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Abstract

We propose two methods to control the structuring of unstable thin films of soft matter. The first one is a non-contact method,
where an external disturbance can be used to move a single drop, front or hole in a certain direction. The principle is illustrated
by incorporating a sonic disturbance in a thin film equation to study the evolution of ultrathin films unstable due to their wetting
properties. The second one is based on inhomogeneous templating of the substrate. Here, we study the influence of periodi
modulation on coarsening in the long-time limit. Finally, the fully nonlinear evolution of a 3D system is presented by numerical
integration.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The creation of well-defined micro- or nanostructured thin films of soft matter attracted much interest over
the last years. Unstable films on solid substrates are used in several ways to produce such patterns with define
length scale and structure. One may directly employ the surface instability by choosing the initial film thickness
such that the predominant mode gives exactly the wanted length scale. However, the pattern has only a short-rang
order and the structure cannot be chosen independently but is also determined by the film thickness (holes, drop
or labyrinths[1,2]). The evolution has to be stopped before coarsening sets in, for instance by evagd8iation
freezing[4].

One can also use a structured substrate forcing the thin film to imggéJitContrary to (i) one needs to know
the instability length scale only approximately because ideal imaging is possible in a range af@é\8id it
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Desirable patterns can also be obtained by manipulating the flow on the microscopic scale. This can be done
by means of electrohydrodynamic pumping, electro-osmotic flow, electrowetting, thermocapillary pumping and
simultaneous action of shear stress at liquid—gas interface and a variable surface energy pattern at the liquid—solid
interface[9].

Here, we investigate the influence of a time- and space-periodic pressure term on thin film evolution. Practically,
this can be realized by different ways. (i) One could irradiate the free film surface with ultra sound that leads to
time modulation of the pressure on the liquid—gas interface. (ii) The time-periodic disjoining pressure appears in
the co-moving frame of liquid films, sliding down an inclined periodically heterogeneous substrate. (iii) The use
of time- and space-periodic electric field and electrowetirfj will give rise to a time-periodic term in the total
energy of the system.

The main idea behind (i), (ii) and (iii) is to create a non-uniform mean flow in a certain direction. As we showed
in previous worlf2], large scale mean flow may interrupt coarsening and stabilize certain periodic surface structures
in the long-time limit.

In the first part of the present contribution we wish to focus on the most simple time- and space-periodic pressure
term, not coupled to the film thickness which appears in case (i). Notice that a ‘similar’ method has been proposed in
[11] and tested ifil 2] using light and surface tension gradients instead of sound pressure gradients on the liquid—gas
interface. The second part is devoted to inhomogeneous wgBhgOur results are based on the thin film equation
outlined in the next section.

2. Thin film equation

The spatiotemporal behavior of a thin film of incompressible liquid with a free surface on a solid smooth
substrate is described by an evolution equation for the film thickié€ssy, 1), as derived from Stokes equation
using lubrication approximatiofi4].

pndih = —V[3h3V (o Ah = 3 f(h) — Po)l. (1)

wheren, o andp are the kinematic viscosity, surface tension, and density of the liquid, respectively. The Laplace
pressure is given by Ah, Py is the gas pressure at the surface (normally assumed to be constant).

Eqg. (1) has the same form as the Cahn—Hilliard equation describing the decomposition of a binary mixture
[15,16] The form corresponds to the simplest possible equation for the dynamics of a conserved order param-
eter field[17]. The choice of the free energg(h) determines the described physical system. It can be dewet-
ting due to effective molecular interactions between film and substrate. @hgrcorresponds to the (nega-
tive) disjoining pressure and accounts for the wetting properties of the sy&t&B8+22] Or it may describe a
long wave Marangoni instability. Thes), f comes from the interaction of film thickness and temperature field
[23-25] Also combinations of both effects are studig]. For inclusion of other effects see the review Ref.
[14].

Here, we describe ultrathin films on a solid substrate by using a disjoining pressure derived from diffuse interface
theory[26,27]

2K 1
o fh)=— e h/! <1 - e ’) + pgh., 2)

wherep is the density of the liquidy is the gravitational accelerationhas a dimension of the spreading coefficient
per lengtha is a small dimensionless positive parameter describing the wetting properties in the regime of partial
wetting, | is the length scale of the diffuse interfaf@6,27] However, note that the main results for this model
will not qualitatively differ from results for other disjoining pressures combining a short-rangedestabilizing and a
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long-range stabilizing component as, for example, usdidh This has been shown for homogeneous substrates
in Refs.[21,27,28]

3. Ultrasound

To cover the first of the two driving mechanisms outlined in the introduction, we regard additionally an external
sonic disturbance hitting the surface under an angle sketched iRig. 1 The sonic wave breaks the isotropy of the
system and is characterized by its wave length+ 27/ k,, frequencyw = kyc, wave numberk,, and the velocity
of sound in the ambient gas, The liquid may be considered to be incompressible if the sonic wave length is much
larger than the characteristic size of the system, here the film thickn@ke pressure oscillates in the ambient gas
with the sound frequency. Assuming complete reflection of the sound wave at the film surface the resulting time-
and position-dependent pressure field at the film surface can be accounted for by adiig Eoj. (1)the term

Py(x, t) = p cos(t — ¢), 3

wherep stands for the pressure amplitude in the sonic wave. Before proceeding we shortly discuss the conditions for
the sonic disturbance to be in the frame of the lubrication approximation. To obtain this conditions one has to start with
Stokes equation, written for velocity and pressure fiéld® extended by small-amplitude fast-oscillating terms:

U— U+ U'(wt — ksx), P — P+ P'(wt — ksx). The amplitudes of/’ and P’ we denote by andp, respectively.

Using the same scaling as[ibt4] and enforcing the final evolution equation for the film thicknkess remain its
structure, we obtain the following conditions for amplitudesndp:

u P
€Rewt K kyh and eRewt— K kgh—,
Uo Py
wheree is the small parameter of the lubrication approximatioanda are the time- and the-scalesl/p and Py
are the characteristic velocity and pressure of the approximaRiess d Up/(np) is the Reynolds humber arttd
denotes the mean film thickness.
The phase (defined with respect to an arbitrary wave front) at the film surface is given by

P(x, h(x)) = kex — k;(h(x) — d), “4)

wherek, andk, are projections of the wave vector onto th@ndz-direction, respectively. The pressure distribution
Eq. (3)is correct if (i) the sonic wave can reach the film surface freely, i.e. if there are no shadow regidfig (3ee

h(x) Ly f
LIQUID < =X  SHADOW
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7

Fig. 1. Sketch of the geometry. The sonic wave is irradiated under anangte the film of mean thicknessIf o is smaller than the inclination
BN = arctan(d/dx) of the surface at some point shadow regions may exist.
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and (ii) if reflected waves do not fall onto the film surface elsewhere. Condition (i) is fulfilled if the anglarger
than the maximal surface inclination of the filgiy5,, whereas (ii) holds i > 385, is satisfied. To be able to use
lubrication approximatior;ﬂirﬂgx has to be small. This implies that both problems are avoidedsfof order one.
Thenk, andk, are of the same order and the second terfadn(4) can be neglected becaugex L, with L the
typical scale parallel to the substrate.

Usingk, = k, sina the pressur&g. (3)finally writes

A Pg(x,1) = p cosgt — ksx Sina) (5)

The systentqgs. (1) and (5yill now be used to illustrate the evolution of ultrathin films below 100 nm thickness
that are unstable due to their wetting properfiiey.

For p = 0 the linearizedeq. (1) predicts the onset of a type-Il$] instability atdy, f(d) = 0. In the short-time
regime one expects isotropic patterns with the typical wave length 27r./205/[9,,;, f(d)] and characteristic growth
time t = 12npo/d>(0p f(d))?.

To non-dimensionalize we scale the ¢) coordinates with.g/27, film thickness with the mean film thickneds
and time with characteristic growth timelncorporatingP,, and using the same symbols now for non-dimensional
variables the film evolutiokq. (1)becomes

dh = —V[h3V(Ah — g(h))] + 0,[135 sin(2r — Kx)], (6)
with
. Onf(dn) e "(1—(1/a)e ")+ yGh
) = 2 o f @)~ IG T @a)e B —e 7] ()

and the dimensionless paramete&rs= pgal/2x andy = d/ 1.

The sonic wave is characterized by the dimensionless wave veiee Ag/As Sina, amplitude § =
Ky p/od(ro/27)?, and frequency? = 277/ T.

The non-dimensionalization we use is suitable for the estimatidf @ihds2. The period of the sonic waveis
much smaller than the characteristic growth timeo thats2 is a large number. To reach the maximum efficiency
(to increase the dimensionless amplitilene should use the sonic wave with smaller wavelengtthat will
increasek ;. Of course, to justify the lubrication approximation, the sonic waveleagghould be much smaller
than the mean film thicknegk But if the intrinsic wavelength is three order of magnitude larger thdrfas in
case of the large scale Marangoni convecfR), one could choos&, ~ 1o/, = 10%, which does not violate the
relationd/As < 1.

3.1. Linear behavior

Foré§ # 0 a flat film is not anymore a solution &fg. (6) But one can still use linear analysis to study the initial
stage of evolution. Introducing the small deviatia, y, ) = h(x, y, t) — ho and linearizingeq. (6)in u gives
du = —2Au — A%u + 83,[(1 + 3u) sin(2r — Kyx)], (8)

For § # 0 Eq. (8)is inhomogeneous due to the teds), sin(2r — K,x). Its general solution is a sum of the
solutionx™ of the corresponding homogeneous problem and a partial soldtiofthe inhomogeneous equation.
Using the ansata(x, y, ) = ii(x, t) exp(i xy) we transfornEq. (8)to

dit = —0% — (2 — 2x2)%0 + (2% — x¥)ii + 38 sin(2r — K,x)d,it — 35K, cos(2r — Kyx)ii
— 8K, cos@2r — Kx) 9)
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First we wish to find the solution' "of the inhomogeneousq. (9) To do that we use /&2 as a small parameter
and setut = U|l + U|2 + - WhereU{‘ ~ 27k In the first step we neglect all terms in the r.h.sEof. (9)as
compared withSK; cos@2r — Kx). Integrating both sides over time we filiiiij1 = —8K,/82 sin(2t — K;x). To
find U2 we seti* = Ul + U? and neglecU/? as compared witi/! in the r.h.s. oEq. (9) Integration in time yields:
UZ = 8K,/S2%[— K% + (2 — 2x*)K? + (2x° — x*)] cos(@r — Kx). The amplitude of the solutiarl femains small
if 8K;/$2is a small number.

The solution of the homogeneokls. (9)may also be represented as a sM,}nqL U}f +- whereU,} = g efrtikx
is a small-amplitude solutiore (~ 1/£2) of Eq. (9)in the casé = 0. The next order correctioﬁf may be easily
calculated by assuming thaf @aries slowly in timeT: U}f = —3§/82[cos(§2t — st)axU,} + K, sin(2t — st)U,}].
The amplitude ol/2 is of orders/2 = 1/£22.

Summarizing we may write the general solutiorEaf. (8)up to terms2—2:

u=cexp@r+ikx+ixy)—

55? sin(2r — Kox) + 0(272) (10)

In the linear stage of evolution one finds a plane traveling surface wave with small amplitude, described by the
second term ifEq. (10) Any infinitesimal perturbation to this plane wave (first ternkig. (10) has a growth rate
B equal to that in the case without sonic disturbance.

As we have seen, the general solutigep (10)is a sum of two functions. The first one varies slowly in time, the
second one is periodic with peridd The coupling between these two functions is of orge24.

3.2. Nonlinear behavior

Considering high-frequency sound one may use the averaging mg@ptb derive an effective evolution
equation, starting fronkq. (6) According to this method we assume the general solutidbopf(6)to be a sum
of two functionsh = h + 4/, whereh varies slowly in time and@’ is some periodic function with small amplitude.
LinearizingEq. (6)with respect td:’ and keeping the leading oscillating terms, we find after integration in time:

h' = 5

= —5[(axf73) cos@2t — K,x) + Kh® sin(2t — K,x)] (11)

Integrating now both sides &fq. (6)over one period’, and keeping only the first non-vanishing term proportional
to i’, we obtain (after replacing by h):

dh = —V[h3V(Ah — g(h))] — @0,h>, (12)

with &@ = 352K, /(252).

Here, it is necessary to mention that the linearization and the averaging procedures do not commute. Applying
the averaging method t6g. (8) one finds that the effective evolution equation coincides with thas fer0. So
Eqg. (12)is only correct in the nonlinear stage.

3.3. Numerical results

Examining (L2), we recognize a similarity to the equation which describes thin liquid films on an inclined substrate
[1,30]. The only quantitative difference between these two cases is the mobility factor for the driving term, which
is hereQ,(h) = h® and Qinc(h) = h® for films on an inclined substrate. Therefore we expect the same qualitative
spatiotemporal behavior: fronts and randomly distributed initial conditions may get unstable and begin to travel,
driven by the sound wave. Hence, the dimensionless paramétesuitable for estimation of order of magnitude
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for the interaction of the sonic wave with the surface. Using the definitionskyf, $2, § one can transforri to:

Ip.dro (202 .
& = Pet0 (—°> sind a,
As

wherel = p2/(2pgc) is the absolute intensity of the plane sonic waygis the density of the ambient gas.

As show the following simulations, the order of magnitude of the parandetexs to be at least larger than
10~4. To reach such a value @fone has to use a very intense sonic wave With 10-2 J/(s m?) = 100 db at the
frequencyw ~ 1kHz, as calculated for a water film, unstable due to large scale Marangoni convectioriCat 60
with the intrinsic wavelength = 1.64 x 10-2m in the air as ambient gas layer with dengity= 1.29 kg/n?. The
other parameters arep & 983 kg/n?, n = 4.7 x 107" m?/s,o = 6.6 x 1072 N/m).

(@) t=1830 t=5280 t=11165 t= 23200

t=360 t= 2000 t= 6960 t=25410

(c)t = 5005 t =20005 t = 100005 t = 400005

Fig. 2. Three time series found by numerical integratio@f (12)using different initial conditions and sound amplitudes. The direction of the

sound wave is vertical. The grey scale indicates the thickness of the film, bright regions correspond to elevated parts of the surface. Parameters
werea = 0.1,y =1, G = 0.2. (a) Instability of a front@ = 0.002. In the long-time limit, coarsening is terminates and parallel stripes are
stabilized. (b) The same as (a) but with a random initial condition. Now small drops are formed which merge to bigger ones and then to rivulets.
Finally, the same structure as in (a) is found. (c) Drop evolution for a smaller value of the sound anipktu@e004. Also here, coarsening

is suppressed in the long-time limit and big drops result.
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Fig. 2a and tshow numerical solutions which indeed demonstrate the expected effect. We BEqlvd®)in a
two-dimensional periodic domain using pseudo-spectral code.

Note, that in the initial stage of the movement of the liquid ridgé&ig. 2afront and back become unstable
independently of each other with clearly different transversal wavelengths. This corresponds very nicely to the same
effect found for liquid ridges on inclined plat§k,31,32] Therefore, it is to expect that also here with increasing
driving force the transversal instability changes from an asymmetric varicose mode to an asymmetric zig—zag mode
and further to decoupled front and back instabilB82].

It is remarkable, that in both situatiorisig. 2a and bcoarsening is interrupted at a certain time and a structure
of parallel stripes is stabilized, independent on the particular form of the initial conditions. Its final wave length
depends on the force of the driving, here the square of the amplitude of the sound wave. For rather small values of
the driving force, there seems to be a continuous transition to the non-driver-@asec shows the evolution of
drops as irfFig. 2h but forae = 0.0004. Also here, coarsening is suppressed in the long-time limit and big but still
isolated drops result.

The drift velocity of the whole pattern strongly depends on the amplitude of the surface deflections. The drops
with large amplitude drift faster than the drops on the inclined substrate due to the much stronger dependence of
the mobility factorQ;(k) on the film thickness.

For practical application the plane sonic wave, irradiated to the film surface, may be of greater interest than the
very slow drift on an inclined substrate. Furthermore, one can move selected parts of a pattern by using sonic wave:
with a spatially inhomogeneous intensity distribution (a beam of sound) For example, one may move a single drop
in a desired direction.

To simulate this we consider the strength of the sonic wave to be a slow function of spatial coodliaad(as y)
then the last term ilkq. (12)modifies to

3Ks 2 51 _ ~ 5
5 g 80 P71 = dufalx, y)h%),

The result of a simulation is presentedriy. 3. We chose the parametets G, y) corresponding to the drop
regime[1] and wait until drops are formed before we switch on the sound beam, which has a maximal amplitude in
the center of the system. Its strength falls exponentially in radial direction. A drop in the center is moved towards a
region where the strength of the sonic wave is weak (non-active region). After the collision of the moved drop with
adrop which is in the non-active region, a curved long drop is formed. The center of the system is now free of drops.

t=13

Fig. 3. Evolution of the system under the influence of a sonic disturbance with spatially inhomogeneous stieagth
@oexp [—b((x — L/2/L)? + (y — L/2/L)?)], where& = 0.5 is the strength of the sonic wave in the center of the systenh an@l5 stands for
the size of the active region. The control parametezs0.1, y = 3.5, G = 0.01 correspond to the drop solution.
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4. Inhomogeneous wetting

In this section, we show the influence of periodic inhomogeneities on surface pattern formation. The reason for
these inhomogeneities can be different, depending on the particular system under consideration. Beneath inhomo-
geneously wettable substraf@8] we only mention chemically patterned substrates or space dependent heating in
the case of Marangoni convection. A recent experimental work studying capillary spreading on hydrophilic stripes
on a hydrophobic substrate was performed by Darhuber gt3jl.

4.1. Cahn—Hilliard equation

Since we wish to discuss the influence of inhomogeneous controlling from a more general point of view, we
simplify our modelEg. (6) by assuming the system is close to its critical p¢#it,22,27] We set the mobility to
Q(h) =1, leading to

dh = —A(Ah — g(h)) (13)
and use fog the general Taylor expansion
g(h) = ao + arh + azh® + agh® (14)

with the restriction for global stabilityz > 0. Since only derivatives df occur, we may shifh by a constant and
rescale the coefficients id4) to obtaina, = 0. Additional rescaling of height, time and space may lead te —1
andaz = 1 if the condition for instability of the flat film is fulfilled. The most simple way to include a multiplicative
modulation is to allow for spatial variation of the linear coefficient Thus, we find

g(h) = ap — (L+&f (x. ) + (15)
Inserting this into {3), we obtain the space dependent Cahn—Hilliard equation
dh = —Ah — A%h + AR — e A(fh). (16)

Without modulation, a type—lis instability occurs with critical wave nunibes 1/+/2 and the cut-off wave number

4.2. Numerical results

We present time series for different harmonic inhomogenéitiesst, we use

f(x) = sinkx)

and examine its influence with respect to the wave nursithe modulation. From two dimensional computations
[33] it is known that for wave numbers much larger than the critical @ngx k.) coarsening takes place just as for
the homogeneous situatiolRig. 4ashow a development whekg = 2k.. Pinning is observed in the early stages,
but finally coarsening dominates as for a homogeneous substrate. However, pinning is reminiscent during the whole
evolution and patterns aligvarallel to the prescribed stripes.

A quite different situation occurs for a smaller wave number of the modulation. In the 2D case, pinning is expected
to be dominant, which is also clearly seen in 3D. ko£ k. the pattern organizes itself in stripgsrpendiculato
the inhomogeneityKig. 4b). Itis also remarkable that coarsening is terminated after a certain time and a steady-state
with a finite wave vector results, just as in the driven systems from the previous section.
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t= 3052 t= 84967

t= 84702

t= 4559 t= 143661

Fig. 4. Numerical solutions of the modulated Cahn-Hilli&ql (16)for different inhomogeneities in form of stripes (a,b) or squares (c). If
the modulation wave length is much shorter than the spinodal one, coarsening dominatesk{a}: Egrpatterns are aligned perpendicular.
Pinning on a square grid is shown in (c). The steady-state consists of filled or empty boxes.

We conclude this paragraph showing the evolution on a square-like inhomogeneity of the form
f(x,y) = sin(kix) sint y)
with k; = k. (Fig. 49. Although coarsening still exists, pinning is dominant and the fluid forms filled or empty
cells on the square grid prescribed pfx, y). Such a device could store information and may be used as a “liquid
memory”.
5. Conclusion
The influence of external modulation on pattern formation in thin liquid films was discussed. Two different

mechanisms were studied: a non-contact method using irradiation of the liquid surface with ultrasound allows for
manipulation of drops, holes or fronts in a prescribed way. Moreover, spatially periodic surface structures with
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desired wave length may be generated in the long-time limit. The second mechanism is based on inhomogeneous
wetting properties of the solid substrate. Here, beneath the amplitude of the modulation the ratio between the two
intrinsic length scales, namely the spinodal wave length and the wave length of the modulation, plays a crucial role.
We showed by direct numerical integration of a model that, depending on that ratio, pinning or coarsening is the
dominant dynamical behavior. The alignment of the eventually stable surface structures is also strongly influenced
by this ratio.

Although both mechanisms are completely different, the resulting patterns show certain common features which
have to be explored in more detail in future work. In both systems, the rotational symmetry in the horizontal plane
is broken by the external modulation. This lack of symmetry expresses itself in the form of the final stable surface
pattern, which turns out to be periodic in both cases. Interestingly, in both cases the surface pattern can be organized
in stripes perpendicular to the external force or modulation. Coarsening, obtained always in the early stages of
temporal evolution, is interrupted at a certain time and periodic patterns stabilize. The periodicity length depends
thereby mainly on the strength of the external modulation.
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