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PACS. 68.15.+e – Liquid thin films.
PACS. 81.16.Rf – Nanoscale pattern formation.
PACS. 68.55.-a – Thin film structure and morphology.

Abstract. – The structuring process of two-layer liquid films driven by van der Waals in-
teractions is investigated numerically for three-dimensional systems. Different types of dy-
namical transitions of the interface morphologies are characterised using coupled evolution
equations for the thickness profiles. We introduce a global deflection measure that faithfully
captures the transitions occurring in the course of the short- and long-time evolution. Using
an Si/PMMA/PS/air system as example, transitions via branch switching and via coarsening
are analysed in detail.

The dewetting of ultrathin liquid films with thicknesses below 100 nm is normally caused
by long-range van der Waals interactions between the molecules of the gas, the liquid(s) and
the substrate [1, 2]. For a one-layer film of thickness h the corresponding excess interface
energy per unit area is Φ(h) ∼ 1/h2. Dewetting is initiated by a surface instability if the
second derivative d2Φ/dh2 is negative [3, 4]. Besides the resulting short-time film-rupture
dynamics the dependence Φ(h) also dictates the long-time evolution, i.e. it determines the
morphology of the surface patterns appearing at early times as well as morphology changes
at later times. In the one-layer case three different morphologies are possible: drops, holes
and as an intermediate, mazes or labyrinths [5]. If the linearly unstable film thickness range
is bounded from below and above by finite metastable ranges, i.e. a Maxwell construction
results in two finite equilibrium thicknesses (hmin and hmax in fig. 1a, cf. also [4, 6]), then
drops (holes) form for an initial film thickness h0 left (right) of the Maxwell point [5, 7]. For
h0 close to the Maxwell point mazes prevail in the short-time evolution.

However, the pattern morphology may change in the course of the time evolution depending
on the existence of the upper boundary of metastability. If hmax < ∞ exists (as for the dis-
joining pressure −dΦ/dh in fig. 1a), the morphology does not change [5,7], i.e. drops coarsen
to drops and holes coarsen to holes. On the contrary, if hmax < ∞ does not exist (fig. 1b), the
evolution may start with a hole pattern which during coarsening turns into a drop pattern [8].
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Fig. 1 – Shown is the first derivative for two excess interface energies (corresponding to the neg-
ative disjoining pressure). (a) Combination of the Pismen-Pomeau pressure with a hydrostatic
term dΦ/dh = 2 exp [−h][1 − exp [−h]] + 0.05h [9, 10]. (b) Combination of a stabilizing long-range
van der Waals with a destabilizing short-range polar interaction dΦ/dh = −b/h3 + exp [−h] [10, 11],
with b = 1. Vertical dotted lines indicate boundaries between unstable, stable and metastable film
thickness ranges. They result either from the condition d2Φ/dh2 = 0, or from the Maxwell construc-
tion. In (b) the stable-metastable boundary is obtained from dΦ/dh = 0.

Fig. 2 – Sketch of the two-layer film. Note that h1 and h2 are the thickness of the lower layer and
the overall thickness, respectively.

In this letter we investigate different types of morphological transitions that may occur
in dewetting two-layer films. First experimental results show already intricate behaviour not
known from one-layer films [12–15]. Here, we show that results obtained for two-dimensional
systems [16] can also guide the investigation of such transitions in the physically realistic case
of three dimensions. The behaviour of two layers of immiscible liquids sandwiched between
a solid substrate and a gas (fig. 2) is governed by a van der Waals interface excess energy
that depends on the thicknesses of both layers. Specifically, it contains three contributions
Φtwo = Φ12g+Φ21s+Φg21s corresponding to the interactions of layer 1 with the gas across layer
2, of layer 2 with the substrate across layer 1 and of the gas with the substrate across layers
1 and 2, respectively. A flat two-layer film is linearly unstable if (∂2

h1h1
Φtwo)(∂2

h2h2
Φtwo) −

(∂2
h1h2

Φtwo)2 < 0 or ∂2
h1h1

Φtwo < 0 [17]. This corresponds to an energy surface Φtwo(h1, h2)
that is concave or has a saddle point at the given thicknesses h1 and h2.

In the course of the time evolution the morphology of a two-layer film may change in
various ways and at different stages of the evolution. One can distinguish the morphologies
at the linear and the nonlinear stages of the short-time evolution and the one resulting in
the long-time coarsening. Because of the relaxational nature of the thin-film time evolution
the basic behaviour can be predicted from an analysis of the underlying energy functional
in combination with a linear analysis of the time evolution. It is well known that the time
evolution of both, one-layer [18] and two-layer [17], isothermal films can be modelled by a
gradient dynamics for the energy functional F , given for a two-layer film by

F =
∫ [

σ12
(∇h1)2

2
+ σ2

(∇h2)2

2
+ Φtwo

]
dxdy, (1)

where σ12, σ2 are the interface tensions of the liquid-liquid and the liquid-gas interface, re-



A. Pototsky et al.: Interface patterns of two-layer liquid films 667

spectively. The evolution equations for the film thicknesses h1 and h2 write [17,19,20]

∂th1 = ∇
[
Q11∇ δF

δh1
+ Q12∇ δF

δh2

]
,

∂th2 = ∇
[
Q21∇ δF

δh1
+ Q22∇ δF

δh2

]
, (2)

with the mobilities

Q =
1
µ1

(
h3
1
3

h2
1
2 (h2 − h1

3 )
h2
1
2 (h2 − h1

3 ) (h2−h1)
3

3 (µ1
µ2

− 1) + h3
2
3

)
, (3)

where µ1 and µ2 are the viscosities of liquid 1 and liquid 2, respectively.
Due to dissipation by viscous friction F decreases monotonically in time. Possible steady

states make F extremal. Starting from the unstable flat film, a thickness profile approaches
during its time evolution a number of steady states with consecutively decreasing energy. For
one-layer films, typically, lower-energy steady states have a larger period, i.e. the surface
patterns coarsen in time. In ref. [16] it was shown that this is not necessarily the case for two-
layer systems. Using the two-dimensional case continuation techniques [21] were employed to
study the minima of F . However, in the three-dimensional case the minima are not as easily
accessible and we follow the time evolution by numerical integration of eqs. (2).

Following ref. [16], we specify Φtwo by combining destabilizing long-range van der Waals
and stabilizing short-range polar interactions and nondimensionalize, resulting in the func-
tional

F =
∫ [

1
2
(∇h1)2 +

σ

2
(∇h2)2 − Ā12g

6(h2 − h1)2
− Ā21s

6h2
1

− Āg21s

6h2
2

+

+ S̄1 exp [−h1] + S̄2 exp [h1 − h2]
]
dxdy. (4)

The nondimensional Hamaker constants are Āijkl = [(d2 − d1)/l]2 Aijkl/|A12g|, and the short-
range spreading coefficients are S̄i = 2π [(d2 − d1)]

2
Si exp [d0/l]/|A12g|. The scales for the

lateral coordinates, time and energy are l(d2 − d1)
√

2πσ1/|A12g|, (2π)2σ1µ1l(d2 − d1)4/A2
12g

and |A12g|/2π(d2 − d1)2, respectively.
The ratios of the mean layer thicknesses, surface tensions and viscosities are denoted,

respectively, by d = d2/d1, σ = σ2/σ1 and µ = µ2/µ1. The correlation length of the polar
liquids l and the Born repulsion length d0 are 1 to 10 nm and 0.158 nm, respectively [11]. For
the present calculations we choose di � l, i.e. the short-range interactions do not influence the
linear behaviour. Further on, we denote the scaled mean and local thicknesses by di and hi,
respectively. The nondimensional mobilities are given by eq. (3) dropping the prefactor 1/µ1.

A linear stability analysis of a flat film using eqs. (2) shows two different unstable modes
characterized by interface deflections that are in anti-phase (varicose) and in phase (zigzag),
respectively. The global type of a profile can be quantified by the integral deflection measure

φint =
1
L

∫
(h1 − d1)(h2 − d2)

[(h1 − d1)2 + (h2 − d2)2]
dxdy. (5)

This measure is valid for all stages of the evolution and is negative (positive) for varicose
(zigzag) type profiles. A mode type change corresponds also to a transition of the three-
dimensional surface morphology.
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Fig. 3 – Time evolution of a Si/PMMA/PS/air system with mean thicknesses d1 = 20, d2 = 30.
The upper (lower) row shows the top view of the liquid-gas (liquid-liquid) interface at indicated
dimensionaless times t/τ . Dark (bright) regions correspond to lower (higher) values of the film
thickness. The domain size is 5λ × 5λ.

In the following we demonstrate different transitions for a Si/PMMA/PS/air system fixing
A12g = 1.49 × 10−20 Nm, A21s = 3.8 × 10−20 Nm, Ag21s = −23.02 × 10−20 Nm, S̄1 = S̄2 = 1,
σ = µ = 1. To estimate the characteristic growth time τ and wavelength λ of the instability we
use l ≈ 1 nm [11], σ1 ≈ 2× 10−3 N/m [14] and µ1 ≈ 103 kg/ms [22]. We numerically integrate
eqs. (2) using flat films with small-amplitude random perturbations as initial conditions. The
equations are solved with a semi-implicit pseudo spectral and a fully explicit integration
scheme with 128× 128 mesh points. The semi-implicit code is used in the linear stage of the
evolution until the random perturbation has relaxed to a smooth surface showing the fastest
growing wavelength in Fourier space. After that the fully explicit code is applied.

Transition via branch switching. We chose d1 = 20, d2 = 30 and obtain time sequences
of interface profiles as shown in fig. 3. Typical scales are estimated to be τ ≈ 3min and
λ ≈ 0.6µm. The evolution starts with a clear varicose mode (see fig. 4) corresponding to
drops (holes) at the liquid-gas (liquid-liquid) interface (fig. 3, t = 10.4). Then a transition
sets in between t = 10.4 and t = 13.5 turning droplets into ring-like ditches, i.e. holes with
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Fig. 4 – Global deflection measure φint (eq. (5)) vs. time t/τ for d1 = 20, d2 = 30.

Fig. 5 – (a) Relative energy and (b) global deflection measure of two-dimensional stationary solutions
as functions of the period L/λ at d1 = 20, d2 = 30. (c) Low-energy stationary solution with L/λ =
1.39 and (d) high-energy stationary solution with L/λ = 1.55. In (c) and (d) solid (dashed) lines
show the film thickness profiles at the liquid-liquid (liquid-gas) interfaces, respectively. The domain
size is scaled to unity.
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Fig. 6 – Time series analogous to fig. 3 but with mean thicknesses d1 = 15 and d2 = 40. The domain
size is 5λ × 5λ.

a central elevation. The morphological transition does nearly not change the typical length
scale, because it is not a consequence of coarsening but rather of switching between two stable
solution branches. This is also indicated by the drastic increase in amplitude accompanying
the transition. The height of the elevation then decreases gradually until at about t = 18.8
the rings have transformed into plain holes. In parallel the global deflection measure changes
from varicose to zigzag (fig. 4). Later on coarsening takes over mainly through the merging
of neighboring holes (t > 20).

It is possible to understand the transition drops-rings-holes by studying two-dimensional
steady solutions of eqs. (2) using continuation techniques [21]. Starting from the analytically
known small-amplitude solution with a period corresponding to the critical wavelength Lc

obtained from the linear stability analysis, one obtains multivalued solution branches as char-
acterized in fig. 5 by their relative energy (F − F0) and the global deflection measure φint in
dependence of period L (in units of λ).

The solid and the dashed lines in fig. 5(a, b) correspond both to linearly stable solutions
(at the respective L, they are unstable to slow coarsening modes). However, only the solid
lines correspond to global minima, whereas the dashed lines refer to local minima. For periods
L > 1.39, the energetically preferable solution is of zigzag type whereas the local minimum
is of varicose type (fig. 5(b)). This explains the persistence of the length scale during the
transition because the morphology change occurs via branch switching, i.e. the evolution
“jumps” from one stable solution branch to another one of lower energy.

The global deflection measure φint of the high-energy solutions (dashed line) is negative
at L = 1.39 and almost equals zero at L = 1.55. Figures 5(c) and (d) show stationary
solutions from the stable low-energy branch at L = 1.39 and from the stable high-energy
branch at L = 1.55, respectively. One can see that the liquid-gas interface (dashed line) has
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Fig. 7 – Global deflection measure φint vs. time t/τ for the evolution shown in fig. 6.
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Fig. 8 – Time series of the evolution of the SiO/PMMA/PS/air system with d1 = 20 and d2 = 40.
The domain size is 7λ × 7λ (256× 256 mesh points).

two depressions beside the drop-like elevation in the center. Imagine to rotate the profiles
around a vertical axis at x = 0.5. The resulting rotationally symmetric surface pattern
strongly resembles the rings found in the simulation (fig. 3).

Transition via coarsening. Beside the described drop-ring-hole transition, one can also find
a hole-drop transition just by changing the mean-film thicknesses. We chose d1 = 15, d2 = 40
and obtain time sequences of interface profiles as shown in fig. 6. Typical scales are estimated
to be τ ≈ 20min and λ ≈ 1.0µm. The evolution starts with a zigzag mode (see fig. 7)
corresponding to holes at both interfaces. The zigzag mode dominates only in the linear stage
of the evolution. With increasing amplitudes the system switches in a complicated process to
varicose-type profiles corresponding also to the steady state of corresponding period for a two-
dimensional system. First, the pattern seems to coarsen because neighboring holes merge (at
the liquid-gas interface, t = 7.9). However, they split again into holes shifted with respect to
the original ones, thereby changing the profile to varicose type (t = 8.5). The morphology at
the liquid-liquid interface remains unchanged. Later on, coarsening truly sets in accompanied
by a transition involving both interfaces. Passing through intermediate labyrinths (t = 11.9)
drops prevail at both interfaces showing clear zigzag type (t = 22.4). In contrast to the above
transition via branch switching, this involved morphology transition is intrinsically related to
coarsening.

SiO/PMMA/PS/air system. Finally, we study the evolution of another experimentally
investigated system [14], SiO/PMMA/PS/air. We use A12g = 1.49 × 10−20 Nm, A21s =
−0.02× 10−20 Nm, Ag21s = 0.15× 10−20 Nm, S̄1 = S̄2 = 1, d1 = 20 and d2 = 40, resulting in
τ ≈ 100 h and λ ≈ 20µm.

Figure 8 shows the time series of the evolution. At the early stage rings appear at the
liquid-liquid and holes at the liquid-gas interface (t = 8.2). These patterns are of zigzag type
(see fig. 9) and have a characteristic size corresponding to the fastest growing linear mode. The
patterns are not steady because, as a two-dimensional analysis shows, there exists only a steady
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Fig. 9 – Global deflection measure φint vs. time t/τ for the SiO/PMMA/PS/air system at d1 = 20
and d2 = 40.
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varicose-type profile of this size (not shown). Later on, the holes at the liquid-gas interface turn
into drops (t = 16.4) via labyrinths (t = 10.9), whereas the rings at the liquid-liquid interface
transform via labyrinths into circular holes, surrounded by an elevated region (t = 45.7).

As for the one-layer system also for two layers the equilibrium film thicknesses found at
long times may be obtained by a Maxwell construction. However, in contrast to the case of
one layer, here two Lagrange multipliers (corresponding to material conservation for the two
layers) have to be adjusted to tilt the energy landscape f(h1, h2) correspondingly (similar to
finding the equilibrium concentrations for a decomposing ternary mixture). This may lead to
a multiplicity of solutions even in the long-time limit as observed here for a restricted range
of structure sizes.

To conclude, we have investigated the structuring process of two-layer films driven by
destabilizing van der Waals interactions in three dimensions. We have described different
types of morphological transitions occurring in the course of the short- and long-time evolution.
We have illustrated that the here defined global deflection measure faithfully indicates visible
changes of the surface morphology. For instance, for the Si/PMMA/PS/air system the branch
switching transition from varicose to zigzag type corresponds to the transition from drops to
holes at the liquid-gas interface. For the SiO/PMMA/PS/air system, however, the holes at
the liquid-gas interface turn into drops corresponding to a change of mode type from zigzag
to varicose. We are optimistic that the presented results make it worthwhile to extend the
first experimental investigations [12–15] of the structuring of two-layer films and to focus on
the morphological transitions involved.
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