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Asymptotic theory for a moving droplet driven by a wettability gradient
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An asymptotic theory is developed for a moving drop driven by a wettability gradient. We
distinguish the mesoscale where an exact solution is known for the properly simplified problem.
This solution is matched at both the advancing and the receding side to respective solutions of the
problem on the microscale. On the microscale the velocity of movement is used as the small
parameter of an asymptotic expansion. Matching gives the droplet shape, velocity of movement as
a function of the imposed wettability gradient, and droplet volume. © 2006 American Institute of

Physics. [DOI: 10.1063/1.2191015]

I. INTRODUCTION

The description of the movement of a three-phase con-
tact line is still an open problem that continues to attract
much interest, for instance, when studying spreading drops,
and liquid sheets or ridges moving down an inclined plate.
The understanding of “simple” contact line movement is also
paramount for a deeper insight into related problems such as
the dynamical wetting transition and transversal instabilities
of moving contact lines.

It is well known that the divergent shear stress at the
contact line forbids a solution in the framework of purely
classical hydrodynamics, i.e., assuming a no-slip boundary
condition at the solid-liquid interface. Although this was first
pointed out by Huh and Scriven' based on Moffatt’s> solu-
tion for flow in the edge which does not satisfy the normal
stress boundary condition on a free interface, the divergence
can be understood as a consequence of the velocity being
multivalued at the contact point in the classical hydrody-
namic formulation.

The boundary condition has to be relaxed to permit
movement of the contact line. This can be done by introduc-
ing a very thin precursor film on the “dry” substrate,” or by
allowing for slip at the solid-liquid interface everywherel or
only near the contact line,4’5 or introducing an effective mo-
lecular interaction between the substrate and liquid into the
hydrodynamic model.>’ For a discussion of the slip condi-
tion, see also the review by Dussan.® Other approaches in-
clude phase changes at the contact line’ or introducing the
vapor-liquid or fluid-solid interface, or both, as separate
phases with properties that differ from the bulk fluid"® (but
see the comment in Ref. 11). Spreading was treated in the
mathematical literature and various rigorous results were ob-
tained in the case of slippage (see Refs. 12 and 13, and
references therein).

Most of the work on moving liquid sheets and ridges
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prescribes a precursor film or slip at the substrate. Diver-
gence problems at the contact line are avoided, but at the
expense of introducing ad hoc parameters into the theory.
These, namely the slip length or the precursor film thickness,
influence the profile of ridges and fronts and hence also the
characteristics of the transverse instability.3’14_16

The most realistic option is the explicit introduction of
molecular interactions into the hydrodynamic formalism.
This is accomplished by means of an additional pressure
term, the disjoining pressure.17 Depending on the particular
problem treated, this disjoining pressure may incorporate
long-range van der Waals and/or various types of short-range
interaction terms.®”'® Recently, Pismen'” derived a film
thickness equation with a disjoining pressure term by com-
bining the long wave approximation for thin films™ with a
nonlocal diffuse interface description for the liquid-gas inter-
face that incorporates van der Waals interactions.

These interactions are essential for the process of
dewetting, and studies of dewetting of a thin liquid film on a
substrate are generally based on models involving a disjoin-
ing pressure.ZI_26 Only a few studies of instabilities of liquid
fronts have adopted a similar approach,ZL29 despite the fact
that such an approach predicts all the ad hoc parameters of
the slip or precursor models (i.e., the static and dynamic
contact angle, drop velocity, and the drop and precursor film
thickness) connected with the wetting properties of the liquid
in terms of the parameters characterizing the disjoining pres-
sure.

Recently, Eggers presented asymptotic solutions for the
profile of advancing3 % and 1receding3 ! driven contact lines
(see also Ref. 32). The respective solutions match inner so-
Iutions near the contact line where a slip model is used and
outer solutions based on an analytic solution in terms of Airy
functions discussed in Refs. 33-36. However, the advancing
and receding cases are studied for a plate pushed into and
pulled out of a liquid bath, respectively. It is not possible to
directly couple the two asymptotic solutions to describe the
motion of a driven moving droplet or ridge.

In the present work we tackle the problem of an
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asymptotic description of a gradient-driven moving droplet
that encompasses both an advancing and a receding contact
line. This implies that the description of the two contact lines
and the respective matching procedures depend on each
other. Thereby, we explicitly introduce the molecular inter-
actions into the hydrodynamic formalism by using a chemi-
cal potential or disjoining pressure describing a situation of
partial wetting. This corresponds to a precursor film model
where the precursor film thickness is determined through the
disjoining pressure.
We distinguish among three regions:

e Microscopic (molecular scale) region: The dominant
balance is between disjoining potential and surface ten-
sion.

* Mesoscopic region: The dominant balance is between
viscous dissipation and surface tension.

* Macroscopic region: The dominant balance is between
surface tension and external forces

Examples of driving forces are gravity for droplets or fronts
on inclined plates, Marangoni forces occurring if tempera-
ture gradients along the substrate exist, or wettability gradi-
ents along the substrate. Both gravity and Marangoni forces
act in the lubrication limit as bulk forces, i.e., the force is fed
into the system in a top-down manner. This implies that the
macroscopic region has to be included in the description.
However, the third way mentioned to drive the system is
based on a force resulting from a wettability gradient that is
fed into the system in a bottom-up manner, i.e., on the mi-
croscale. The simplest description of such a system is under-
taken here by matching solutions obtained in the mesoscopic
and microscopic regions. If the droplets are small enough
(smaller than the capillary length) the macroscopic scale can
be ignored.

There are different physical situations where a gradient
in wettability occurs that can be mapped onto the presently
studied model. (i) A droplet can “sit” on a step in
wettability,37 allowing for an intermittent range of stationary
movement until the complete drop sits on the more wettable
substrate. (ii) A droplet can move along a smooth wettability
gradient.‘%&41 (iii) In a situation involving an adsorption re-
action at the substrate underneath the droplet, a droplet can
produce the wettability gradient that drives its
movement.**™* In this way it carries the gradient along with
its movement. The latter case is also related to droplet mo-
tion caused by a surface phase transition.*°

In the following we study all these situations in a model
that uses a chemical potential with different constants at the
advancing and the receding contact line, respectively. For
situations (ii) and (iii) this corresponds to the assumption that
the wettability gradient is small as compared to the size of
the contact zone but sizable as compared to the overall drop-
let size.

In the next section the basic equations for the lubrication
description of moving droplets are introduced. The exact so-
lution in the mesoscopic region and its asymptotics are de-
scribed in Sec. III. The microscopic solution and its
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asymptotic matching are discussed in Sec. I'V. Finally, a com-
parison of asymptotic and numerical results is given together
with our conclusions in Sec. V.

Il. BASIC EQUATIONS

Our starting point is the thin-film evolution equation in
lubrication approximation,

dh ==V -{k(h) V [y€V?h - A (m)]}. (1)

Here, vy is the surface tension of the liquid, and € is a scale
ratio used as a small parameter of the lubrication expansion
(which will be further identified with the local equilibrium
contact angle). We shall use the simplest mobility function
k(h)=1"'h%/3, obtained under assumption of constant dy-
namic viscosity 7 with no slip at the substrate. The chemical
potential £, accounts for wetting properties. Note that it cor-
responds to the negative of a disjoining pressure II as used,
for instance, in Ref. 47. For specific computations, we shall
use the form obtained using nonlocal diffuse interface
theory,19

3
m<h)=%[1 —(%) } )

where Q, is a characteristic excess fluid-substrate interaction
energy, which is proportional to the Hamaker constant.'® If
0Q,>0, this form corresponds to a negative long-range and
positive short-range part of the spreading coefficient, thereby
combining a destabilizing long-range and a stabilizing short-
range van der Waals interaction. The contact angle is finite,
and bulk fluid coexists at [1=0, i.e., in a flat layer of macro-
scopic thickness in the absence of external forces, with an
ultrathin precursor of thickness #,,. Other expressions for the
disjoining pressure with the same general properties lead to
qualitatively identical results.

The variables in Eq. (1) are still dimensional but scaled
to conform with the lubrication approximation. They are re-
lated to the physical variables (marked by a caret) as follows:

h=h, i=1é. (3)

X=xle,

In consequence, the scaled contact angle 6 is related to the
physical one by 6= 6/ €; the scaled droplet volume V=[hdx

is related to the physical one V= I hds by V= €V. Without any
gradient parallel to the substrate, this model describes drop-
lets with a finite equilibrium contact angle sitting on an ul-
trathin precursor film.

However, here we are interested in moving droplets
driven by wettability gradients along the substrate. In the
chemical potential chosen here [Eq. (2)] a wettability in-
crease can be modeled by a decrease of Q; or by an increase
of h,,. We chose here the former possibility. Note, however,
that in a real physical system both parameters are affected.
The analysis then involves more algebra but is also straight-
forward.

We shall consider stationary motion of a 2D droplet with
the velocity U. Replacing in Eq. (1) d,h by —Uh,/€ and in-
tegrating once yields, after dropping the bars,
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where ¢ is the appropriately rescaled capillary number Ca.
For 6<1, this equation is solved separately in the micro-
scopic and mesoscopic regions, and solutions are matched
considering a respective subdominant term as a perturbation.
Since Eq. (4) does not contain the coordinate explicitly, the
order can be further reduced (for a monotonic section) by

replacing the variable y(h)=[h'(x)]%,
Sh-h,) 1,
L0202y = (), () =00. (5)
\yh

In the next sections solutions are determined in the mesos-
copic and microscopic region, respectively. For comparison,
the stationary moving droplets described by Eq. (4) will also
be computed numerically using continuation techniques48’4g
employing the software AUT097.

lll. EXACT MESOSCOPIC SOLUTION
A. General solution

At large distances (h>1) a simplified “mesoscopic”
equation can be obtained by discarding the disjoining poten-
tial term in Eq. (4) and neglecting also h,,<<h in the viscous
term,

Sh™2=4_.h. (6)

Rescaling the height 2= "¢ reduces Eq. (6) to a form with-
out parameters,
g_z = X.xxg' (7)

This equation is invariant to simultaneous rescaling of { and
x. We chose 6>0; however, results for <0 can be obtained
by the transformation x — —x.

Equation (7) has an exact solution expressed in a para-
metric form through Airy functions,”

{(s) = PERETRY 2( X
1/3

u(s)

x(s) = [Ai(s)Bi(so) — Ai(so)Bi(s)], (8)

with  u(s) = Ai(s)Bi'(so) — Ai'(so)Bi(s).

An indefinite factor K appears here due to scale invari-
ance of Eq. (7). It corresponds to the height of the droplet
expressed in units of %, i.e., it has to be large.

The parametric solution (8), generally, defines a discon-
tinuous function {(x), which is physically relevant only
within certain intervals. For s0<s*, where sT~-1.01879 is
the largest zero of Ai’(s), physically irrelevant solutions arise
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FIG. 1. (Color online) Droplet profiles on the mesoscale given by Eq. (8) for
different 0=s, as given in the legend. The y axis represents the height as
{(x)/K, i.e., corresponding to 1/K 53 in the scaling used on the microscale.
For comparison, we also give the parabolic shape of a static droplet on a
homogeneous substrate. The droplet has the same volume J{(x)dx as the one
for s¢=2.

with {—o for x— =% and a minimum in between. For
s"<s, solutions exist with #— 0 at s — o, which correspond
to a sharp receding contact line at

x* = 213K Ai(sy)/Ai’ (s9) < 0. 9)

For s" <s,<0 the height { increases monotonically with
x. These solutions are used as a model for a receding contact
line in Ref. 31. If, however, s,>0, the profile {(x) has a
maximum at s=s, corresponding to x=0; the solutions {(x)
pass through a minimum at s,;,<<sg, i.e., Xy, >0, before
diverging as {~x?, x— at s=s*, where s*(s)) <O is the
largest zero of u(s). As s, increases, the minimum comes
very close to the x axis and the curvature at the minimum
becomes very large. Examples of solutions for different O
<s, are shown in Fig. 1.

B. Physically relevant interval

We focus here on the case of moderately large s, taking
the profile between {=0 for x=x* and the minimum of {(x)
at x=x,;, as the outer solution for a moving droplet driven
by a force fed in on the microscale. The two parameters s
and K, as well as the droplet velocity that is absorbed into the
scaling, should be obtained by matching the two inner (mi-
croscopic) solutions at advancing and receding sides, as well
as fixing the droplet volume.

For moderately large s, one finds that the location of the
minimum closely approaches s,,;,=—1.01879, which is the
largest zero of Ai’(s). This follows from asymptotic relations
applicable at moderately large s, that will be discussed fur-
ther in Sec. III C. The resulting residual profile height at the
minimum is plotted in Fig. 2. For a physical precursor film
thickness h,, of the order of 1 nm for a millimetric drop
K=10°, and one needs s,=~4.5. For a droplet of 1 micron
height K=10° and 55=2.5.

Using the asymptotics of Airy functions at s— o,
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FIG. 2. The residual height at the minimum of the droplet profiles as a
function of sy. The ordinate represents the minimal height as {;,/K, i.e.,
corresponding to /1,,;,/ K8 in the scaling used on the microscale. The solid
line gives the result using the approximate s,,;,=—1.01879 valid for moder-
ately large s, [Eq. (15)]. The dashed line gives the result using the full Eq.
(8).

Ails) < e—(2/3)s3/2s—1/4|: L_ " 0(5—2)}’

2V
(10)
2 1
Bi(s) < e(m)xms_”“[ —+ 0(s_2)} ,
N
the solution can be expanded near the zero of { as
23K e—(4/3)s3/2
= Ai(s) + ————[1+ O(s7"?
x(s) = o) (s0)+ 5 (SO)[ (s™9]
+ 057, (11)
K\";e‘(4/3)53/2

{(s) = [1+0G)]+0e®" . (12)

alAi’ (s) I

Explicit asymptotics is obtained by solving Eq. (11) with
respect to s,

3 x—x* 2/3 _zx_x*
s=<|-—1In 1+0|In , (13)
4 L L

where L™'=22"7 Ai’(s,)?/K. This yields, up to corrections
of higher order in In[(x—x*)/L],

«\ 173
f(x)x(x—x*)(—?alnx_Lx) ,

x—x*)m
3 .

The length L is very large for moderately large s.

(14)

I (x) < (—3 In

C. Limit of weak driving

Although Eq. (7) does not contain the rescaled capillary
number &, we expect the applicable outer solution to become
symmetric, approaching a parabolic profile, in the limit
06— 0, which corresponds to a vanishing wettability gradient.
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As illustrated in Fig. 1 and confirmed by the following
asymptotic analysis, the outer solution becomes almost sym-
metric at large values of sy, which, as we shall further see,
correspond to small values of 6.

The limit sy— o can be obtained with the help of the
asymptotics (10) of Airy functions, which is practically ap-
plicable already at moderately large values s,>>2. The result-
ing asymptotic profile height at the minimum on the advanc-
ing edge is

gmin = K[W Ai(smin)Bi,(SO):l_2
= 1.10937Ks; 2~ 1 + 0(s3>?)]. (15)

The minimum is located, up to an exponentially small cor-
rection proportional to e~ 3)53/2, at the largest zero of Ai’(s),
i.e., spin=—1.01879 (see Fig. 2).

The asymptotic expression for the second derivative
c¢={"(x) at the minimum is

C(smin) = 21/31(_1772|:‘Ai,(smin)2 - smin‘Ai(smin)z:lBi,(S())2
= eK's %491+ 0(55™)], (16)

with ¢=1.15697.
The corresponding asymptotic value of the coordinate x
is

1
Xnin = 2‘/3Ks5”2[1 + ngw + o(s;f)} : (17)

In the leading order, this coincides by the absolute value with
the asymptotics of x* given by Eq. (9),

1
Xt = - 21/3Ks51/2[1 - ngm + 0(s53)] : (18)

This points to the symmetry that should be attained in the
limit of zero velocity. The full profile away from the location
of the minimum should be computed by assuming both s
and s to be large. This yields, in the leading order,

2
= K(slsg) 1/zsechz[ 5(553/2 - 5_3/2)] ,
(19)
2
X = 2“3Ks51/2tanh{g(sa3/2 - s‘3/2)] )

At the receding edge, the asymptotics of these expressions at
s> 5, coincides with the asymptotics of Egs. (11) and (12) at
large s.

The height is of the same order of magnitude as the
macroscopic length scale K only when s is close to s,. Set-
ting s=s,, one can see by combining the above expressions
that the function {(x) indeed approaches in this limit the
parabolic profile {/K=1-b%** with b=2‘”3s(1)/2/ K every-
where except the immediate vicinity of both contact lines;
the corrections are of 0(s62). Thus, the scaled droplet vol-
ume is computed as
1/b 4K8'P  4(26)PK?

v=2K5”3f 1 - b*?)dx = =
O( Fde=—0, 352

(20)
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IV. MICROSCOPIC SOLUTION AND MATCHING
A. Expansion in ¢

In the microscopic region, the thickness changes from
h=h,, to a mesoscopic value far exceeding %,, but small com-
pared to the drop size and capillary length (which is here
infinite). Solving Eq. (4) with §=0 defines the static contact
angle in the limit 7—o0, while for 6#0 an apparent dy-
namic contact angle is obtained in this limit. The appropriate
length scale in this region is £,,; the respective dimensionless
form of Egs. (4) and (5) is

h-1 d

o =—[h"(x) = u(h 21
PE dx[ (x) = uy(h)], (21)
h-1 1
+6 =—y"(h) - u'(h 22
£5 =5 = 3 0= i), (22)
with

_ﬁ( L) L\@
Iu’s(h)_h3 1_h3 ) 18_ Gl’lm '}/ (23)

To model different wettability at the advancing and receding
contact lines, one assumes different constants S=[3,q, and
B=Pr., respectively. A higher wettability at the advancing
side is assured by B,qy < Brec-

For the receding meniscus, the positive sign should be
chosen in Eq. (22), and the boundary conditions are h=1,
h'(x)=0 at x——o0, and A"(x)—0 at x—o, or y(h)=0 at
h=1 and y’(h) —0 at h— oo, The latter condition, suggested
by Eggers,31 should fit the curvature of the mesoscopic solu-
tion, which, according to Eq. (14), approaches — in the
limit x — x*.

For the advancing meniscus, the negative sign should be
chosen. The boundary condition 4'(x)=0 should be set at
x— o, and the condition 4"(x) — 0 at x— —cc.

The solution of Eq. (22) is sought as an expansion in
8. y(h)=yo(h)+ 8y,(h)+---. The zero-order equation,

5YG(h) = pi(h) =0, (24)
is readily integrated to obtain
3 (h-12%(2 4
yo(h) = 5,32 53t gh +21*+ 13, (25)

The equilibrium contact angle 6, is obtained from the zero-
order equation (25) in the limit 7 — o,

By =h' (%) = \yo() = V3/5. (26)

The formal small parameter € can now be identified with
the small physical equilibrium contact angle, say, @6“ and

expressed through physical parameters by requiring @{fc/ €
=6y =1. This yields

5 . 1 3Qrec 172 d Qrec 172
:Brecz\/i’ €= Oecz_(__5> M_<_S) .
3 hm 5 Y hm Ql
(27)

The latter estimate follows from the estimate for surface ten-
sion y Q,/d?, where Q, is a characteristic interaction energy
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of fluid molecules and d<h,, is the nominal molecular di-
ameter. The contact angle is indeed small when Q7°/Q; (the
dimensionless Hamaker constant at the advancing contact
line) is small. The numerical value of B, is specific to the
particular expression for the disjoining potential (2), but the
general procedure would be the same for any potential of a

similar shape. Note that now only S,4, < \J’% determines
the driving wettability gradient.

Further derivation is carried out separately for receding
and advancing menisci, in view of different boundary condi-
tions for the two cases.

B. Receding meniscus

Using the expansion in & introduced above, we obtain to
first order from Eq. (22)

h-1 1
——— =—y"(h). 28
\/yo(h)h3 2yl( ) ( )

Using here Eq. (25) and integrating from h=1 to % yields the
value of y{(1) necessary to satisfy the asymptotic boundary
condition of vanishing curvature at 71— for the receding
meniscus,

6]15371(1)
S1 (7| (2 4 s ) T
=2~ |l Z+Zn+2m2+n dh
3], 1"\373
51
~_ 13383 \/j— =~ 1.3383. (29)
3B

The latter value corresponds to the scaling (27).

A nonzero value of y{(1) appears to change qualitatively
the character of decay to the equilibrium precursor thickness
at very small deviations 2—1<O(5). At these distances, the
expansion, in fact, breaks down, but the solution can be
readily found by linearizing Eq. (21) near 2=1. The linear
equation is solved by a combination of exponents e™, where
\ is a positive root of N3=38*\—6=0. While for §=0 the
layer thickness decays at x— — to unity as e'*#*, for 6% 0
an additional small root A=8872/3+0(&”) appears. This root
is positive, indicating a very slow decay to the equilibrium
precursor thickness.

We suspect that this is related to a (weak) dependence of
the precursor film thickness on droplet velocity as estab-
lished by numerical continuation of stationary sliding drop-
lets in Refs. 51 and 52, and recently by asymptotic
treatment.”

Since y|(h)~h~" at h—o, y,(h) diverges logarithmi-
cally in the outer limit. The asymptotic expression is ob-
tained by integrating Eq. (28) with the boundary condition
(29),

h
y=-2In—, a,~0444. (30)

a

The respective expansion for the slope A’ (x) useful for fur-
ther matching to an outer solution is
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FIG. 3. The dependence of the rescaled capillary number 6 on the parameter
so for different droplet sizes parametrized by K (given in the legend) as
given by Eq. (33).

B () =1-38In—+0(8). 31)
ap

The expansion can be routinely continued to higher orders
with the help of a symbolic computation program. Note that
expression (31) is of the same form as results by various
authors for advancing or receding contact lines (see for in-
stance Refs. 6, 30, and 54). In physical units the first-order
correction has the form 9Ca In x/I, where [ is related to a
microscopic length and x is the mesoscale coordinate. For a
slip model l=3)\/0€,30 whereas the precursor model used
here gives I=h,a/6,, ie., our effective “slip length” is
N=h,a,/3.

To obtain a relation for a spreading droplet, Hocking54
matches the microscale expression for the dynamic contact
angle (31) to a mesoscale expression corresponding to a qua-
sistatic droplet of given radius and volume. Here, however,
in order to match the mesoscopic and microscopic solutions
at the receding side, we compare the outer limit of the reced-
ing microscopic solution (h— o) with the inner limit of the
mesoscopic solution ({—0). This translates to comparing
[Z'(x)]? given by Eq. (14) with that given by Eq. (31). After
rescaling Eq. (14) and shifting the location of the contact line
to zero and rearranging Eq. (31), this gives

-[1/35)]
[P =-36In>=-38In ——— (32)
L a
The matching requirement yields the dependence of L and,
hence of s(, on &, expressed in an implicit form,

2234 1 [ 4
= A (s0)2 ~ _ _Tan
x A6 2K s, T3
= X - — 1.
aexp 35

The approximate expression is valid for so> 1 (practically,
for so=2). This expression connects s, with the dimension-
less velocity & as shown for different K in Fig. 3.
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FIG. 4. Dependence of the droplet volume on the parameter s,. The y axis
represents the scaled volume V/K?5'3 with V given by Eq. (34). V/ 6, rep-
resents a physical volume that may be used as a fixed control parameter. The
numerical result using the minimum calculated with the full Eq. (8) as
integration boundary cannot be distinguished from the solid line.

Combining this result with the dependence of s, on
droplet size discussed in Fig. 2 gives an estimation of the
velocity 8. For a physical precursor film thickness #,, of the
order of 1 nm for a millimetric drop K=10%, s,=~4.5 and in
consequence 6=~0.01, whereas for a droplet of 1 micron
height 6=0.025.

Note that this is still only an order-of-magnitude esti-
mate, because K itself depends in a subtle way on the veloc-
ity. This can be seen in Fig. 4, where the dependency of the
droplet volume

S

V=6"K? J " L(s)x' (s)ds (34)

oo

on s, is plotted. To compare droplets of identical volume for
different driving forces, one has to determine K using the
matching at the advancing edge.

C. Advancing meniscus

For an advancing contact line, the mesoscopic solution
has no logarithmic asymptotics, and for matching one can
use the zero-order microscopic solution, matching its limit at
h— o, h"(x)—0 to the mesoscopic solution at the inflection
point "(x)=0.

This  translates  to  comparing 839.4(s;)
=8"3¢'(s;)/x'(s;) at the inflection point s=s; given by

s Al (so)Bi(s;) — Ai(s)Bi’ (s9)]*
=[Ai'(s0)Bi’(s;) — Ai’ (s)Bi’ (s0)]? (35)

to h'(x— )=6" defined by Eq. (26) with 3 replaced by
Bady- As a result of the matching, one finds

B egdv )3
=) 5

ie., &/ (t?f‘)dv)3 can be calculated as a function of the param-
eter s, as presented in Fig. 5.
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0.2

S/ (eoadv)3

FIG. 5. Dependence of the scaled droplet velocity 8/(6:")? on the param-
eter sy, as obtained from the inflection point matching at the advancing
contact zone [Eq. (36)].

This procedure effectively cuts off the highly curved
segment of the mesoscopic solution near the minimum. Take
note that ¢; is still much larger than the O(1) microscopic
scale, and one can expect corrections due to the disjoining
potential to become significant only well below this value.
However, as we will illustrate in the Conclusion, the first-
order matching (sometimes called patching) is already suffi-
cient to completely describe the droplets driven by a wetta-
bility gradient.

V. CONCLUSION

We have developed an asymptotic theory for a moving
drop driven by a wettability gradient. Wide separation be-
tween the meso- and microscale allows us to use respective
analytical and expanded solutions on the different scales.

Matching of the mesoscale and microscale solutions at
the advancing and the receding contact regions allows one to
obtain the droplet shape and the velocity of movement as
functions of the imposed wettability gradient and droplet
volume. In this way, the two matching procedures together
with a translation between the different scalings gives a com-
plete characterization of the droplet motion for a given
physical volume V/ 6, and the wettability gradient character-
ized by the physical receding 6= 06y = 6, and advancing
6. = 6, 62" < 6, equilibrium angle.

Fixing the overall long-wave scaling by fixing 6,, the
three relations between Hf'd", V, 8, K and s, obtained in the
course of the present work [Egs. (33), (34), and (36) illus-
trated in Figs. 3-5, respectively] allow us to determine the
unknown &, K and s, for each given pair of 03‘1" and V. In
Fig. 6 results of the asymptotic matching are given for the
velocity &6, and the “shape parameter” s, in dependence of
the advancing equilibrium contact angle 9ng for a selection
of volumes V. As expected, the velocity goes towards zero as
the driving wettability difference 65— 63" vanishes, i.e.,
0y °— 1. The shape parameter s, diverges for 6;°— las dis-
cussed in Sec. III C. At a fixed driving 0?)‘1", the droplet be-
comes more asymmetrical (s, decreases) and faster with de-

Phys. Fluids 18, 042104 (2006)

0.03

0.02

0.01

()

(b)

FIG. 6. Results of the numerical matching procedure described in the main
text using at the advancing contact zone the inflection point matching.
Shown are (a) the droplet velocity &, and (b) the parameter s, describing the
mesoscopic shape in their dependency on the imposed equilibrium advanc-
ing contact angle 6,4, <6,..=1 for different given droplet volumes V as
given in the legend. In (a) results are shown for 2<s,=<20.

creasing volume. The velocity changes with volume are
more pronounced for larger driving (i.e., smaller #").
Although the matching is based on an expansion in 6,
the numerical calculations leading to Fig. 6 are not practical
for very small § (i.e., large s,) because, for s,=20, the cal-
culation already involves small numbers on the order of ¢~!?°
that are difficult to handle. Under these conditions, the shape,
however, remains almost static, and the integral relations of
Ref. 55 can be used. The relations obtained by multiplying
Eq. (4) by h—h,, and integrating over the entire x axis yield
the expression for the dimensionless velocity in the form of a
ratio 6=F/I of the driving force F to the dissipative integral

2a
I=21n —, (37)
bh,,

where a=(3/2V)"? is the radius of a static parabolic droplet
with the profile 1=(1/2) a[1-(x/a)*] and b~2.082 is a con-
stant. The driving force F=F"—F*d is expressed through
the equilibrium contact angles by separating the contribu-
tions of the two menisci F'¢, F2dv,
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FIG. 7. (Color online) Comparison of asymptotic results (thick lines) ob-
tained from Egs. (33), (34), and (36), numerical continuation results (corre-
sponding thin lines) for Eq. (21), and the small-§ results given by Eq. (40)
(dashed lines). The dependence of the droplet velocity &, on the imposed
equilibrium contact angle at the advancing side 6,4, < 6,..=1 is shown for
different given droplet volumes V, as specified in the legend.

d

F= _J (h— hm) dex=j /.Ls_dx=FreC—FadV,
o dx . dx

(38)

where, after replacing the integration variable and extending
integration to infinity in a thick middle part of the droplet
where the disjoining potential is negligible,

A

Frec,adv — J Mzec,adV(h)dh — re;adv ] (39)
h

m

This yields (with 6,..=1)

o= 1_—% . (40)
4 1n(2a/bh,,)
This result is compared to the asymptotic theory in Fig. 7.
The presented asymptotic theory is based on (i) a sepa-
ration into micro- and mesoscale, i.e., it is not valid for V too
small (s, becomes too small) and (ii) an expansion in 4, i.e.,
it is not valid for ¢ too large. Assuming a precursor film of
1 nm, V=10° corresponds roughly to droplets of 1 um
height, implying that the asymptotics is valid in the realm of
microfluidics, but less so for nanofluidics. However, because
for nanodroplets the micro- and mesoscale are not well sepa-
rated, they can be treated with numerical methods. It is con-
venient to calculate stationary moving droplets using con-
tinuation techniques‘%’49 as shown, for instance, for
nanodroplets moving under the influence of a body force®'°
and chemically driven droplets.44’45 However, the numerical
calculation becomes very tedious for larger drops because of
the separation of scales.

Phys. Fluids 18, 042104 (2006)

In Fig. 7 we present a comparison of asymptotic results
(stretched down to V=10°) obtained from Egs. (33), (34),
and (36), small-§ results given by Eq. (40), and numerical
continuation results (stretched up to V=10%) for Eq. (21). For
small driving 6%;,>0.8 the overall agreement of the three
methods is reasonably good. For V=10° the maximal devia-
tion is below 15%, and for V=108 it is about 5%. As ex-
pected, for larger driving 62dV<0.8 the results start to devi-
ate; the numerical solutions of the full Eq. (21) give a lower
velocity than the asymptotics, and more so for smaller &, .
For larger droplets this deviation starts at larger Hgdv (smaller
driving). There are various small factors that may contribute
to the deviations at small driving: (i) for V=108 the equilib-
rium contact angle still differs from the asymptotic value of 1
by about 0.3%; (ii) for moving droplets the precursor film
thickness depends weakly on the dynamics,SI’52 implying a
droplet volume that is not exactly constant with changing
velocity. For V=10 and ¢°;,=0.5 the precursor film thick-
ness is about 1.0025, i.e., for the used domain size of 10° the
relative change in droplet volume is negligible (AV/V
~107).

Surprisingly, the simple results obtained for small ¢ in
Ref. 55 as the ratio of the driving force and the dissipative
integral [our Eq. (40)] seem to fit the numerical data better
than the asymptotic theory. This results, apparently, from the
cancellation of different approximations. The assumed
velocity-independent parabolic droplet shape underestimates,
for instance, the dissipation at the receding contact line and
in the bulk, but overestimates the dissipation at the advanc-
ing contact line. The advantage of the asymptotic theory can
be better appreciated comparing the profiles of the moving
droplets (Fig. 8). This may explain why in general relations
like (40) obtained using dynamic force or energy equilibria
and the assumption of a “static” shape for the moving drop-
let are successful.*®>’ They well predict overall characteris-
tics of the motion but can, by construction, not predict the
droplet shape.

The numerical results obtained by continuation (solid
lines) strongly differ from the static droplet shapes (dotted
lines) that are the basis for the small-§ approximation, Eq.
(40). The asymptotic mesoscopic profiles [Egs. (11) and (12)
with the parameters obtained from Egs. (33), (34), and (36)]
approach the numerical results reasonably well for weak
driving €;,=0.8, independently of whether one compares
profiles for identical velocity or driving [Fig. 8(a)]. For
larger driving, the comparison of profiles for identical veloci-
ties gives better results. In general, the receding part is de-
scribed quite perfectly. The advancing part differs because
the matching is based on the advancing equilibrium contact
angle that is smaller than the dynamical one. Note, however,
that our asymptotics is not valid for elevated capillary num-
bers because of the series expansion used for the microscale.
It remains a task for the future to see whether the dynamical
wetting transition®' can also be seen for bottom-up driving of
a receding contact line.

Our treatment has made it clear that the characteristics of
the moving droplets depend in a crucial way on the kind of
driving used. The droplet may be driven by body forces, as
for instance, gravitation or Marangoni forces. In lubrication
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FIG. 8. (Color online) Profiles of moving droplets for V=10% as obtained by
numerical continuation of stationary solutions [Eq. (21), solid lines] are
compared to the solutions of the mesoscopic asymptotic equation (6). For
the latter, profiles are given that have the same 63" (dot-dashed lines) or the
same O (dashed line) as the numerical solution. Parameters are (a) numeri-
cal: =08, §=0.009; asymptotic (dot-dashed) #"=0.8, §=0.010,
50=6.35, K/V"2=2.63; asymptotic (dashed) 6:"'=0.82, §=0.009, s5,=2.71,
K/V"2=271; and (b) numerical: 6'=0.6, §=0.015; asymptotic (dot-
dashed) %=0.6, §=0.019, 5,=3.08, K/V'?=1.98; asymptotic (dashed)
6=0.69, 5=0.015, 5y=4.16, K/V"2=2.21. For comparison the equilib-
rium profile of a droplet on a homogeneous substrate without wettability
gradient is also shown (dotted lines).

theory the latter also takes the form of a body force, although
physically it acts at the free surface only. The driving is
top-down because the force is fed into the system on the
macroscopic scale and causes motion on all scales down to
the microscale. One of our main results is that this type of
driving cannot be described by the present theory because
the balance of the viscous term and the capillary term in Eq.
(6) does not account for the driving force. Specifically, it is
not possible to use the solution of Eq. (6) in terms of Airy
functions to describe droplets sliding down an incline driven
by gravity. This is already obvious from the fact that for
gravity-driven drops the advancing dynamic contact angle is
larger than the receding one,”"° contrary to the characteris-
tics of the mesoscopic solution given by Egs. (11) and (12).

On the contrary, driving the droplets by a wettability
gradient is bottom-up because the force is fed into the system
on the microscale and causes motion up to the mesoscale (in
our terms, no macroscale exists in this case because the

Phys. Fluids 18, 042104 (2006)

macroscale is defined by the scale of the body forces that are
absent by definition of the problem).
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