
Alternative pathways of dewetting for a thin liquid two-layer film

Andrey Pototsky, Michael Bestehorn, and Domnic Merkt
Lehrstuhl für Theoretische Physik II, Brandenburgische Technische Universität Cottbus,

Erich-Weinert-Straße 1, D-03046 Cottbus, Germany

Uwe Thiele
Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, D-01187 Dresden, Germany

(Received 11 December 2003; published 11 August 2004)

We consider two stacked ultrathin layers of different liquids on a solid substrate. Using long-wave theory, we
derive coupled evolution equations for the free liquid-liquid and liquid-gas interfaces. Depending on the
long-range van der Waals forces and the ratio of the layer thicknesses, the system follows different pathways
of dewetting. The instability may be driven by varicose or zigzag modes and leads to film rupture either at the
liquid-gas interface or at the substrate. We predict that the faster layer drives the evolution and may accelerate
the rupture of the slower layer by orders of magnitude, thereby promoting the rupture of rather thick films.
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Instability phenomena in ultrathin soft matter films with
thicknesses below 100 nm became relevant mainly because
they obstruct the fabrication of homogeneous coatings[1].
The interest was further boosted by the possibility to control
such processes and to use them to manufacture functional
layers on the nanometer scale[2,3]. The stability of ultrathin
films is dominated by the effective molecular interactions
between the substrate and the film surface[4]. They repre-
sent, for instance, long-range van der Waals forces which
increase(decrease) the pressure in the film if they are attrac-
tive (repulsive) [5]. However, to determine the emerging
length scale and pattern for unstable films a study of the film
dynamics is required. Using a film thickness evolution equa-
tion obtained by long-wave approximation[6], the dewetting
of a single layer of liquid is now reasonably well understood
(see, e.g., Ref.[7]).

However, little is known about the behavior of two
stacked ultrathin layers of simple or polymeric liquid on a
solid substrate(see Fig. 1). Such a two-layer film allows for
richer dynamics than a one-layer system, because both the
free liquid-liquid and the free liquid-gas interface evolve in a
coupled way. The evolution is driven by the effective mo-
lecular interactions betweenall the three interfaces separat-
ing the four material layers: substrate, liquid1, liquid2, and
ambient gas. Although experimental studies investigated the
different aspects of dewetting for two-layer films, like inter-
face instabilities or the growth of holes[8–15], up to now no
general theoretical description of the interface dynamics has
been given[16]. The case of small interface deflections was
investigated in Ref.[17] for a thickness of the lower layer,
d1, much larger than that of the upper onesd2−d1d.

The most intricate questions for the first stage of dewet-
ting of a two-layer system arewhich interface will become
unstable,wheredoes the film rupture, andhow longwill it
take. This will determine the observability of the instability
and the final morphology of the film. Experiments found a
roughening of the liquid-liquid interface[12] or an instability
of the liquid-gas interface[8,15]. Holes that evolve solely in
the upper layer were also studied[9,10].

In this Rapid Communication, we derive and analyze

coupled long-wave evolution equations for the two interfaces
that are valid for all interface deflections and thickness ratios.
We show that solely by changing the thickness ratio of the
layers, one switches between different dominant instability
modes. This leads to drastic changes of the pathway of dew-
etting from rupture at the substrate, to rupture at the liquid-
liquid interface(see Fig. 2 below). Remarkably, for systems
composed of two layers of very different thickness, i.e., with
very different time scales for the rupture of the individual
layers, the faster layer drives the evolution and accelerates
the growth of surface modulations of the slower layer by
orders of magnitude. We illustrate our results for two-layer
systems of polystyrene(PS) and polymethylmetacrylate
(PMMA), with silicon (Si) or silicon oxide (SiO) as sub-
strates, like those studied experimentally in Refs.[9,11,15].

We believe our model can be used not only for the de-
scription of two-layer experiments with simple or polymeric
liquids, but using an appropriate free-energy functional, also
for a liquid film on a substrate with a stable but soft coating
like a polymer brush[18] and, including driving terms, for
studies of the transport of liquid droplets in liquid-liquid mi-
crofluidic systems[19].

Coupled film thickness equations. We obtain evolution
equations for the film thicknessesh1 and h2 by simplifying
the Navier-Stokes equations employing long-wave approxi-
mation [6]. Thereby a no-slip condition at the substrate, the
continuity of the velocity field, and the balance of the stress
tensors at the liquid-liquid and liquid-gas interfaces, are

FIG. 1. Geometry of the two-layer system. The mean film thick-
nesses of the lower and upper layer ared1 andd2−d1, respectively.
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used. Considering an isothermal two-layer system, where
both layer thicknesses are smaller than 100 nm, we neglect
gravity and solely focus on the effective molecular interac-
tion. For simplicity we only regard nonretarded long-range
van der Waals forces resulting from dipole-dipole interac-
tions between apolar materials. However, the inclusion of
other forces, like, e.g., short-range polar forces[20] or slip
boundary conditions[6] (that may be necessary for polymer
films), is straightforward as for one-layer films. The details
of the derivation will be presented elsewhere. We obtain[16]
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wheredF /dhi with i =1,2 denotes functional derivatives of
the total energy of the system,
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tively. Ag21s, A21s, and A12g are four- and three-index Ha-
maker constants, with subscriptss, 1, 2, andg referring to
the substrate, liquid1, liquid2, and gas, respectively[21].
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wherem1 and m2 are the viscosities of liquid1 and liquid2,
respectively. Note that ford2−d1!d1 and for small surface
deflections Eqs.(1) simplify to those of Ref.[17]. Assuming
two identical liquids, Eqs.(1) reduce to the well-known one-
layer equation[6].

To compare with the well-understood one-layer systems,
we nondimensionalize Eqs.(1) using scales derived from the
upper layer as an effective one-layer system. We scalex with
lup=4psd2−d1d2Îps2/ uA12gu, hi with d2−d1, and t with tup

=48p2m2s2sd2−d1d5/A12g
2 . The corresponding energy scale

is uA12gu /16p3sd2−d1d2. The ratios of the mean thicknesses,
surface tensions, and viscosities ared=d2/d1, s=s2/s1, and
m=m2/m1, respectively. To compare with the lower layer as
an effective one-layer system, one introduces in an analo-
gous way the length scalellow and time scaletlow.

We simulate the coupled time evolution ofh1 andh2, Eqs.
(1), in a one-dimensional domain using a semi-implicit time
integration scheme and periodic boundary conditions. Initial
conditions consist of flat layers with an imposed noise of
amplitude 0.001. Alternative pathways of dewetting that oc-
cur for different thickness ratiosd are presented in Fig. 2
using a Si-polymethylmethacrylate-polystyrene-air system
(Si-PMMA-PS-air) as an example. Figure 2(a) shows that for
a relatively smalld=1.4 the two interfaces start to evolve
deflections that are in antiphase, indicating the dominance of
a varicose mode. When the liquid-gas interface approaches
the liquid-liquid interface the latter starts to move down-
wards due to dynamical effects. This pathway leads to rup-
ture of the upper layer, i.e., at the liquid-gas interface. On the
contrary, Fig. 2(b) shows that for a largerd=2.4 the growing
deflections of the two interfaces are in phase, indicating the
dominance of a zigzag mode. As a consequence, here the
lower layer ruptures, i.e., rupture occurs at the substrate.

Note that in both Figs. 2(a) and 2(b), at the moment of
rupture, the respective nonruptured layer is also in an ad-
vanced stage of its evolution, leading to subsequent rupture.
This is remarkable, because their time scales as effective
one-layer systems are 15[Fig. 2(a)] and 35 times[Fig. 2(b)]
slower than the time scales for the respective fast layer. The
ratio of the time scalestup/tlow is proportional tosd−1d5,
i.e., for a lower layer ten times thicker than the upper one,
the rupture time of the lower layer is about 5 orders of mag-
nitude larger than the one of the upper layer. However, a
simulation for a Si-PMMA-PS-air system withd1=10 and
d2−d1=1 shows that at rupture of the upper layer att
=0.61tup=3.99310−5tlow the lower layer already evolved a
depression of one-fourth of its thickness. If the lower layer is
the fast one, the effect also exists, but is less pronounced.

In both cases, the acceleration of the rupture of the slower
layer is caused by the direct coupling of the layers via the
liquid-liquid interface. The fast evolution of the thinner layer
deforms the interface and brings the thicker layer beyond the

FIG. 2. Snapshots from time evolutions of a two-layer film for a
Si-PMMA-PS-air system at dimensionless times(in units of tup) as
shown in the insets.(a) At d=1.4 a varicose mode evolves, leading
to rupture of the upper layer at the liquid-liquid interface. The ratio
of the time scales derived from the upper and lower effective one-
layer system istup/tlow=0.066. (b) At d=2.4 a zigzag mode
evolves and rupture of the lower layer occurs at the substrate
stup/tlow=34.98d. The domain lengths are five times the corre-
sponding fastest unstable wavelength andm=s=1.
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slow linear stage of its evolution. If the upper layer is the
driving layer the process is, in addition, dynamically en-
forced because the liquid-liquid interface is “pushed away”
by the advancing liquid-gas interface.

Linear stability analysis. A deeper understanding of the
different pathways can be reached by studying the linear sta-
bility of the initial flat layers. We linearize Eqs.(1) for small
disturbancesxi expsbtdcosskxd for i =1,2, where k, b, and
x=sx1,x2d are the wave number, growth rate, and ampli-
tudes of the disturbance, respectively. The dispersion relation
bskd is obtained solving the resulting eigenvalue problem
fk2Q·Eskd+bI gx=0, whereQ is the scaled mobility matrix
and E is derived from the free-energy Eq.(2) as Eij
=]hihj

rVW +di j s̃ik
2 (s̃1=1, s̃2=s, anddi j =1 for i = j and zero

otherwise). The stability threshold shown as a solid line in
Fig. 3 is determined byE for disturbances of infinite wave-
length, i.e.,k=0. The system is linearly stable for

detE . 0 andE11 . 0 at k = 0. s4d

An instability sets in if at least one of the conditions(4) is
violated. This implies that the two-layer film can be unstable
even if both,]h1h1

rVW and ]h2h2
rVW are positive, i.e., if the

effective one-layer systems related to these terms are both
stable.

Fixing the Hamaker constants, i.e., the combination of
materials, and changingd, one finds a line(trajectory) in the
stability diagram(Fig. 3) as shown for a variety of experi-
mentally studied systems. Interestingly, for van der Waals
interactions calculated as detailed in[21], one can show that
such a trajectorycannotcross the stability threshold, i.e., it is
not possible to stabilize such a two-layer system by solely
changingd. For instance, for the Si-PMMA-PS-air system
the second condition in(4) is violated for alld and the sys-
tem is always unstable. Atd=1, i.e., for a vanishing upper
layer, the system is on the boundary between the one- and
the two-mode regions(dashed line). For 1,d,2.3 the un-
stable mode is an asymmetric varicose mode. A correspond-
ing dispersion relationbskd is shown ford=1.4 in Fig. 4

[compare to the time evolution in Fig. 2(a)]. For d.2.3, i.e.,
for smaller thicknesses of the lower layer, the unstable mode
is an asymmetric zigzag mode. Figure 4 givesbskd for d
=2.4 corresponding to the time evolution shown in Fig. 2(b).
For the fastest mode the zigzag mode is strongly asymmetric,
i.e., the deflection of the liquid-liquid interface dominates the
linear stage of the evolution. Note thatbskd and the dominant
mode type depend ons and m, whereas the stabilitydoes
not.

Further on, the simultaneous action of the van der Waals
forces between the three interfaces allows for dispersion re-
lations with two maxima. An experimental system showing
this unusual form ofbskd can be realized with a substrate
that is less polarizable than both layers. This is the case for
the SiO-PMMA-PS-air system[21]. A dispersion relation
showing maxima of equal height is given ford=2.16 and
s=10 in Fig. 4. The maxima at small and largek correspond
to strongly asymmetric zigzag and varicose modes, respec-
tively. This implies that the larger(smaller) wavelength will
predominantly be seen at the liquid-gas(liquid-liquid) inter-
face [Fig. 5(a)]. Increasing(decreasing) the ratio of the sur-
face tensions strengthens the smaller(larger) wavelength.

FIG. 3. Stability diagram for fixed scaled coupling]h1h2
rVW

=8p2A12g/ uA12gu. Shown are the stability threshold(solid line) and
the boundary between unstable one- and two-mode regions(dashed
line). The thin lines represent the trajectories for commonly studied
systems:(1) Si-PMMA-PS-air,(2) SiO-PMMA-PS-air,(3) SiO-PS-
PDMS-air,(4) Si-PS-PDMS-air, and(5) Si-PDMS-PS-air. The Ha-
maker constants were calculated as detailed below[21].

FIG. 4. Dispersion relationsbskd for a Si-PMMA-PS-air system
at d=1.4 (dashed line, varicose mode) andd=2.4 (dot-dashed line,
zigzag mode) for parameters as in Fig. 2; and 4bskd for a SiO-
PMMA-PS-air system atd=2.16 (solid line) for m=1 ands=10.

FIG. 5. Single snapshots from time evolutions of a SiO-PMMA-
PS-air system ford=2.16,m=1, and differents. (a) The respective
evolutions of the two interfaces are dominated by modes of differ-
ent wavelengthsss=10,t=3.83d. In (b) and (c) the evolution is
dominated by the liquid-gas and the liquid-liquid interface, respec-
tively (s=5, t=3.9 ands=100, t=0.52).
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This implies that solely changings by adding an otherwise
passive surfactant, one can switch from an evolution entirely
dominated by the liquid-liquid interface to one dominated by
the liquid-gas interface. This illustrates Fig. 5 by single snap-
shots from the nonlinear time evolutions for differents.

To conclude, we have derived coupled evolution equa-
tions for a thin liquid two-layer film driven by long-range
van der Waals forces. The system represents the most general
form of coupled evolution equations for two conserved
order-parameter fields in a relaxational situation and is apt to

describe a broad variety of experimentally studied two-layer
systems[25]. Linear and nonlinear analysis have shown that
the mobilities have no influence on the stability threshold,
but determine the length and time scales of the dynamics. We
have shown that for a two-layer systemboth interface deflec-
tion modes—zigzag and varicose—may be unstable and lead
to rupture at the substrate or the liquid-liquid interface. Re-
markably, the faster layer accelerates the evolution of the
slower layer even if the latter is rather thick, implying that its
rupture time may be shortened by orders of magnitude.
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