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Control of the structuring of thin soft matter films by means
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Abstract

We propose two methods to control the structuring of unstable thin films of soft matter. The first one is a non-contact method,
where an external disturbance can be used to move a single drop, front or hole in a certain direction. The principle is illustrated
by incorporating a sonic disturbance in a thin film equation to study the evolution of ultrathin films unstable due to their wetting
properties. The second one is based on inhomogeneous templating of the substrate. Here, we study the influence of periodic
modulation on coarsening in the long-time limit. Finally, the fully nonlinear evolution of a 3D system is presented by numerical
integration.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The creation of well-defined micro- or nanostructured thin films of soft matter attracted much intere
the last years. Unstable films on solid substrates are used in several ways to produce such patterns w
length scale and structure. One may directly employ the surface instability by choosing the initial film th
such that the predominant mode gives exactly the wanted length scale. However, the pattern has only a s
order and the structure cannot be chosen independently but is also determined by the film thickness (ho
or labyrinths[1,2]). The evolution has to be stopped before coarsening sets in, for instance by evaporatio[3] or
freezing[4].

One can also use a structured substrate forcing the thin film to image it[5,6]. Contrary to (i) one needs to kno
the instability length scale only approximately because ideal imaging is possible in a range around it[7,8].
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Desirable patterns can also be obtained by manipulating the flow on the microscopic scale. This can be done
by means of electrohydrodynamic pumping, electro-osmotic flow, electrowetting, thermocapillary pumping and
simultaneous action of shear stress at liquid–gas interface and a variable surface energy pattern at the liquid–solid
interface[9].

Here, we investigate the influence of a time- and space-periodic pressure term on thin film evolution. Practically,
this can be realized by different ways. (i) One could irradiate the free film surface with ultra sound that leads to
time modulation of the pressure on the liquid–gas interface. (ii) The time-periodic disjoining pressure appears in
the co-moving frame of liquid films, sliding down an inclined periodically heterogeneous substrate. (iii) The use
of time- and space-periodic electric field and electrowetting[10] will give rise to a time-periodic term in the total
energy of the system.

The main idea behind (i), (ii) and (iii) is to create a non-uniform mean flow in a certain direction. As we showed
in previous work[2], large scale mean flow may interrupt coarsening and stabilize certain periodic surface structures
in the long-time limit.

In the first part of the present contribution we wish to focus on the most simple time- and space-periodic pressure
term, not coupled to the film thickness which appears in case (i). Notice that a ‘similar’ method has been proposed in
[11] and tested in[12] using light and surface tension gradients instead of sound pressure gradients on the liquid–gas
interface. The second part is devoted to inhomogeneous wetting[13]. Our results are based on the thin film equation
outlined in the next section.

2. Thin film equation

The spatiotemporal behavior of a thin film of incompressible liquid with a free surface on a solid smooth
substrate is described by an evolution equation for the film thickness,h(x, y, t), as derived from Stokes equation
using lubrication approximation[14].

ρη∂th = −∇[ 1
3h

3∇(σ 
h − ∂hf (h) − P0)]. (1)

whereη, σ andρ are the kinematic viscosity, surface tension, and density of the liquid, respectively. The Laplace
pressure is given byσ 
h, P is the gas pressure at the surface (normally assumed to be constant).
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Eq. (1) has the same form as the Cahn–Hilliard equation describing the decomposition of a binary

15,16]. The form corresponds to the simplest possible equation for the dynamics of a conserved orde
ter field[17]. The choice of the free energyf (h) determines the described physical system. It can be d

ing due to effective molecular interactions between film and substrate. Then∂hf corresponds to the (neg
ive) disjoining pressure and accounts for the wetting properties of the system[1,18–22]. Or it may describe
ong wave Marangoni instability. Then∂hf comes from the interaction of film thickness and temperature
23–25]. Also combinations of both effects are studied[2]. For inclusion of other effects see the review R
14].

Here, we describe ultrathin films on a solid substrate by using a disjoining pressure derived from diffuse
heory[26,27]

∂hf (h) = 2κ

a
e−h/l

(
1 − 1

a
e−h/l

)
+ ρgh, (2)

hereρ is the density of the liquid,g is the gravitational acceleration,κ has a dimension of the spreading coeffic
er length,a is a small dimensionless positive parameter describing the wetting properties in the regime o
etting, l is the length scale of the diffuse interface[26,27]. However, note that the main results for this mo
ill not qualitatively differ from results for other disjoining pressures combining a short-rangedestabilizing
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long-range stabilizing component as, for example, used in[18]. This has been shown for homogeneous substrates
in Refs.[21,27,28].

3. Ultrasound

To cover the first of the two driving mechanisms outlined in the introduction, we regard additionally an external
sonic disturbance hitting the surface under an angleα as sketched inFig. 1. The sonic wave breaks the isotropy of the
system and is characterized by its wave length,λs = 2π/ks, frequency,ω = ksc, wave number,ks, and the velocity
of sound in the ambient gas,c. The liquid may be considered to be incompressible if the sonic wave length is much
larger than the characteristic size of the system, here the film thicknessd. The pressure oscillates in the ambient gas
with the sound frequency. Assuming complete reflection of the sound wave at the film surface the resulting time-
and position-dependent pressure field at the film surface can be accounted for by adding toP0 in Eq. (1)the term

Ps(x, t) = p cos(ωt − φ), (3)

wherepstands for the pressure amplitude in the sonic wave. Before proceeding we shortly discuss the conditions for
the sonic disturbance to be in the frame of the lubrication approximation. To obtain this conditions one has to start with
Stokes equation, written for velocity and pressure fieldsU,P extended by small-amplitude fast-oscillating terms:
U → U + U ′(ωt − ksx), P → P + P ′(ωt − ksx). The amplitudes ofU ′ andP ′ we denote byu andp, respectively.
Using the same scaling as in[14] and enforcing the final evolution equation for the film thicknessh to remain its
structure, we obtain the following conditions for amplitudesu andp:

εReωτ � ksλ and εReωτ
u

U0
� ksλ

p

P0
,

whereε is the small parameter of the lubrication approximation,τ andλ are the time- and thex-scales,U0 andP0
are the characteristic velocity and pressure of the approximation,Re = d U0/(ηρ) is the Reynolds number andd
denotes the mean film thickness.

The phaseφ (defined with respect to an arbitrary wave front) at the film surface is given by

w tion
E e

F n
β

φ(x, h(x)) = kxx − kz(h(x) − d), (4)

herekx andkz are projections of the wave vector onto thex- andz-direction, respectively. The pressure distribu
q. (3)is correct if (i) the sonic wave can reach the film surface freely, i.e. if there are no shadow regions (seFig. 1)

ig. 1. Sketch of the geometry. The sonic wave is irradiated under an angleα onto the film of mean thicknessd. If α is smaller than the inclinatio
inc = arctan(dh/dx) of the surface at some point shadow regions may exist.
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and (ii) if reflected waves do not fall onto the film surface elsewhere. Condition (i) is fulfilled if the angleα is larger
than the maximal surface inclination of the film,βinc

max, whereas (ii) holds ifα > 3βinc
max is satisfied. To be able to use

lubrication approximationβinc
max has to be small. This implies that both problems are avoided ifα is of order one.

Thenkx andkz are of the same order and the second term inEq. (4)can be neglected becaused � L, with L the
typical scale parallel to the substrate.

Usingkx = ks sinα the pressureEq. (3)finally writes


Ps(x, t) = p cos(ωt − ksx sinα) (5)

The systemEqs. (1) and (5)will now be used to illustrate the evolution of ultrathin films below 100 nm thickness
that are unstable due to their wetting properties[14].

Forp = 0 the linearizedEq. (1)predicts the onset of a type-IIs[1] instability at∂hhf (d) = 0. In the short-time
regime one expects isotropic patterns with the typical wave lengthλ0 = 2π

√
2σ/|∂hhf (d)| and characteristic growth

time τ = 12ηρσ/d3(∂hhf (d))2.
To non-dimensionalize we scale the (x, y) coordinates withλ0/2π, film thickness with the mean film thicknessd

and time with characteristic growth timeτ. IncorporatingPs, and using the same symbols now for non-dimensional
variables the film evolutionEq. (1)becomes

∂th = −∇[h3∇(
h − g(h))] + ∂x[h3δ sin(Ωt − Ksx)], (6)

with

g(h) = 2
∂hf (dh)

d|∂hhf (d)| = 2
e−γh(1 − (1/a) e−γh) + γGh

γ|G + (2/a) e−2γ − e−γ | , (7)

and the dimensionless parameters:G = ρgal/2κ andγ = d/l.
The sonic wave is characterized by the dimensionless wave vectorKs = λ0/λs sinα, amplitude δ =

Ksp/σd(λ0/2π)2, and frequencyΩ = 2πτ/T .
The non-dimensionalization we use is suitable for the estimation ofKs andΩ. The period of the sonic waveT is

much smaller than the characteristic growth timeτ, so thatΩ is a large number. To reach the maximum efficiency
(to increase the dimensionless amplitudeδ) one should use the sonic wave with smaller wavelengthλs that will
increaseKs. Of course, to justify the lubrication approximation, the sonic wavelengthλs should be much smaller
t
c e
r

3

itial
s

he
s n.
han the mean film thicknessd. But if the intrinsic wavelengthλ0 is three order of magnitude larger thand (as in
ase of the large scale Marangoni convection[2]), one could chooseKs ∼ λ0/λs = 101, which does not violate th
elationd/λs � 1.

.1. Linear behavior

For δ �= 0 a flat film is not anymore a solution ofEq. (6). But one can still use linear analysis to study the in
tage of evolution. Introducing the small deviationu(x, y, t) = h(x, y, t) − h0 and linearizingEq. (6)in u gives

∂tu = −2
u − 
2u + δ∂x[(1 + 3u) sin(Ωt − Ksx)], (8)

For δ �= 0 Eq. (8) is inhomogeneous due to the termδ∂x sin(Ωt − Ksx). Its general solution is a sum of t
olutionuH of the corresponding homogeneous problem and a partial solutionuI of the inhomogeneous equatio

Using the ansatzu(x, y, t) = ũ(x, t) exp(iχy) we transformEq. (8)to

∂tũ = −∂4
xũ − (2 − 2χ2)∂2

xũ + (2χ2 − χ4)ũ + 3δ sin(Ωt − Ksx)∂xũ − 3δKs cos(Ωt − Ksx)ũ

− δKs cos(Ωt − Ksx) (9)
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First we wish to find the solution ˜uI of the inhomogeneousEq. (9). To do that we use 1/Ω as a small parameter
and set ˜uI = U1

I + U2
I + · · ·, whereUk

I ∼ Ω−k. In the first step we neglect all terms in the r.h.s. ofEq. (9) as
compared withδKs cos(Ωt − Ksx). Integrating both sides over time we findU1

I = −δKs/Ω sin(Ωt − Ksx). To
findU2

I we setũI = U1
I + U2

I and neglectU2
I as compared withU1

I in the r.h.s. ofEq. (9). Integration in time yields:
U2

I = δKs/Ω
2[−K4

s + (2 − 2χ2)K2
s + (2χ2 − χ4)] cos(Ωt − Ksx). The amplitude of the solution ˜uI remains small

if δKs/Ω is a small number.
The solution of the homogeneousEq. (9)may also be represented as a sumU1

h + U2
h + · · ·, whereU1

h = εeβt+ikx

is a small-amplitude solution (ε ∼ 1/Ω) of Eq. (9)in the caseδ = 0. The next order correctionU2
h may be easily

calculated by assuming that eβt varies slowly in timeT:U2
h = −3δ/Ω[cos(Ωt − Ksx)∂xU1

h + Ks sin(Ωt − Ksx)U1
h].

The amplitude ofU2
h is of orderε/Ω = 1/Ω2.

Summarizing we may write the general solution ofEq. (8)up to termsΩ−2:

ũ = εexp (βt + i kx + iχy) − δKs

Ω
sin(Ωt − Ksx) + O(Ω−2) (10)

In the linear stage of evolution one finds a plane traveling surface wave with small amplitude, described by the
second term inEq. (10). Any infinitesimal perturbation to this plane wave (first term inEq. (10)) has a growth rate
β equal to that in the case without sonic disturbance.

As we have seen, the general solutionEq. (10)is a sum of two functions. The first one varies slowly in time, the
second one is periodic with periodT. The coupling between these two functions is of order 1/Ω2.

3.2. Nonlinear behavior

Considering high-frequency sound one may use the averaging method[29] to derive an effective evolution
equation, starting fromEq. (6). According to this method we assume the general solution ofEq. (6) to be a sum
of two functionsh = h̄ + h′, whereh̄ varies slowly in time andh′ is some periodic function with small amplitude.
LinearizingEq. (6)with respect toh′ and keeping the leading oscillating terms, we find after integration in time:

h′ = − δ

Ω
[(∂xh̄

3) cos(Ωt − Ksx) + Ksh̄
3 sin(Ωt − Ksx)] (11)
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ntegrating now both sides ofEq. (6)over one periodT, and keeping only the first non-vanishing term proportio
o h′, we obtain (after replacinḡh by h):

∂th = −∇[h3∇(
h − g(h))] − α̃∂xh
5, (12)

ith α̃ = 3δ2Ks/(2Ω).
Here, it is necessary to mention that the linearization and the averaging procedures do not commute.

he averaging method toEq. (8)one finds that the effective evolution equation coincides with that forδ = 0. So
q. (12)is only correct in the nonlinear stage.

.3. Numerical results

Examining (12), we recognize a similarity to the equation which describes thin liquid films on an inclined su
1,30]. The only quantitative difference between these two cases is the mobility factor for the driving term
s hereQs(h) = h5 andQinc(h) = h3 for films on an inclined substrate. Therefore we expect the same qual
patiotemporal behavior: fronts and randomly distributed initial conditions may get unstable and begin t
riven by the sound wave. Hence, the dimensionless parameterα̃ is suitable for estimation of order of magnitu
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for the interaction of the sonic wave with the surface. Using the definitions ofτ,Ks,Ω, δ one can transform̃α to:

α̃ = Iρgdλ0

2πηρσ

(
λ0

λs

)2

sin3 α,

whereI = p2/(2ρgc) is the absolute intensity of the plane sonic wave,ρg is the density of the ambient gas.
As show the following simulations, the order of magnitude of the parameterα̃ has to be at least larger than

10−4. To reach such a value ofα̃ one has to use a very intense sonic wave withI = 10−2 J/(s m2) = 100 db at the
frequencyω ∼ 1 kHz, as calculated for a water film, unstable due to large scale Marangoni convection, at 60◦C
with the intrinsic wavelengthλ = 1.64× 10−2 m in the air as ambient gas layer with densityρg = 1.29 kg/m3. The
other parameters are: (ρ = 983 kg/m3, η = 4.7 × 10−7 m2/s,σ = 6.6 × 10−2 N/m).

F
s
w
s
F
i

ig. 2. Three time series found by numerical integration ofEq. (12)using different initial conditions and sound amplitudes. The direction of the
ound wave is vertical. The grey scale indicates the thickness of the film, bright regions correspond to elevated parts of the surface. Parameters
erea = 0.1, γ = 1,G = 0.2. (a) Instability of a front,̃α = 0.002. In the long-time limit, coarsening is terminates and parallel stripes are
tabilized. (b) The same as (a) but with a random initial condition. Now small drops are formed which merge to bigger ones and then to rivulets.
inally, the same structure as in (a) is found. (c) Drop evolution for a smaller value of the sound amplitudeα̃ = 0.0004. Also here, coarsening

s suppressed in the long-time limit and big drops result.
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Fig. 2a and bshow numerical solutions which indeed demonstrate the expected effect. We solvedEq. (12)in a
two-dimensional periodic domain using pseudo-spectral code.

Note, that in the initial stage of the movement of the liquid ridge inFig. 2afront and back become unstable
independently of each other with clearly different transversal wavelengths. This corresponds very nicely to the same
effect found for liquid ridges on inclined plates[1,31,32]. Therefore, it is to expect that also here with increasing
driving force the transversal instability changes from an asymmetric varicose mode to an asymmetric zig–zag mode
and further to decoupled front and back instability[32].

It is remarkable, that in both situations (Fig. 2a and b) coarsening is interrupted at a certain time and a structure
of parallel stripes is stabilized, independent on the particular form of the initial conditions. Its final wave length
depends on the force of the driving, here the square of the amplitude of the sound wave. For rather small values of
the driving force, there seems to be a continuous transition to the non-driven case.Fig. 2cshows the evolution of
drops as inFig. 2b, but for α̃ = 0.0004. Also here, coarsening is suppressed in the long-time limit and big but still
isolated drops result.

The drift velocity of the whole pattern strongly depends on the amplitude of the surface deflections. The drops
with large amplitude drift faster than the drops on the inclined substrate due to the much stronger dependence of
the mobility factorQs(h) on the film thickness.

For practical application the plane sonic wave, irradiated to the film surface, may be of greater interest than the
very slow drift on an inclined substrate. Furthermore, one can move selected parts of a pattern by using sonic waves
with a spatially inhomogeneous intensity distribution (a beam of sound) For example, one may move a single drop
in a desired direction.

To simulate this we consider the strength of the sonic wave to be a slow function of spatial coordinatesδ = δ(x, y)
then the last term inEq. (12)modifies to

3

2

Ks

Ω
∂x[δ2(x, y)h5] = ∂x[α̃(x, y)h5].

The result of a simulation is presented inFig. 3. We chose the parameters (a,G, γ) corresponding to the drop
regime[1] and wait until drops are formed before we switch on the sound beam, which has a maximal amplitude in
the center of the system. Its strength falls exponentially in radial direction. A drop in the center is moved towards a
region where the strength of the sonic wave is weak (non-active region). After the collision of the moved drop with
a of drops.

F gth
α r
t

drop which is in the non-active region, a curved long drop is formed. The center of the system is now free

ig. 3. Evolution of the system under the influence of a sonic disturbance with spatially inhomogeneous strenα̃ =
˜ 0 exp [−b((x − L/2/L)2 + (y − L/2/L)2)], whereα̃0 = 0.5 is the strength of the sonic wave in the center of the system andb = 25 stands fo
he size of the active region. The control parametersa = 0.1, γ = 3.5,G = 0.01 correspond to the drop solution.
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4. Inhomogeneous wetting

In this section, we show the influence of periodic inhomogeneities on surface pattern formation. The reason for
these inhomogeneities can be different, depending on the particular system under consideration. Beneath inhomo-
geneously wettable substrates[13] we only mention chemically patterned substrates or space dependent heating in
the case of Marangoni convection. A recent experimental work studying capillary spreading on hydrophilic stripes
on a hydrophobic substrate was performed by Darhuber et al.[13].

4.1. Cahn–Hilliard equation

Since we wish to discuss the influence of inhomogeneous controlling from a more general point of view, we
simplify our modelEq. (6)by assuming the system is close to its critical point[21,22,27]. We set the mobility to
Q(h) = 1, leading to

∂th = −
(
h − g(h)) (13)

and use forg the general Taylor expansion

g(h) = a0 + a1h + a2h
2 + a3h

3 (14)

with the restriction for global stabilitya3 > 0. Since only derivatives ofh occur, we may shifth by a constant and
rescale the coefficients in (14) to obtaina2 = 0. Additional rescaling of height, time and space may lead toa1 = −1
anda3 = 1 if the condition for instability of the flat film is fulfilled. The most simple way to include a multiplicative
modulation is to allow for spatial variation of the linear coefficienta1. Thus, we find

g(h) = a′
0 − (1 + εf (x, y))h + h3 (15)

Inserting this into (13), we obtain the space dependent Cahn–Hilliard equation

∂th = −
h − 
2h + 
h3 − ε
(fh). (16)
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ithout modulation, a type–IIs instability occurs with critical wave numberkc = 1/ 2 and the cut-off wave numb
m = √

2 [15].

.2. Numerical results

We present time series for different harmonic inhomogeneitiesf. First, we use

f (x) = sin(kIx)

nd examine its influence with respect to the wave numberkI of the modulation. From two dimensional computati
33] it is known that for wave numbers much larger than the critical one (kI � kc) coarsening takes place just as
he homogeneous situation.Fig. 4ashow a development wherekI = 2kc. Pinning is observed in the early stag
ut finally coarsening dominates as for a homogeneous substrate. However, pinning is reminiscent during
volution and patterns alignparallel to the prescribed stripes.

A quite different situation occurs for a smaller wave number of the modulation. In the 2D case, pinning is e
o be dominant, which is also clearly seen in 3D. ForkI = kc the pattern organizes itself in stripesperpendicularto
he inhomogeneity (Fig. 4b). It is also remarkable that coarsening is terminated after a certain time and a stea
ith a finite wave vector results, just as in the driven systems from the previous section.
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Fig. 4. Numerical solutions of the modulated Cahn–HilliardEq. (16)for different inhomogeneities in form of stripes (a,b) or squares (c). If
the modulation wave length is much shorter than the spinodal one, coarsening dominates (a). ForkI ≈ kc, patterns are aligned perpendicular.
Pinning on a square grid is shown in (c). The steady-state consists of filled or empty boxes.

We conclude this paragraph showing the evolution on a square-like inhomogeneity of the form

f (x, y) = sin(kIx) sin(kIy)

with kI = kc (Fig. 4c). Although coarsening still exists, pinning is dominant and the fluid forms filled or empty
cells on the square grid prescribed byf (x, y). Such a device could store information and may be used as a “liquid
memory”.

5. Conclusion

The influence of external modulation on pattern formation in thin liquid films was discussed. Two different
mechanisms were studied: a non-contact method using irradiation of the liquid surface with ultrasound allows for
manipulation of drops, holes or fronts in a prescribed way. Moreover, spatially periodic surface structures with
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desired wave length may be generated in the long-time limit. The second mechanism is based on inhomogeneous
wetting properties of the solid substrate. Here, beneath the amplitude of the modulation the ratio between the two
intrinsic length scales, namely the spinodal wave length and the wave length of the modulation, plays a crucial role.
We showed by direct numerical integration of a model that, depending on that ratio, pinning or coarsening is the
dominant dynamical behavior. The alignment of the eventually stable surface structures is also strongly influenced
by this ratio.

Although both mechanisms are completely different, the resulting patterns show certain common features which
have to be explored in more detail in future work. In both systems, the rotational symmetry in the horizontal plane
is broken by the external modulation. This lack of symmetry expresses itself in the form of the final stable surface
pattern, which turns out to be periodic in both cases. Interestingly, in both cases the surface pattern can be organized
in stripes perpendicular to the external force or modulation. Coarsening, obtained always in the early stages of
temporal evolution, is interrupted at a certain time and periodic patterns stabilize. The periodicity length depends
thereby mainly on the strength of the external modulation.
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