensemble behavior is also made for localized spots observed in
gas-discharge systems and liquid crystal light-valve experiments.30–32

Systems of active particles are often investigated with particle-
based models employing large-scale direct numerical simulations.
Besides, there exists a wide range of continuum models for active
media.10,28,33,34 For instance, the Toner–Tu model is a prominent
continuum theory for “flocking”35,36 that expands the Navier–Stokes
description of classical fluids by various active terms that break
the Galilean invariance by distinguishing the frame of reference
of resting particles. Elements of the Toner–Tu model are com-
bined with the Phase-Field-Crystal (PFC) model to form a simple
model for active interacting particles.37 The PFC model is widely
employed as a generic continuum model to study the dynamics of
atomistic and colloidal crystallization on microscopic length and
diffusive time scales.38–41 In the context of continuum models for
pattern formation,5 the PFC model represents an equivalent of the
Swift–Hohenberg (SH) equation with mass-conserving dynamics.
The SH equation is a generic equation for the formation of steady
patterns close to a small-scale instability and does not conserve
mass. Therefore, the PFC model is sometimes called the conserved
Swift–Hohenberg (cSH) equation.42,43

The resulting active Phase-Field-Crystal model (aPFC)37

describes transitions between a liquid phase and resting and trav-
eling crystalline phases of ensembles of active particles.37,44–46 On the
technical level, the aPFC model couples the passive cSH equation
that describes the dynamics of a density-like conserved order param-
eter field with the nonconserved dynamics of a polarization field that
represents the coarse-grained orientation and direction of motion
of the self-propelled particles. Employing the aPFC model, a vari-
ety of periodic37,45 and localized46 active crystals is described in the
literature. The additional influence of hydrodynamic interactions is
also studied44 by incorporating an additional velocity field into the
model.

The main subject of the present work is the existence and inter-
action of active crystallites, i.e., localized crystalline patches, also
known as localized states of the aPFC equation. In general, local-
ized states are experimentally observed and modeled in various areas
of biology, chemistry, and physics.31,47–53 Examples include localized
spots in reaction–diffusion systems,51 localized patches of vegeta-
tion patterns in a bare background,54,55 local arrangements of free-
surface spikes of magnetic fluids occurring in the bistable region

just below the onset of the Rosensweig instability,56 localized spot
patterns in nonlinear optical57 and gas-discharge30 systems, traveling
wave pulses in binary convection,58,59 and oscillating localized states
(oscillons) in vibrated layers of colloidal suspensions.60

In the context of solidification described by PFC models, local-
ized states are observed in and near the thermodynamic coexistence
region of liquid and crystal states. Crystalline patches of various size
and symmetry can coexist with a liquid environment depending on
control parameters such as mean density and temperature.42,61,62 For
instance, increasing the mean density, the crystallites increase in size
as further density peaks (depending on context also called “bumps”
or “spots”) are added at the crystal–liquid interface. Ultimately, the
whole domain fills up and for a finite domain, branches of local-
ized states in a bifurcation diagram terminate on a branch of space
filling periodic states. Within their existence region, branches of
different localized states form a typical slanted snakes-and-ladders
structure corresponding to homoclinic snaking.63,64 The slant is an
important property resulting from the presence of a conservation
law in the PFC model.42,43,65–68 In contrast, without conservation law,
e.g., in the case of the SH model, the snaking curves of localized
states are aligned.63,69,70 The relation between slanted and aligned
snaking in closely related systems with and without conservation
law, respectively, is discussed in Refs. 42 and 62.

A first investigation of localized states in an active PFC model is
given in Ref. 46 that determines the linear stability of homogeneous
states, analyzes the onset of motion of periodic and localized states in
one-dimensional domains and provides corresponding bifurcation
diagrams. The present work first deepens this analysis by provid-
ing a more extensive analysis of the parameter regions where the
various localized states exist. Selected bifurcation diagrams are com-
bined with “existence diagrams” showing where the various states
occur. The knowledge gained is then combined with morphologi-
cal phase diagrams obtained by direct time simulation. This forms
the basis of an exploration of the collision behavior of localized
states ranging from one-to-one collisions of traveling localized states
to interactions of several localized states. This allows us to intro-
duce concepts such as the critical free path necessary for fully elastic
collisions.

Our work is structured as follows: in Sec. II, we briefly present
the active PFC model and discuss its analytical and numerical treat-
ment. After reviewing the linear stability of the liquid phase and the
overall phase behavior in Sec. III, spatially localized states are dis-
cussed in Sec. IV with additional material given in the Appendix.
Their bifurcation structure is analyzed focusing on the two main
control parameters, mean density and activity. The analysis of the
collision behavior is presented in Sec. V. The final Sec. VI provides
a conclusion and outlook.

II. THE MODEL

A. Governing equations

The active PFC model is introduced by Menzel and Löwen
in Ref. 37. Its order parameters are the nondimensional scalar
field ψ(r, t) that corresponds to a scaled shifted density and the
nondimensional vector field P(r, t), referred to as “polarization.” It
denotes the local coarse grained orientational order of the active
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particles that is identical to the net direction of self-propulsion. In
particular, ψ(r, t) is the modulation about a fixed reference density
ψ , hence

∫

�
ψ dnr = 0, where r ∈ � ⊂ R

n and � is the considered

domain in n-dimensional space. As ψ controls the amount of mate-
rial in the system, in the following, it is referred to as mean density
and is employed as one main control parameter.

The nondimensional aPFC model37 combines a conserved
dynamics for the density

∂tψ = ∇2 δF

δψ
− υ0∇ · P, (1)

and a nonconserved dynamics of the polarization field

∂tP = ∇2 δF

δP
− Dr

δF

δP
− υ0∇ψ . (2)

Here, the activity υ0 corresponds to the strength of self-propulsion
and is at the same time the strength of the only coupling of the
fields. In the following, we refer to it as “activity.” The employed cou-
pling is linear and has the simplest allowed form that does not break
the conservation of ψ ,37,45,46 i.e., its evolution still follows a conti-
nuity equation ∂tψ = −∇ · j with a flux j. For a derivation of the
model from a corresponding Dynamical Density Functional Theory
(DDFT) for active colloidal particles, see Ref. 44.

The polarization P represents the strength and direction of
local polar ordering. The translational and rotational diffusion of
the particles in the DDFT give rise to the conserved first and non-
conserved second term in Eq. (2), respectively, where Dr is the
diffusional mobility of rotational diffusion. A source term for the
polarization is proportional to the density gradient. Note that advec-
tion with the material flux j is not considered, i.e., it is assumed that
diffusive processes dominate the polarization dynamics.

In the limiting case of a passive system (υ0 = 0), the dynamics
ofψ(r, t) and P(r, t) is variational, i.e., the two equations reduce to a
respective gradient dynamics on the underlying free energy func-
tional F [ψ , P]. If the functional does not contain any energetic
coupling (as is the case here), the dynamics of ψ and P completely
decouple. The free energy functional

F = Fpfc + FP (3)

is composed of the standard Phase-Field-Crystal functional38,39,71

(identical to the Swift–Hohenberg functional5)

Fpfc[ψ] =
∫

dnr

{

1

2
ψ

[

ε +
(

1 + ∇2
)2

]

ψ +
1

4
(ψ + ψ)

4
}

, (4)

and the orientational part

FP[P] =
∫

dnr
(

C1
2

|P|2 + C2
4

|P|4
)

. (5)

The functional (3) describes transitions between a uniform and a
periodically patterned state.39 The negative interfacial energy den-
sity (∼ −|∇ψ |2, obtained by partial integration from the ψ∇2ψ

term), favors the creation of interfaces and is limited only by the

stiffness term (∼ (∇2ψ)
2
). The quartic bulk energy contains the

temperature-like parameter ε. For negative values (low tempera-
tures, i.e., for an undercooled liquid), a periodic (crystalline) state
forms, while high temperatures result in a uniform (liquid) phase.

The orientational part [Eq. (5)] with C1 < 0 and C2 > 0 rep-
resents a double-well potential that results in a spontaneous polar-
ization of absolute value

√
−C1/C2 and arbitrary orientation. Here,

we concentrate on the already rich behavior obtained for positive
C1 > 0 and vanishing C2 = 0, as our analysis shall directly connect
to former studies.37,44–46 At positive C1 > 0, diffusion tends to reduce
the polarization.

Introducing the functional (3) into Eqs. (1) and (2) and execut-
ing the variations yields the coupled evolution equations

∂tψ = ∇2
{[

ε +
(

1 + ∇2
)2

]

ψ +
(

ψ + ψ
)3

}

− υ0∇·P, (6)

∂tP = C1∇2P − DrC1P − υ0∇ψ , (7)

where the equation for P is fully linear. Note that the equations
are invariant under the reflection κ : (r,ψ , P) → (−r,ψ , −P). This
κ-symmetry takes the role of parity for the present model that cou-
ples a scalar field and a vector field. Below, we refer to κ-symmetric
(-asymmetric) states as symmetric (asymmetric) states.

B. Steady and stationary states

In the following, we study Eqs. (6) and (7) in one spatial
dimension (1D). Then, the polarization becomes a scalar field P(x, t)
that describes the coarse grained strength of local ordering and
self-propulsion as well as its sense of direction. Besides fully time-
dependent behavior studied by direct numerical simulation, we
analyze stable and unstable steady and stationary states of the sys-
tem. Here, we denote states at rest as “steady,” while uniformly
traveling states are denoted as “stationary.” The latter are steady in
a frame moving with some constant velocity c. After a coordinate
transformation into the comoving frame, i.e., replacing ∂tψ = c∂xψ

and ∂tP = c∂xP, we integrate Eq. (6) once and obtain the system of
ordinary differential equations (ODEs)

0 = ∂x

{

[

ε + (1 + ∂xx)
2
]

ψ +
(

ψ + ψ
)3

}

− υ0P − cψ − j, (8)

0 = C1∂xxP − DrC1P − υ0∂xψ − c∂xP. (9)

Here, the integration constant j represents the constant flux in
the comoving frame. For resting states, velocity c and flux j are
zero, while for traveling states they have to be determined together
with the solution profiles. Note that in 1D, the field P corre-
sponds to a pseudo-scalar and the κ-symmetry becomes κ : (x,ψ , P)
→ (−x,ψ , −P).

The trivial liquid (uniform) state (ψ0 = 0, P0 = 0) always
solves Eqs. (8) and (9). Its linear stability is discussed in Sec. III.
Changes in stability of the liquid state are related to bifurcations
where resting and traveling crystalline (periodic) states emerge
and these, in turn, give rise to branches of crystallites (localized
states) in secondary bifurcations. Bifurcation diagrams show how
the various branches of such spatially modulated states [ψ = ψ(x),
P = P(x)] are related. To determine them, we transform Eqs. (8)
and (9) into a system of seven first order ODEs, employ periodic
boundary conditions, an integral condition for mass conservation
and an integral condition that projects out the translational symme-
try mode, and employ the numerical pseudo-arclength continuation
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techniques62,72,73 bundled in the toolbox AUTO07P.74,75 For detailed
explanations and hands-on tutorials, see Refs. 62 and 76. In the con-
text of SH and PFC (cSH) models, such methods are extensively
used, e.g., in Refs. 42, 52, 69, and 77. However, they are less fre-
quently applied to the aPFC model46 and other models of active
matter.78,79

For the direct numerical simulation, we use a pseudo-spectral
method. After choosing initial conditions, Eqs. (6) and (7) are inte-
grated forward in time via a semi-implicit Euler method, while
spatial derivatives and nonlinearities are calculated in Fourier space
and in real space, respectively.

III. OVERALL PHASE BEHAVIOR

As mentioned above, the trivial uniform liquid state (ψ0, P0)

= (0, 0) solves Eqs. (8) and (9) for any mean density ψ and activity
υ0. However, it may be linearly stable or unstable as can be deduced
by a linear stability analysis, i.e., by a linearization of Eqs. (6) and (7)
in small fluctuations about the uniform state. This is done in Ref. 46
where the resulting dispersion relations are discussed in detail (also
cf. Refs. 37 and 45). On the one hand, the uniform state can be unsta-
ble to a stationary small-scale (Turing) instability. For the uncoupled
(passive) system (υ0 = 0), the critical wavenumber is qcrit = 1. In
the coupled (active) case (υ0 6= 0), the critical wavenumber slightly
differs from qcrit = 1. In this case, the eigenvalue is real-valued at
instability onset, the primary bifurcation is a pitchfork bifurcation,
and the emerging nonlinear periodic state corresponds to a resting
crystal (red line and dark gray shaded region in Fig. 1). On the other
hand, the uniform state can be unstable to an oscillatory small-scale

FIG. 1. Linear stability and morphological phase diagram indicating where in the
parameter plane spanned by activity υ0 and mean density ψ the three basic
domain-filling states can occur based on linear stability considerations. Namely,
these are the liquid (uniform) and the resting and traveling crystalline (periodic)
states. The red line separates the liquid state (no shading) and the resting crys-
talline state (dark gray shaded), whereas the blue line separates the liquid state
and the traveling crystalline state (yellow shaded). The vertical dashed line at
υ0 ≈ 0.158 indicates the transition between resting and traveling crystal. The
remaining parameters are ε = −1.5, Dr = 0.5, C1 = 0.1, and C2 = 0.

instability. There, the eigenvalue at onset is complex-valued, the pri-
mary bifurcation is a Hopf bifurcation, and the emerging state is a
traveling crystal (blue line and yellow shaded region in Fig. 1). Note
that, for simplicity, the corresponding instability thresholds (solid
lines in Fig. 1) are determined at imposed qcrit = 1. On the scale of
Fig. 1, the result cannot be distinguished from the exact one.

Above onset, the boundary between resting and traveling crys-
tals cannot be determined by a linear analysis of the uniform state.
However, it can be obtained employing a velocity expansion close to
the drift-pitchfork bifurcation responsible for the transition.46 The
resulting condition for the onset of motion of all types of steady
states is

‖ψ‖2 − ‖P‖2 = 0. (10)

Here, ‖ψ‖2 and ‖P‖2 are the L2-norms of the density and polariza-
tion field of the resting state, respectively. It is remarkable that the
critical activity (υc

0 ≈ 0.15 in Fig. 1) is virtually independent of mean
density. This is similar to the results of Ref. 45 on the dependence of
this boundary on an effective temperature.

The corresponding boundary (vertical dashed line in Fig. 1) is
obtained by tracking the condition (10) while numerically contin-
uing the fully nonlinear states. Practically, Eq. (10) is used as addi-
tional integral condition allowing one to directly track the onset of
motion in the (υ0,ψ)-plane. The continuation result perfectly agrees
with the onset of motion obtained by direct time simulations.46 Note
that due to periodic boundary conditions and fixed domain size, the
traveling crystal keeps its spatial periodicity. We emphasize that cri-
terion (10) is valid for any steady state and is used in Sec. IV to detect
different types of drift bifurcations of various localized states. The
corresponding critical values of υ0 are very close but not identical to
the one for periodic states.

IV. LOCALIZED STATES

Similar to the passive PFC model,42 the active PFC model
exhibits a wide range of different localized states (LS).46 These are
finite patches of a periodic structure embedded in a homogeneous
background, i.e., finite size crystals in coexistence with the liquid
phase. For a discussion how these LS are related to the liquid-crystal
phase transition in the thermodynamic limit, i.e., how the Maxwell
construction emerges when the domain size is increased toward
infinity, see Ref. 77. Here, we refer to the LS as crystallites. In con-
trast to the passive PFC model, where all states are at rest, for the
active PFC model, resting and uniformly traveling crystallites are
described,46 with a transition at finite critical values of the activity
υ0. The onset of motion occurs at finite critical values of the activ-
ity υ0 through a drift-pitchfork or a drift-transcritical bifurcation. It
can be predicted using criterion (10). Selected first bifurcation dia-
grams for LS are given in Ref. 46. Here, we scrutinize the emergence
of resting and traveling LS in detail and determine their regions of
existence. This information is subsequently used in Sec. V to study
the collision behavior of traveling LS.

As in Ref. 46, we focus on activity υ0 and mean densityψ as the
main control parameters. As the onset of motion is largely indepen-
dent of ψ (cf. Fig. 1), we base our analysis on bifurcation diagrams
with control parameter υ0 obtained at different fixed ψ . We begin
with the passive case.
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A. Slanted snaking in the passive case

For the passive PFC model, the existence of steady LS and their
intricate bifurcation structure of slanted homoclinic snaking is stud-
ied for 1D42,62,77 and 2D systems.62,77 They are obtained by solving
Eqs. (8) and (9) with υ0 = 0. Here, Fig. 2 presents as a reference case
a corresponding bifurcation diagram employing the mean densityψ
as the control parameter. The effective temperature is ε = −1.5 and
the domain size is L = 100 as in Ref. 42. As a solution measure, we
employ the L2-norm ||ψ ||2 of the density profile as it is well suited
to distinguish the various states. For typical corresponding plots of
chemical potential, Helmholtz free energy, and grand potential, see
Refs. 42 and 77.

The liquid (homogeneous) state ψ(x) = 0 has zero norm and
is represented by ψ-axis. It is stable at small densities (strongly neg-
ative ψ) and is destabilized at a critical mean density of ψ c ≈ −0.71
where a branch of crystalline (periodic) states bifurcates in a super-
critical pitchfork bifurcation in agreement with the linear stability
result for the liquid state (cf. υ0 = 0 in Fig. 1). For the chosen
domain size, these profiles have 16 density peaks. Branches of peri-
odic states with 15 and 17 peaks emerge at a slightly larger ψ (not

FIG. 2. Shown is an example of slanted homoclinic snaking of steady localized
states for the passive PFC model, i.e., Eqs. (8) and (9) with υ0 = 0. The bifurca-
tion diagram shows the norm in dependence of mean densityψ . Atψ ≈ −0.71,
a branch of crystalline (periodic) states with 16 peaks (dotted cyan line) bifurcates
off the liquid state (line of zero norm) in a supercritical pitchfork bifurcation. Slightly
afterward two branches of crystallites (LS) branch off subcritically from this branch
of periodic states. They consist of symmetric localized steady states with an odd
(blue lines) and an even (green lines) number of peaks, respectively. Undergoing
a sequence of nonaligned saddle-node bifurcations, they snake toward a larger
mean density and norm until ending on a branch of periodic states with 15 peaks
(not shown). Here, and in the following figures, the branches of asymmetric LS
are not included. The vertical dashed lines mark the particular fixed values of
ψ = −0.83, −0.80, −0.775, −0.75 ,−0.73, −0.71, and −0.68 for which bifur-
cation diagrams in υ0 are presented below. Parameters are ε = −1.5, Dr = 0.5,
C1 = 0.1, C2 = 0, and a domain size of L = 100.

shown). Above theψ value where the 16-peak branch emerges, fluc-
tuations perturbing the liquid state grow exponentially and a spa-
tially extended crystals or LS form. The supercritical 16-peak branch
itself is only stable in a very small parameter range close to the pri-
mary bifurcation. Then, in a secondary bifurcation, two subcritical
branches of LS simultaneously emerge. For diverging domain size,
the secondary bifurcation coincides with the primary one. The two
branches consist of LS that gain stability at a first saddle-node bifur-
cation and then lose and gain stability “periodically” as the branches
snake toward a larger ψ acquiring larger norms in the process. The
two snaking branches consist of κ-symmetric LS and show an even
and an odd number of density peaks, respectively. In each “period”
of the snaking they symmetrically gain two peaks until the LS fill
the domain and the branches end on the branch of 15-peak periodic
states. Beyond this bifurcation the latter branch is stable. Further,
branches of unstable steady κ-asymmetric LS exist that connect
the two branches of symmetric LS. Here, they are always unstable
and are, therefore, not included in the bifurcation diagrams. We
characterize individual LS by the number n of density peaks they
consist of, i.e., we speak of n-peak states. For more details including
a discussion of the dependence of the entire bifurcation structure
on effective temperature, see Ref. 42. The relation of the slanted
snaking structure obtained at finite domain size and the Maxwell
construction in the thermodynamic limit is discussed in Ref. 77.

Here, the slanted snaking structure of Fig. 2 serves as a starting
point for an extensive investigation of active crystallites. In Sec. IV B
and in the Appendix we present bifurcation diagrams in depen-
dence of υ0 at several fixed values of ψ . They are indicated in Fig. 2
by vertical dashed lines. This shall allow us to understand how the
numerous branches of traveling LS come into existence, allow for
the construction of existence diagrams, and, ultimately, guide our
numerical experiments on the interaction of traveling LS.

B. Crystallites in the active case

From here on, we only consider the active PFC model. Next,
we determine steady and stationary states by solving Eqs. (8) and (9)
for υ0 6= 0. Note that the velocity c is unknown and determined as
a nonlinear eigenvalue. The rich set of LS obtained in Sec. IV A for
the passive case is now employed as reference at the corresponding
values of ψ . First, the relatively small value of ψ = −0.83 is consid-
ered where Fig. 2 shows ten LS (cf. intersections with ψ = −0.83).
Each of them is taken as a starting solution for a continuation run in
υ0. The criterion (10) is monitored to detect drift bifurcations. After
branch switching at these bifurcations also, branches of traveling
states are continued. The resulting bifurcation diagram is presented
in Fig. 3 with selected solution profiles given in Fig. 4.

We see that the resulting bifurcation curves of steady LS form
five separate branches corresponding to different peak numbers
between one and five. As before, blue and green branches corre-
spond to odd and even number of peaks, respectively. With increas-
ing activity, the two sub-branches of each branch approach each
other till they annihilate at the respective saddle-node bifurcations.
This happens first (at the smallest υ0) for the LS with the largest
number of peaks. If time simulations at large values of υ0 are initial-
ized with such a steady LS, the density peaks decay and the crystallite
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FIG. 3. Panel (a) shows the bifurcation diagram as a function of υ0 at fixed
ψ = −0.83. Line styles of resting states and remaining parameters are as in
Fig. 2. Branches of traveling localized states are given as red dashed lines. Panel
(b) gives a magnification of the rightmost saddle-node bifurcation of steady LS as
there the traveling LS emerge. The filled black square symbols indicate the loci of
drift-pitchfork bifurcations, while the red circle marks the example state given in
Fig. 4(a). The remaining parameters are ε = −1.5,Dr = 0.5,C1 = 0.1,C2 = 0,
and L = 100.

melts into the homogeneous background liquid. The smaller crys-
tallites are slightly more robust, i.e., their annihilating saddle-node
bifurcation is at a larger υ0.

Drift-pitchfork bifurcations are only encountered on the
branch of one-peak LS. Namely, there is one supercritical drift-
pitchfork bifurcation on each sub-branch, both at nearly identical
critical values υc slightly above 0.16 [black squares in Fig. 3(b)].

FIG. 4. Density (top) and polarization (bottom) profilesψ(x) and P(x) of various
traveling LS for increasing values of ψ at fixed υ0 = 0.1677. The peaks travel
with a constant velocity. The direction of motion is indicated by the black arrows.
Panels (a) and (f) show a profile from the traveling one-peak branch in Fig. 3.
Panels (b) and (g) show a traveling two-peak state from Fig. 20, while panels [(c)
and (h)], [(d) and (i)], and [(e) and (j)] depict traveling LS with more peaks. The
respective values of ψ are given in the panels. The remaining parameters as in
Fig. 3.

The two drift bifurcations are connected by two branches of trav-
eling one-peak LS that coincide in Fig. 3(b): they consist of κ-
asymmetric states that travel in opposite directions and are related
to each other by the κ-symmetry that is broken at the drift-pitchfork
bifurcation. As expected, close to the bifurcation, the drift velocity |c|
shows a square-root behavior. This is the case for all occurring drift-
pitchfork bifurcations. The coinciding branches of traveling states
are also limited by a saddle-node bifurcation [see magnification in
Fig. 3(b)].

All other resting LS melt before motion can set in, i.e., all other
saddle-node bifurcations of steady state branches are located at an
υ0 < υc. This is confirmed by evaluating the criterion (10): Only the
branch of one-peak LS shows zero crossings in the difference of the
norms. They occur exactly at the two drift-pitchfork bifurcations.

Inspecting the typical profiles ψ(x) and P(x) of traveling LS
in Fig. 4, one clearly notices that the density profile has lost its
reflection symmetry and is now slightly asymmetric. In addition, the
relative position of ψ(x) and P(x) has changed, i.e., the κ-symmetry
is clearly broken. For resting LS, peak maxima in ψ exactly coincide
with zeros of P and the resulting inversion symmetry implies that
the total polarization (integral of ψ times P over the width of the
structure) vanishes, i.e., there is no net polarization. This is not the
case for traveling LS where the relative position of ψ(x) and P(x) is
shifted and, in consequence, there is a finite net polarization.

Increasing the mean density, more branches of steady LS of suc-
cessively larger peak number appear and all the limiting saddle-node
bifurcations move toward larger υ0. The saddle-node bifurcation
where the traveling one-peak LS ends, moves markedly toward
larger υ0. Branches of traveling LS of successively larger n appear via
drift-pitchfork bifurcations on the corresponding branches of steady
LS. The sample profiles of traveling LS are shown in Fig. 4. Further
details and bifurcation diagrams at ψ = −0.80 and ψ = −0.775 are

FIG. 5. Panel (a) shows the bifurcation diagram as a function of υ0 at fixed
ψ = −0.75, while (b) magnifies the branches of traveling one- to four-peak
LS. Line styles, symbols, and remaining parameters are as in Fig. 3. The
corresponding velocities of traveling LS are given in Fig. 6.
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FIG. 6. Panel (a) gives the absolute value of the drift velocity |c| as a function of
υ0 for the traveling LS at ψ = −0.75, i.e., from Fig. 5. Panel (b) magnifies the
range where the drift bifurcations occur. Traveling LS with an odd (even) number
of peaks are given as black (red)] lines.

given in the Appendix. Figure 5 shows that at ψ = −0.75, a branch
of steady seven-peak LS has emerged as well as a branch of traveling
four-peak LS.

Most remarkably, the ranges of existence of the traveling one-
peak and two-peak LS have grown to a large extent, while all
the other traveling LS are confined to a small υ0-range between
υ0 ≈ 0.16 and υ0 ≈ 0.19. In particular, the branch of traveling four-
peak LS is practically vertical. The saddle-node bifurcation where the
traveling one-peak LS terminates has moved out to υ0 ≈ 1.6. The
drift velocities |c| of all traveling LS in Fig. 5 are compared in Fig. 6.
We see that for all traveling LS, in the vicinity of the drift-pitchfork
bifurcations at respective υc, as expected, the velocity |c| increases
like |υ0 − υc|1/2. At a large |υ0 − υc|, the increase becomes linear.
The values υc increase from about 0.157 to 0.169 as the number of
peaks increases from one to four. Note that the velocity of the trav-
eling two- and three-peak LS becomes zero at the end points of the
branches (as expected) but also at one respective point in the middle
of the branch [at υ0 approximately 0.164 and 0.168, respectively, see
Fig. 6(b)]. This indicates that these branches of traveling LS also pass
a drift-transcritical bifurcation, where they cross a branch of asym-
metric steady LS (not shown here, cf. Ref. 46). In the vicinity of the
drift-transcritical bifurcations, c changes linearly.

Further increasing ψ , more branches of resting and travel-
ing LS appear in the same manner as before. Also, the branches
of resting LS of low peak numbers undergo reconnections, e.g., at
ψ = −0.73, the one- and three-peak branches are connected by
an additional saddle-node bifurcation. Details of the related pinch-
off transition are shown in the Appendix. More importantly, the
saddle-node bifurcation where the branch of traveling one-peak LS
terminates moves to υ0 → ∞, i.e., drifting LS then exist at arbi-
trarily high activities. Upon a further increase of ψ , reconnections

also occur for the branches of traveling states, and isolas of travel-
ing LS appear, shrink, and vanish. Branches of multi-peak traveling
LS disappear at saddle-node bifurcation of resting LS. However,
the branches of traveling one- and two-peak LS are robust and
determine the behavior at large υ0. Further details and bifurcation
diagrams are given in Appendix.

The presented study of individual bifurcation diagrams shows
how the various branches of resting and traveling localized states
emerge, expand, reconnect, shrink, and vanish when increasing the
mean density. These glimpses gained at particular values of the mean
density are next amplified by considering “existence diagrams” that
summarize the behavior in the parameter plane spanned by mean
density ψ and activity υ0.

C. Existence ranges of resting LS

To obtain an overview where the various resting LS occur in
parameter space, we track in Fig. 7 the loci of all saddle-node bifur-
cations of branches of LS in the plane spanned by activity υ0 and
mean density ψ . At a fixed ψ , the solid lines give the position of
folds of the corresponding branches in bifurcation diagrams with υ0

as the control parameter, e.g., in Figs. 3 and 5. Considering a verti-
cal cut, i.e., fixing a particular constant activity υ0, intersections with
the blue and green lines give the loci of folds in bifurcation diagrams
with ψ as the control parameter, e.g., in Fig. 2. The dotted cyan line
tracks the primary bifurcation where the branch of periodic states
emerges from the liquid state.

Roughly speaking, each type of resting symmetric LS exists
within the region limited by the corresponding solid line. Most of
the folds exist only up to υ0 ≈ 0.25. The final two folds (nearly coin-
ciding blue and green lines in Fig. 7) survive till υ0 ≈ 0.3. There they

FIG. 7. Panel (a) gives the loci of all saddle-node bifurcations for resting one- to
fifteen-peak LS. LS with an odd (even) peak number are given in blue (green),
while the primary bifurcation where the resting periodic state emerges is given as
the dotted cyan line (corresponding to the red line in Fig. 1). Panel (b) focuses on
the loci of the folds of the one-peak LS. Horizontal lines are explained in the main
text. The remaining parameters are as in Fig. 3.
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vanish at the secondary bifurcation where the two branches of rest-
ing symmetric LS emerge from the branch of periodic states. This
occurs when this bifurcation changes from subcritical to supercrit-
ical. All branches of LS cease to exist at a slightly larger υ0. The
two cusps and the small swallow tail structure of the blue line at
the largest ψ indicate that reconnections occur in the bifurcation
structure. Namely, it depends on the value of υ0 on which branch
of periodic states the branches of LS end: for the passive PFC model
(υ0 = 0) at the parameters chosen here, the snaking branches start
on the periodic 16-peak state and terminate on the periodic 15-peak
state (cf. Fig. 2), whereas for activities larger than υ0 ≈ 0.12, they
terminate on the periodic 16-peak state. We note in passing that
Fig. 7(a) has a very similar appearance as Fig. 6 of Ref. 42 that shows
the loci of bifurcations for the passive PFC model in a plane spanned
by ψ and the effective temperature ε. Here, the role of the latter is
taken over by the activity υ0. The implication could be that there
exist nonequilibrium analogues of a tricritical point and binodal
lines for the present active PFC case. This shall be pursued elsewhere.

Figure 7(b) enlarges a part of Fig. 7(a) focusing only on the one-
peak LS. Starting at a low ψ and increasing ψ , the fold moves to
the right; hence, the branch of steady one-peak LS exists in a larger
range of υ0. At ψ ≈ −0.745, an additional fold appears at υ0 = 0
and moves toward larger υ0 with further increasing ψ . This fold
connects the branches of one- and three-peak LS. At υ0 = −0.26,
the two-folds annihilate in a hysteresis bifurcation. The dashed
horizontal lines indicate values corresponding to the bifurcation
diagrams shown in Fig. 22 in the Appendix (ψ = −0.775), Fig. 5
(ψ = −0.75), and Fig. 23 in the Appendix (ψ = −0.73).

D. Existence range of traveling LS

Next, we employ two-parameter continuation to track bifur-
cations of traveling LS in the (υ0,ψ)-plane to obtain an overview
of their existence ranges. In this way, we analyze on the one hand
the loci of saddle-node bifurcations. On the other hand, we also
follow drift-pitchfork bifurcations that mark the onset of motion.
Figure 8 gives results for one- and two-peak LS summarizing sev-
eral properties that we have observed in bifurcation diagrams with
either υ0 or ψ as the control parameters. The solid lines give the
loci of saddle-node bifurcations. The dashed lines mark the loci of
the drift-pitchfork bifurcations, i.e., the onset of motion. Roughly
speaking, traveling LS exist in the region between the drift-pitchfork
and the saddle-node bifurcations of traveling LS. The information
in Fig. 8 is supplemented by Fig. 27 in the Appendix. It additionally
presents the corresponding loci of traveling three-peak and four-
peak LS. Their region of existence is smaller than the one for one-
and two-peak LS.

The tracks of the various bifurcations in the (υ0,ψ)-plane can,
of course, be related to the previously discussed bifurcation dia-
grams. Figure 9(a) shows a magnification of Fig. 8 in the region
close to the onset of motion. The dashed horizontal and vertical
lines highlight the values ψ = −0.75 and υ0 = 0.17, respectively.
The crossings with the horizontal line denote the positions of bifur-
cations in the bifurcation diagram with the control parameter υ0 in
Fig. 9(b). In an analogous way, the vertical line relates to Fig. 9(c).
A close inspection of the three panels indeed shows their full
consistency.

FIG. 8. Shown are the loci of the saddle-node bifurcations (“sn”) of resting LS
(solid blue and green lines for one-peak and two-peak LS, respectively) and trav-
eling LS (solid red lines) as well as of the drift-pitchfork bifurcations (“dp”) where
LS start to move (dotted red lines). The loci of the saddle-node bifurcation of the
resting periodic state are given as the dotted cyan line. The black triangle marks
the point where the investigation of the corresponding branch is terminated as
profiles have become seemingly chaotic. A magnification of the region where the
drift-pitchfork bifurcations occur is given in Fig. 9. The remaining parameters are
as in Fig. 3.

Therefore, we have gained exact knowledge about the parame-
ter region in which a given state exists. As an example, we consider
the branch of the one-peak traveling LS: Fig. 9(b) shows that the
drift-pitchfork bifurcation named dp1 marks the onset of motion
when increasing υ0 at a fixed ψ . Figures 9(b) and 9(c) show that

FIG. 9. Panel (a) provides a magnification of the region in Fig. 8 where the
drift-pitchfork bifurcations occur. Horizontal and vertical dashed lines highlight the
valuesψ = −0.75 and υ0 = 0.17 for which panels (b) and (c) gives the respec-
tive one-parameter bifurcation diagrams. Positions of selected drift-pitchfork and
saddle-node bifurcations are labeled “dpi ” and “sni ,” respectively.
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the saddle-node bifurcations named sn2 and sn5 mark the appear-
ance and disappearance of one-peak traveling LS, respectively, when
increasing υ0 at a fixed ψ .

More effects observed in the previous sections can be linked to
the results of the bifurcation tracking. For instance, the divergence of
the locus of the saddle-node bifurcation limiting the branch of one-
peak LS corresponds in Fig. 8 to the fact that the lowest solid red
line approaches a horizontal asymptote. The two-parameter con-
tinuation also confirms that drift-pitchfork bifurcations are created
pairwise together with the connecting branch of traveling LS at the
saddle-node bifurcations of resting LS. In Fig. 9(a), this is particu-
larly clearly visible at about (υ0,ψ) ≈ (0.1615, −0.8378) where red
dotted lines (drift-pitchfork bifurcations dp1 and dp3) and a red solid
line (saddle-node bifurcation of traveling LS sn2) simultaneously
emerge from the blue solid line (saddle-node bifurcation of resting
LS)—all for one-peak states.

Note finally that the discontinued branch in Fig. 8 (end marked
by a black triangle) corresponds in this region to states that seem
chaotic. This is related to the fact that the homogeneous background
of the LS is linearly unstable above ψ ≈ −0.6710. We have not
further investigated this region.

E. Morphological phase diagram

In Fig. 10(a), we provide a morphological phase diagram in the
plane spanned by activity υ0 and mean density ψ . It summarizes
the ranges of existence of resting and traveling crystalline and LS by
combining information gained through linear and nonlinear analy-
ses and direct numerical simulation. The accompanying Fig. 10(b)
gives a magnification of the υ0-range close to the onset of motion.
The blue and green colored areas indicate where spatially modu-
lated states exist. Thereby the shading encodes the number of density
peaks that evolve in the periodic domain of L = 100 ≈ 16 Lc, where
Lc = 2π . The white regions correspond to the homogeneous liquid
state (ψ = 0). Spatially extended states that fill the entire domain
with 16 peaks are shown in green and occur at a large ψ .

The initial condition for each time simulation is a single
density peak, namely, a Gaussian with oscillatory tails [∝
exp(−x2/5) cos(x)]. It is randomly placed on a background of white
noise with a small amplitude noise as polarization. After a suffi-
ciently long transient, the number of density peaks is counted for a
time interval. Figure 10 shows the median of the peak count (always
a natural number). The parameter increments between simulations
in Fig. 10(a) are 1υ0 = 0.04 and 1ψ = 0.016, while for panel (b),
1υ0 = 0.003 and1ψ = 0.008 are used.

The solid and dashed white line gives the linear instability
threshold with respect to stationary and oscillatory modes, respec-
tively, as determined in Sec. III and shown in Fig. 1. In its vicinity,
LS of different sizes exist as indicated by the various shades of blue.
Their area of existence is bounded from below by the loci of the
folds of the resting and the traveling one-peak LS. They are given as
solid and dotted black lines, respectively, cf. Sec. IV D. It is remark-
able how well the results from time simulations match the results of
parameter continuation. Also note how well the steps in shading in
panel (b) indicate the gradual increase in size of the LS with increas-
ingψ . Other two-parameter continuations track the onset of motion

(a)

(b)

FIG. 10. (a) Morphological phase diagram in the plane spanned by activity υ0
and mean density ψ . The region of the stable liquid state is white, while crys-
talline structures of various sizes exist in the colored areas. The color bar indicates
the number of density peaks obtained in time simulations. Resting and traveling
LS are marked by shades of blue, while domain filling periodic patterns show as
green. The various lines in the diagram, the initial conditions of simulations, peak
counting and parameter sampling are described in the main text. (b) Magnifica-
tion of the υ0-range close to the onset of motion. Steps in shading illustrate the
gradual growth of LS for increasing ψ . Remaining parameters are as in Fig. 3.

where resting states undergo a drift-pitchfork bifurcation. The ver-
tical dotted white line marks the onset of motion for crystals. The
lower part (ψ < −0.69) of the nearly vertical line [see magnifica-
tion in Fig. 10(b)] represents the onset of motion for the one-peak
LS.

F. Oscillatory states

The parameter scan performed to obtain Fig. 10 has allowed us
to identify additional classes of moving states besides the traveling
LS. These are on the one hand oscillating LS that move back and
forth without a net drift. They are LS equivalents of the so-called
direction reversing traveling waves80 and have also been observed as,
e.g., “wiggling” LS in reaction–diffusion systems81 or as “creeping”
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FIG. 11. Panels (a) and (b) show space-time representation of the time evolution
of four-peak LS for states II (υHopf < υ0 = 0.164 < υc) and III (υ0 = 0.25 > υc)
in Fig. 12, respectively.

LS in a complex quintic Ginzburg–Landau model.82 An example
with four peaks is given as space–time plot in Fig. 11(a). On the other
hand, at a slightly larger υ0, our time simulations result in modu-
lated traveling LS. Similar states are found for binary convection58,83

where they are called “periodic traveling pulses”84 or “travelling-
wave pulse.”58 Such states exist with different peak numbers close
to the linear instability threshold of the uniform phase. An example
with four peaks is presented in Fig. 11(b).

Figure 12(a) depicts a corresponding bifurcation diagram in the
case of four-peak LS using υ0 as the control parameter, while panel
(b) shows selected density and polarization profiles. The diagram is
obtained combining the numerical continuation of steady and sta-
tionary traveling LS and time simulations of the oscillating direction
reversing and modulated traveling LS that could not be obtained by
continuation. At low activity, the LS are at rest (blue line, e.g., state
I). At about υHopf ≈ 0.16 a symmetry-breaking Hopf bifurcation
occurs. Time simulations at a slightly larger υ0 with υHopf < υ0 < υc

exhibit oscillating direction reversing LS [dark red line, e.g., state
II, Fig. 11(a)]. At υc ≈ 0.167, closely above υHopf, a drift-pitchfork
bifurcation occurs on the branch of resting LS. There, an unstable
branch of stationary traveling four-peak LS emerges, as shown as
dotted gray line in the inset of Fig. 12(a). It ends at the branch of
resting three-peak LS (not shown).

The time simulations indicate that oscillating (direction revers-
ing) states without a net drift exist only in a very narrow range of
activity. Beyond this range, time-simulations show modulated trav-
eling states (e.g., state III). The onset of motion occurs close to υc. In
Fig. 12(a), it is indicated by a sudden increase in the time-averaged
norm related to the jump onto another branch. The modulated
traveling states could be seen as a combination of the destabilized
drift and oscillatory modes. However, a simple superposition would
lead to a drifting direction-reversing oscillation. Instead, we find a
traveling envelope that moves with group velocity cgroup, while the
individual density peaks travel at a larger velocity cphase into the
same direction. This implies that peaks are created at the back of
the LS and vanish at its tip [Fig. 11(b)]. Similar localized states are
described in binary convection where convection cells are generated
and destroyed within a traveling pulse envelope.84

Increasing υ0 results in a larger difference between cgroup and
cphase. Note that the inset of Fig. 12(a) also indicates a hysteresis
between oscillating and modulated traveling LS (light red branch).

FIG. 12. (a) Bifurcation diagram of four-peak LS obtained by the continuation of
steady states (gray dashed line) and time simulations (solid lines): the (time-aver-
aged) norm ||ψ ||2 is shown as a function of activity υ0. The branch of resting
states undergoes a Hopf bifurcation at υHopf ≈ 0.16 and a drift instability at
υc > υHopf (black circles). A region of time-periodic states (red line) starts at
υHopf and ends at a fold bifurcation at υ0 ≈ 0.28 (for details, see main text). For
υ0 & 0.28, traveling one-peak LS (orange) are found. The inset enlarges the bifur-
cation structure. Employing time simulations to follow the branch of modulated
traveling LS with decreasing υ0 (light red branch in inset) reveals a hysteresis.
The branch of traveling four-peak LS (gray dotted, unstable, only shown in inset)
emerges at the drift-pitchfork bifurcation at υc. Panel (b) shows the profiles of
selected states at loci marked in panel (a). Directions of motion are indicated by
arrows. In particular: (I) resting four-peak LS; (II) oscillating four-peak LS; (III)
modulated traveling four-peak LS; (IV) traveling one-peak LS. See Fig. 11 for the
space–time plots of (II) and (III). ψ = −0.68, and the remaining parameters are
the same as in Fig. 3.

Due to restrictions of the numerical techniques used, our picture
of the details of the transition is incomplete. It is likely that more
(unstable) states and possibly global bifurcations are involved.

At another critical activity of υ0 ≈ 0.29, the branch of modu-
lated traveling four-peak LS seems to fold back as the corresponding
curve in Fig. 12(a) seems to approach a vertical. At a larger υ0,
time simulations only give traveling one-peak LS (e.g., state IV).
To ensure clarity of the diagram, we abstain from including further
one-peak branches.

The existence region of modulated traveling LS of different
peak numbers is shown in Fig. 13 extracting the pertinent data
from the parameter scan performed for Fig. 10. It is constructed by
detecting oscillations in the number of density peaks.

Note finally that a bifurcation scenario for various LS involving
modulated traveling LS is discussed in Ref. 84 for binary convection.
However, it cannot fully clarify where and how the branch of modu-
lated traveling LS emerges. For direction reversing traveling periodic
waves, Ref. 80 provides a scenario. It would be particularly interest-
ing to compare the scenarios involving resting, direction reversing
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FIG. 13. The shaded region indicates the occurrence of modulated traveling LS
of various peak numbers in the plane spanned by activity υ0 and mean density
ψ . Line styles and other details are as in Fig. 10. Oscillating LS (without net drift)
appear only in a very narrow υ0-range that is not resolved here.

traveling, and modulated traveling LS for systems without conserva-
tion law where aligned snaking of steady LS occurs (like Ref. 84) and
for systems with conservation law such as the one considered here.

V. INTERACTION OF TRAVELING LS

A. Two colliding LS

Having obtained an extensive description of individual local-
ized states in terms of their bifurcation structure and existence
regions in parameter space, we next explore the interaction between
LS. A simple way to study such interactions is to look at collision
dynamics. First, we examine two colliding one-peak LS. By studying
the outcome of collisions, we can distinguish different types of inter-
action between traveling crystallites. As before, our main control
parameters are the activity υ0 (setting the velocity of the colliding
crystallites) and the mean density ψ .

Our typical setup of a numerical collision experiment is as fol-
lows. We place two identical traveling one-peak LS with opposite
drift velocities at a sufficiently large distance into a domain of length
L with periodic boundary conditions and perform a direct time sim-
ulation. Due to the periodic boundary conditions, collisions can
occur repeatedly allowing us to probe long-time stability. If the col-
liding LS are initially regularly spaced, the free path λ between two
subsequent collisions is L/2.

Figure 14 illustrates a typical “elastic” collision of two traveling
one-peak LS. Note that “elastic” is used to indicate that the states
before and after the collision are identical up to reversed veloci-
ties. This is in contrast to an elastic collision in a mechanical system
where the kinetic energies before and after the collision are identical.
The present nonequilibrium system is overdamped and results from
a balance of energy gain (related to a self-propulsion mechanism)
and dissipation. No kinetic energy can be assigned to a moving LS.

The snapshots in Fig. 14 show that for t . 40 the LS approach
each other at constant velocity, then interact and undergo a defor-
mation that includes a fully fused one-peak intermediate at t ≈ 55.

FIG. 14. Snapshots of the density profile ψ(x, t) of two colliding one-peak LS
at υ0 = 0.5 and ψ = −0.7, taken at different times t as indicated in the panels.
Arrows in the first and final panel indicate the direction of motion. The LS approach
each other with a constant velocity and interact till complete fusion at t ≈ 55. Then
they separate again, i.e., the LS get reflected. Finally, the LS completely recover
from the collision and regain their original height and velocity. A space-time plot of
this collision is given in Fig. 15(a). The domain size is L = 100 and the remaining
parameters are as in Fig. 3.

Such a state is called “scattor” in Ref. 85. After this momentary
fusion, the LS reverse velocity and separate again. Overall, they are
eventually reflected and move steadily away from each other from
about t = 60. Finally, the LS completely recover from the collision
and regain their original profile and velocity. This is most clearly
seen in the accompanying space-time plot in Fig. 15(a) where the
trajectories of the two LS before and after the collision show the same
absolute value of the slope. Alternatively, one may describe the inter-
action as the encounter of two solitary pulses that pass through each
other.

Due to the periodic boundary conditions, a sequence of col-
lisions continues ad infinitum. For this to occur, the employed
domain has to be sufficiently large for the colliding LS to fully
recover after a collision before the next one occurs. In consequence,
in a system with several LS, each LS needs enough time to recover
after each collision to keep a constant number of LS. The recovery
time corresponds to a critical free path that needs to be exceeded.
This is further discussed below in the context of Fig. 16.

Our main control parameters υ0 and ψ strongly influence
the outcome of a collision. Figure 15 shows space-time plots of
four selected examples that illustrate qualitatively different behavior.
Figure 15(a) presents the previously discussed case of two elasti-
cally colliding LS. Decreasing ψ from −0.7 to −0.75, one finds the
interaction shown in Fig. 15(b). The traveling LS interact till they
fully merge forming a scattor and then start to move apart again.
However, instead of recovering their original properties, they fade
away into the linearly stable homogeneous liquid state that forms
the background. The overall result of this collision is a complete
annihilation of the two LS.

Keeping ψ = −0.75, a decrease in activity from υ0 = 0.5 to
υ0 = 0.2 (already close to the onset of motion at υc ≈ 0.16) gives
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FIG. 15. Shown are space–time plots of the density field ψ(x) for qualitatively
different collisions of two one-peak LS. Panel (a) represents the elastic collision
at υ0 = 0.5 and ψ = −0.7 corresponding to Fig. 14; (b) gives an interaction at
υ0 = 0.5 and ψ = −0.75 resulting in a complete annihilation of both LS. Panel
(c) shows an inelastic collision at υ0 = 0.2, ψ = −0.75 resulting in a sequence
of unstable resting and modulated traveling two-peak LS and ultimately in a trav-
eling one-peak LS. Finally, panel (d) gives an “avoided collision” at υ0 = 0.163,
ψ = −0.71 where the initial state directly transforms into a state of anti-phase
direction-reversing oscillations. In all cases, time increases from top to bottom.
The domain size is L = 100, and the remaining parameters are the same as in
Fig. 14.

FIG. 16. The occurrence of elastic collisions of one-peak LS in the parame-
ter plane spanned by υ0 and ψ is indicated by the shaded areas for different
free path lengths λ. In the white area, collisions are inelastic (or no traveling
LS exist), and the number of colliding LS is not conserved. Results for differ-
ent λ are given as black (λ = 25), blue (λ = 50), greenish (λ = 100), and
light gray (λ = 200) shading. Parameter increments between simulations are
1υ0 = 0.006 and 1ψ = 0.00125. The remaining line styles and parameters
are as in Fig. 10.

the more intriguing inelastic behavior shown in Fig. 15(c). There,
the two traveling LS approach each other, interact but do not merge.
Instead, at t ≈ 250, they come to rest in a bound two-peak state.
At first it seems to persist (note the large time scale of the simula-
tion); however, at t ≈ 500, the state deforms and starts to travel to
the left as a modulated traveling two-peak state with cgroup < cphase.
Again, the state turns out to be an unstable transient, and at t ≈ 800,
a one-peak LS survives that travels with the same speed as the initial
LS.

Finally, Fig. 15(d) presents an example at a υ0 very close
to υc. The two LS start to approach but then repel each other
already long before a proper collision takes place. Subsequently,
their motion resembles a periodic anti-phase direction-reversing
oscillation. Depending on the type of interacting LS and parameter
values, several other cases are possible. However, most occur only in
very small parameter ranges and are, therefore, not discussed here.

Similar collision scenarios of LS and transitions between
them are discussed for a large number of systems. One example
are LS in binary convection,58,59 that are modeled with coupled
Ginzburg–Landau equations86 and employ the full hydrodynamic
model.87 In Ref. 86, it is demonstrated that there exists an extended
parameter range where the interaction is elastic and resembles
the collision behavior of conservative integrable systems. However,
complete and partial annihilation of LS caused by interaction is also
observed. Reference 58 furthermore describes an interaction of LS
that results in resting bound states. The interaction of LS is also stud-
ied for various reaction–diffusion systems85,88 and a complex cubic
Ginzburg–Landau-like model.85 Besides elastic collisions, a number
of other scattering events are analyzed, including (partial) annihi-
lation, repulsion, fusion, and chaotic dynamics. Similarly, Refs. 89
and 90 discuss the interaction of LS in a three-component reac-
tion–diffusion system. They distinguish generation, annihilation,
and scattering of LS as well as the formation of different bound
states. The collision of LS with several peaks in a nonvariational
cubic-quintic Swift–Hohenberg model is considered in Ref. 91. It
seems to always show inelastic behavior. Similar behavior is also
found for traveling LS in binary fluid convection.87 Elastic scatter-
ing of LS and the formation of moving LS or resting bound states
are also observed in a planar gas-discharge system.30

Here, we focus on the prevalent elastic collisions and investi-
gate their occurrence in the parameter plane spanned by υ0 and ψ .
Again, we initially place two traveling one-peak LS equally spaced
on a domain of size L resulting in a free path of λ = L/2 between
collisions. Time simulations are performed for each pair (υ0,ψ) at
four different values of λ. The resulting parameter map is presented
in Fig. 16.

Toward large ψ , the considered region is limited by the lin-
ear instability threshold of the liquid state (horizontal dashed line).
Above the line, the uniform state is unstable and spatial modula-
tions grow everywhere. Further details are given below. As before,
the nearly vertical dotted line on the left of Fig. 16 marks the onset
of motion for one-peak LS and thus represents the lower limit of
the investigated υ0-range. The limit at a low ψ is provided by the
boundary of the existence region of one-peak LS.

The respective shaded regions indicate where the collision is
elastic for the different free path lengths λ. One notices at υ0 ≈ 0.28
a rather sharp transition from inelastic to elastic collisions that is
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nearly independent of λ. At lower values of υ0, the LS spend too
much time in the collision process and lose part of their mass before
separating again. If this loss is too large, complete recovery does
not occur. At a larger υ0, the LS are faster and spend less time in
the actual collision process. This results in a fast complete recovery
and long-time conservation of the number of collision partners. One
also notices that for elastic collisions to occur, at λ = 50, the mean
density has to exceed a value between ψ ≈ −0.71 and ψ ≈ −0.73,
depending on the exact value of υ0 & 0.28.

Comparing the differently shaded regions in Fig. 16, we note
a clear influence of the mean free path λ on the collision behavior.
The largest considered free path is λ = 200 and results in the largest
region of elastic collisions. At a large υ0, it nearly coincides with
the existence region of traveling one-peak LS. Successively reduc-
ing the free path to λ = 100, λ = 50, and finally to λ = 25 results in
a decrease in size and finally disappearance of the region of elastic
collisions. Interestingly, the above discussed relatively sharp bound-
ary at υ0 ≈ 0.3 depends only weakly on λ = 50 . . . 200. In contrast,
the nearly horizontal low-ψ limit at a large υ0 with decreasing λ
continuously moves toward larger ψ . For λ < 50, the change is
more dramatic: at λ = 25, most of the region of elastic collisions

has vanished. This implies that overall, a free path of at least λ ≈ 50
seems necessary for elastic collisions to occur.

Finally, we shed some light on the behavior in the region above
the linear stability threshold of the uniform state. Figure 17(a) shows
that the area of elastic collisions as determined in Fig. 16 with
λ = 50 reaches well into the linearly unstable region. This is pos-
sible because due to mass conservation the presence of the LS lowers
the liquid background density, thereby shifting the stability thresh-
old. However, this only holds for a small range of ψ . The transition
from light blue indicating two peaks to darker shading indicates
the upper limit of the region of elastic collisions. Increasing ψ fur-
ther leads to the creation of additional spatial modulations in the
vicinity of the original LS. Figures 17(b)–17(d) demonstrate selected
time evolutions of the colliding density peaks. In panel (b), the ini-
tial traveling LS broaden rapidly by developing further peaks. The
enlarged structures collide, their envelopes come to rest, while the
individual peaks continue to travel with opposing phase velocities.
Overall, a localized source-sink structure of peaks is formed. Panel
(c) shows a domain-filling traveling crystal with a source of travel-
ing peaks on the boundary and a sink at the center. In panel (d),
a state with four density peaks has emerged, all traveling into the

FIG. 17. (a) Morphological phase diagram in the (υ0, ψ )-plane for an initial free path of λ = 50. Shown is the region above the linear stability threshold of the liquid phase
at ψ ≈ −0.67. The initial state corresponds to two traveling one-peak LS on collision course. The long-time outcome is presented in terms of the color-coded number of
density peaks. Light blue indicates elastic collisions of two-peak LS. Increasingψ , the homogenous background becomes unstable resulting in the formation of an increasing
number of peaks. The remaining parameters are as in Fig. 16. Panels (b) to (d) give selected space-time plots of long-time behavior at parameters indicated in panel (a) by
letters “b” to “d,” respectively.
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same direction. The emerging states in panels (b) and (c) show coex-
istence of traveling waves and standing waves not unlike extended
states described for binary fluid convection.92 Related bursts of trav-
eling waves coexisting with a localized steady pattern are discussed
in Ref. 93.

B. Gas of colliding LS in 1D

Based on the obtained results for the elastic collisions of two
traveling one-peak LS, we now investigate the behavior of several
such LS confined in a large domain. If the number of colliding “par-
ticles” is conserved, such a system could be termed a “gas.” Figure 18

FIG. 18. (a) Space-time plot of a “stable gas” of traveling one-peak LS on a
domain with L = 600 at υ0 = 0.5 and ψ = −0.7. Twelve one-peak LS are
equally spaced on the domain, resulting in a uniform and constant free path of
λ = 50. Panel (b) shows a case where the LS are initially randomly shifted from
the regular spacing. As a result, most LS decays after a number of collisions and,
eventually, only four LS survive. The remaining parameters are as in Fig. 14.

demonstrates that the minimal free path is crucial for the conserva-
tion of the number of LS. Figure 18(a) shows that for initially 12
equally spaced one-peak LS with alternating velocities, a domain of
size L = 600 provides sufficient space. The corresponding free path
of λ = 50 allows all LS to recover their original properties and to
undergo consecutive elastic collisions.

However, this only works if the initial spacing of the LS is reg-
ular, as then all trajectories of the ensemble of LS form a regular
pattern in the space-time plot, i.e., all collisions are synchronous and
all free path lengths are identical and constant across collisions. This
is highly unrealistic. In the more realistic situation of LS of varying
distances but with the same mean free path one finds the behav-
ior in Fig. 18(b). There, the 12 LS are initially randomly shifted
away from the regular spacing. Then, the free path is identical to
the previous case and above the critical one; however, not all of the
individual free paths are larger than the critical one at all times. This
implies that time spans between some of the collisions are too short.
The involved LS do not recover their original properties and decay
into the homogeneous background. After several collisions the gas
is thinned out and consists only of LS traveling with identical speed
into the same direction. In the shown example, only four LS survive.

This implies that a stable gas of LS cannot be achieved as
in the parameter region where elastic collisions occur, there is no
mechanism for the creation of individual peaks out of the uniform
background. A possible mechanism could exist beyond the onset of
linear instability of the homogeneous background state. However,
our investigation in Sec. V A has shown that no individual “free” LS
are created in this way but only multi-peak structures showing more
complicated collective behavior (see Fig. 17).

VI. CONCLUSION

We have investigated the collision behavior of localized states
of the active Phase-Field-Crystal (aPFC) model that combines ele-
ments of the Toner–Tu theory for self-propelled particles and the
classical Phase-Field-Crystal (PFC) model for the liquid to crys-
talline phase transition. Based on the results of Ref. 46 on the linear
stability of the homogeneous liquid state, and the existence and
onset of motion of space-filling crystals and selected crystallites,
i.e., localized states, we have first studied the bifurcation structure
and existence regions of various traveling localized states in detail.
This has allowed us to identify oscillating and modulated travel-
ing localized states. Like the traveling localized states, they have no
counterpart in the classical PFC model that only allows for resting
states.

The results of linear stability analyses, two-parameter contin-
uation, and direct time simulations have been combined to obtain
morphological phase diagrams in the parameter plane spanned by
activity and mean density. They indicate where the various resting
and traveling localized states exist. This has allowed us to identify the
parameter region where the collision behavior of traveling one-peak
localized states can be analyzed. As a result, we have distinguished
elastic and inelastic collisions. In the elastic case, the localized states
eventually recover their properties after a collision. In contrast, in
the inelastic case, the localized states may completely or partially
annihilate, forming resting bound states or various traveling states.
This occurs at all studied parameter values if a certain minimal free
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path is no longer guaranteed. We have shown that this rules out the
possibility of a stable “gas” of localized states, as in such a gas, there
is always a spectrum of different free paths. This results in the anni-
hilation of localized states if one does not use highly artificial regular
initial conditions.

There remains a number of questions that merit further investi-
gation. First, the bifurcation behavior related to the emergence of the
newly identified direction reversing oscillating and modulated trav-
eling localized aPFC states should be clarified. This has remained
beyond the scope of the present work, but this is done for sev-
eral time-periodic spatial structures in reaction–diffusion systems.81

Continuation techniques are employed for (simpler) systems of
driven94,95 or active matter.78 Ultimately, this should contribute to
a more systematic understanding of mechanisms that result in the
onset of motion in various systems of active matter described by
nonvariational models.96–98

Second, it will be very instructive to expand the present study
toward two- and three-dimensional systems as done for the classical
passive PFC model in Refs. 42, 62, and 77 or for reaction–diffusion
systems in Refs. 31, 90, and 99. However, an increase in dimension-
ality will result in a much richer bifurcation behavior as there are
more symmetries that can be broken. This may, for instance, result
in the occurrence of drift bifurcations for the onset of translation (as
in the present one-dimensional case) and also for rotation similar to
transitions observed for LS in reaction–diffusion systems.100

As an outlook, we consider an example for the collision behav-
ior in two spatial dimensions that allows us to point out certain fea-
tures and may serve as a starting point for future studies. Figure 19
shows snapshots of a simulation initialized with six randomly placed
one-peak LS that travel with a constant speed of c ≈ 0.15 in vari-
ous directions (according to an activity of υ0 = 0.2). Interestingly,
the collision behavior is much more robust than in the 1D case.

FIG. 19. Time series of snapshots showing the collision and condensation dynamics of six traveling LS at υ0 = 0.2 and ψ = −0.8. Shown is the density profile ψ(x, t) at

times t as given in the panels. The domain size is Lx × Ly = 32π/
√
3 × 14π and has periodic boundaries. Note that all LS are in motion at all times. Remaining parameters

are as in Fig. 14.
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We find that the number of peaks remains constant through the
various collisions. In contrast to the 1D case, after the first colli-
sions (from t ≈ 50), the one-peak LS “condense” into larger clusters,
first into two- and three-peak LS (the latter emerges at t ≈ 100) and
finally into a six-peak LS (t = 4000). Within the cluster, the den-
sity peaks form a hexagonal pattern. The white arrow indicates the
direction of motion and is oriented perpendicularly to one side of
the equilateral triangle at the tip of the cluster. Before this direction
of translation emerges, rotational modes are visible and the direction
of the collective drift keeps changing.

Such a dynamical coalescence of active particles into extended
clusters that move as one entity is also observed in experiments. For
instance, in Ref. 101, carbon-coated colloidal Janus particles are dis-
persed in a mixture of water and lutidine and move with a speed
depending on the intensity of illumination. There, the formation
of larger clusters is a dynamical process and is counteracted by the
break up of clusters. It will be interesting to investigate whether such
breakup processes can also occur in the dynamics of ensembles of LS
in the active PFC model.
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APPENDIX: ADDITIONAL BIFURCATION DIAGRAMS

FOR RESTING AND TRAVELING LS

In this Appendix, we supplement the information given in
Sec. IV B regarding the bifurcation structure of resting and traveling
localized states (LS). In particular, we present additional bifurca-
tion diagrams to allow the interested reader to better follow the
various changes in their structure that occur with increasing mean
density ψ .

First, we increase the mean density from ψ = −0.83 of Fig. 3
to ψ = −0.80. Then, there are 12 steady LS at υ0 = 0 (cf. Fig. 2) as
an additional branch of resting six-peak LS has appeared above the
other branches. The resulting bifurcation diagram over υ0 is given
in Fig. 20. The branches of steady n-peak LS are qualitatively simi-
lar to the previous case of ψ = −0.83 (Fig. 3); only the annihilating
saddle-node bifurcations have moved to a slightly larger υ0, and the
range of represented norms is larger. More importantly, the saddle-
node bifurcation where the traveling one-peak LS ends has moved
markedly to the right, i.e., the υ0-range of their existence is much
larger than before. Most remarkably, a second branch of traveling LS
has come into existence that consists of two-peak states. Its structure
is more involved than the one of the one-peak states, as it undergoes
three saddle-node bifurcations. However, these states only exist in

FIG. 20. Panel (a) shows the bifurcation diagram as a function of υ0 at a
fixed ψ = −0.80, while (b) magnifies the branches of traveling LS. Line styles,
symbols, and remaining parameters are as in Fig. 3.

a small υ0-range, and the whole branch lies within the region lim-
ited by the branch of steady two-peak LS. The profiles of a sample
traveling two-peak LS are shown in Figs. 4(b) and 4(g).

As the branch of traveling two-peak LS in Fig. 20 has a nontriv-
ial form, we further investigate its metamorphosis with increasing
ψ . Figure 21 shows four intermediate stages between Figs. 3 and 20.
From this, it is clear that the traveling two-peak branch emerges (as
does the branch of traveling one-peak states) via the simultaneous
creation of two drift-pitchfork bifurcations at the saddle-node bifur-
cation of the resting LS (cf. top left panel of Fig. 21 at ψ = −0.824.

FIG. 21. To demonstrate how traveling two-peak LS emerge, a sequence of bifur-
cation diagrams of two-peak LS is given for mean densities between the ones of
Figs. 3 and 20, namely, forψ = −0.824,−0.822,−0.818, and−0.815 (from top
left to bottom right). Line styles and remaining parameters are as in Fig. 3.
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FIG. 22. Panel (a) shows the bifurcation diagram as a function of υ0 at fixed
ψ = −0.775, while (b) magnifies the branches of traveling one-peak, two-peak
and three-peak LS. Line styles, symbols, and remaining parameters are as in
Fig. 3.

As ψ increases, saddle-node bifurcations appear on the branch
through a hysteresis bifurcation and a transition from a supercritical
to a subcritical drift-pitchfork bifurcation.

Increasing the mean density to ψ = −0.775, we find the bifur-
cation diagram in Fig. 22. In contrast to the previous case, the branch
of resting three-peak LS now reaches activities high enough to result
in the emergence of a branch of traveling three-peak LS. Its creation
is identical to that of the branch of traveling two-peak LS, cf. Fig. 21.
However, the traveling three-peak LS exist only in a very narrow
range of υ0. A sample solution profile of a traveling three-peak LS is
given in Fig. 4.

A further increase to ψ = −0.75 results in the bifurcation
diagram presented in Fig. 5 in Sec. IV B. Changes include the appear-
ance of a branch of steady seven-peak LS and a branch of traveling
four-peak LS and are discussed in the main text.

At ψ = −0.73, see Fig. 23, the branches of resting one- to
five-peak LS exist and each of them is the source of a branch of
traveling LS, i.e., they also exist with one to five peaks. Two further
remarkable changes have occurred. First, the bifurcation structure
of the branches of traveling one-peak and three-peak states has
changed. They are now connected by an additional saddle-node
bifurcation at υ0 ≈ 0.18 [Fig. 23(b)]. Details of the pinch-off tran-
sition occurring between ψ = −0.736 and ψ = 0.734 at υ0 ≈ 0.17
can be discerned in Fig. 24, where a series of bifurcation diagrams
focuses on the relevant changes occurring between Figs. 5 and 23.
We see that for increasing ψ the two nearly aligned parts of the
two branches approach each other until they touch and reconnect.
There is now an “open loop” that is disconnected from the branches
of resting LS. At pinch-off, two saddle-node bifurcations are cre-
ated. Their separation increases with increasing ψ and the one on
the left hand side soon merges into the remaining drift-pitchfork
bifurcation.

FIG. 23. Panel (a) shows the bifurcation diagram as a function of υ0 at fixed
ψ = −0.73, while (b) magnifies the branches of traveling one- to five-peak LS.
Traveling one-peak LS exist now for arbitrarily large activity. Here, the black square
indicates the newly formed saddle-node bifurcation resulting from the pinch-off
bifurcation. Remaining line styles, symbols, and parameters are as in Fig. 3.

Second and most importantly, the position of the saddle-node
bifurcation where the branch of traveling one-peak LS terminates
at a high υ0 has diverged to υ0 → ∞, i.e., these traveling states
now exist at arbitrarily high activities (and can reach corresponding
velocities).

The final increase in mean density that we consider here, brings
us to ψ = −0.71, see Fig. 25. Compared with ψ = −0.73 (Fig. 23),

FIG. 24. A series of bifurcation diagrams focusing on the pinch-off bifurca-
tion involving the branches of traveling one- and two-peak LS. Diagrams for
ψ = −0.738,−0.736,−0.734, and −0.732 (from top left to bottom right) are
shown. Line styles and remaining parameters are as in Fig. 3.
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FIG. 25. Panel (a) shows the bifurcation diagram as a function of υ0 at fixed
ψ = −0.71, while (b) magnifies the branches of traveling three- to five-peak
LS. Traveling one-peak LS still exist for an arbitrarily high activity. Remaining line
styles, symbols, and parameters are as in Fig. 3.

an additional branch of resting eight-peak LS has appeared. Also,
the bifurcation structure of the branches of traveling LS is now
partly dissolving due to further pinch-off bifurcations. To obtain
an impression, see the sequence of magnifications at different ψ

FIG. 26. Details are given for the intricate bifurcation processes occurring
betweenψ = −0.73 (Fig. 23) andψ = −0.71 (Fig. 25). Panel (a) focuses on the
pinch-off bifurcation of traveling two- and three-peak LS and showsmagnifications
for ψ = −0.730,−0.727,−0.724, and −0.721 (from top left to bottom right)
where even isolas of traveling LS are created. Panel (b) shows how the travel-
ing two-peak LS disappears with increasingψ = −0.728,−0.722,−0.715, and
−0.710 (from top left to bottom right). Line styles and remaining parameters are
as in Fig. 3.

FIG. 27. Loci of the saddle-node and drift-pitchfork bifurcations of traveling
localized one-, two-, three-, and four-peak states (not distinguished) from two--
parameter continuation. Saddle-node bifurcations are given by solid lines and
drift-pitchfork bifurcations by dotted-dashed lines. Remaining parameters are as
in Fig. 3.

given in Fig. 26(a). Note that an isola of traveling LS is created
by two pinch-off bifurcations. Upon a further increase of ψ , this
isola shrinks and disappears in another codimension-2 bifurcation.
Figure 26(b) illustrates with a sequence of magnifications at different
ψ how another branch of traveling LS first straightens, then shrinks
in length by moving toward a saddle-node bifurcation of resting LS
that finally entirely absorbs it. In this way, many of the multi-peak
traveling LS disappear. However, the branches of traveling one- and
two-peak LS are robust and determine the behavior at a large υ0 (cf.
Fig. 25).

The presented study of individual bifurcation diagrams has
shown how the various branches of resting and traveling localized
states emerge, expand, reconnect, shrink, and vanish upon changing
the mean density.

These glimpses gained in the Appendix and in Sec. IV B at
particular values of the mean density are amplified in Secs. IV C
and IV D by considering the behavior in the parameter plane
spanned by mean density ψ and activity υ0.

Finally, Fig. 27 supplements the existence diagrams given in
Figs. 8 and 9 of the main text. Figure 27 not only includes the
saddle-node bifurcations and drift-pitchfork bifurcations of one-
and two-peak LS but also adds the corresponding loci of traveling
three-peak and four-peak LS. Their region of existence is smaller
than the one for the one- and two-peak states. This completes the
overview of steady and traveling LS.

DATA AVAILABILITY

The data that support the findings of this study are openly
available in Zenodo at https://doi.org/10.5281/zenodo.4322992.102
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