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There are two modes by which clusters of aggregating particles can coalesce: The clusters can merge either
(i) by the Ostwald ripening process, in which particles diffuse from one cluster to the other while the cluster
centers remain stationary, or (ii) by means of a cluster translation mode, in which the clusters move toward
each other and join. To understand in detail the interplay between these different modes, we study a model
system of hard particles with an additional attraction between them. The particles diffuse along narrow channels
with smooth or periodically corrugated walls, so that the system may be treated as one-dimensional. When
the attraction between the particles is strong enough, they aggregate to form clusters. The channel potential
influences whether clusters can move easily or not through the system and can prevent cluster motion. We use
dynamical density functional theory to study the dynamics of the aggregation process, focusing in particular on
the coalescence of two equal-sized clusters. As long as the particle hard-core diameter is nonzero, we find that
the coalescence process can be halted by a sufficiently strong corrugation potential. The period of the potential
determines the size of the final stable clusters. For the case of smooth channel walls, we demonstrate that there
is a crossover in the dominance of the two different coarsening modes, which depends on the strength of the
attraction between particles, the cluster sizes, and the separation distance between clusters.
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I. INTRODUCTION

The late-stage dynamics of phase separation is often
characterized by the presence of droplets, islands, or clusters of
one phase dispersed in a surrounding medium of another phase.
This may, for example, be droplets of a liquid condensing from
a supersaturated vapor, phase separation in a binary mixture
or alloy, or the condensation to form islands of a liquid or
solid phase as particles diffuse over a surface. Over time, the
average size of the clusters or droplets grows and the total
number decreases. There are two mechanisms by which this
can occur. The first is often referred to as Ostwald ripening, in
which particles diffuse from the smaller clusters to the larger
clusters through the surrounding phase while the centers of the
clusters remain fixed in space. Lifshitz and Slyozov [1] and
Wagner [2] were the first to develop a theory for this process.
For a more recent discussion, see, for example, Refs. [3–8].
The second mechanism by which the clusters may coarsen
is via the motion of entire clusters toward other clusters and
subsequently joining. This motion may simply be via droplet
diffusion [3]. Alternatively, it can be due to an imposed external
driving, e.g., by gravity in sedimentation, creaming, and the
formation of rain drops. Quite often, cluster diffusion may be
neglected compared to the diffusion of individual particles
since the diffusion coefficient D through the surrounding
material decreases with the inverse of the radius R of the
diffusing object, e.g., in three dimensions, D ∼ 1/R.

Since the radius of a cluster is much larger than an individual
particle, the cluster diffusion coefficient is much smaller.
However, this is not always the case, particularly when two
drops come close enough to each other that they begin to
interact strongly. Then capillary and other such forces can lead
to their motion and may result in cluster-cluster coalescence.

There are other aspects and theories of aggregation ki-
netics that are worth mentioning: In earlier models, the

aggregation process was regarded as irreversible, whereby the
thermally activated escape of single particles from clusters
was neglected. In this regime, growth occurs solely due to
collisions between smaller clusters that encounter each other
traveling by diffusion. This aggregation scenario is referred
to as diffusion-limited or reaction-limited aggregation [9–12].
Later models assume an extended aggregation scenario by
taking into account the reversible reorganization processes,
associated with the breaking away and diffusing of particles
from one cluster to another [13–15].

In reality, all of the above mechanisms play a part in the
coarsening dynamics. However, in different regimes, different
mechanisms dominate. When the distance between clusters is
large, then the Ostwald ripening mechanism dominates, but the
escape of particles from clusters can be an extremely slow pro-
cess. However, when the density of clusters is sufficiently high,
they interact and cluster motion can dominate. Note too that
the Ostwald ripening mechanism depends on the solubility of
the clustering particles in the background (dispersing) phase,
implying that for strongly phase-separating systems, Ostwald
coarsening can be very slow. The cluster motion process also
depends strongly on the properties of the dispersing phase and
also, in the case of systems of particles moving over a surface,
on the nature of the interactions with the surface and the degree
of surface roughness, since clusters may become pinned on a
rough surface. In this paper, we develop a simple model to
study the interplay of the different coarsening processes and
the influence of the background substrate.

The model we consider here consists of a system of one-
dimensional (1D) Brownian particles (i.e., rods) confined in
a periodic external potential U (x). Such a situation occurs
when particles are confined within a narrow pore, groove,
or channel. The amplitude of the modulations in U (x) has a
significant influence on the rate at which individual particles
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and also clusters can move through the system. The particles
are assumed to have a hard core of diameter σ and also an
attractive interaction. This system also serves as a minimal
model of molecular transport through micro- and nanopores
featuring the so-called single file diffusion [16]. We focus,
in particular, on the case of two clusters in the system, and
we study in detail the dynamics of how these clusters join
together. We also focus on small clusters, where it is easier
to understand the processes that occur during coalescence.
However, we relate our results to larger clusters and we believe
our results are quite general.

We find that the Ostwald and translation aggregation
mechanisms discussed above are both exhibited by our model
system, depending on the values of the system parameters, and
we also find that as these are varied, there can be a crossover
from one mode dominating to the other. The interplay of these
two modes was studied previously for shallow liquid droplets
on homogeneous and heterogeneous surfaces [17–21]. There,
the analog of the Ostwald process is referred to as the mass
transfer mode of the coarsening dynamics of dewetting liquid
films [17] or the mass exchange and collapse mode [20].
This refers to when one of two neighboring liquid droplets
shrinks and the other one grows, leading eventually to a
single large droplet. Similarly, there is a translation mode [17]
called the spatial motion and collisions mode in [20], whereby
neighboring droplets move together and join. We see here that
there are strong parallels between the aggregation dynamics
of colloidal (Brownian) systems and the coarsening dynamics
in binary mixtures or in dewetting liquid films [8,17,20]. The
qualitative behavior of the present model is very similar to that
observed in these systems, and so we believe that the overall
qualitative conclusions we draw in this paper are rather more
general than one might expect, given the simple 1D model that
we study. This is due to the fact that the coarsening modes are
closely related to the symmetry modes of the systems [21].

A particular application of our results is the aggregation
in colloidal systems, since we assume the particles move by
Brownian dynamics. The rise of nanotechnology has seen a
surge of interest in aggregation and cluster formation of col-
loidal particles with nanoclusters hailed as prototypes of novel
functionalized materials [22,23]. The formation of clusters
of attracting colloids with their subsequent aggregation into a
new solidlike phase is closely linked to the phenomena of glass
transitions and gelation [24,25]. At a given volume fraction, the
uniform density state, which corresponds to a homogeneous
suspension of colloids, can become unstable if a certain critical
attraction strength is reached. As the system evolves toward a
global minimum of the free energy, the initially formed clusters
merge to form bigger aggregates. The final state, which is
found in the long-time limit, crucially depends on the nature
of the interaction potential between the particles. Typically, if
the interaction is purely attractive up to the hard-core cutoff,
the global minimum of the free energy corresponds to a single
infinitely large aggregate. The process by which large colloidal
clusters collapse to form a disordered solid is known as gelation
[11,25,26].

To describe the dynamics of cluster aggregation, we take a
statistical mechanical point of view and study the kinetics of
the aggregation process using dynamical density functional

theory (DDFT) [27–30], which is a theory for the time
evolution of the one-body density distribution ρ(x,t) of the
particles in the system. DDFT builds on equilibrium density
functional theory [31–33] and therefore in principle guarantees
giving the correct equilibrium fluid density profile, even
though its description of the dynamics involves approximation
[27–30]. An advantage of DDFT over some other approaches,
such as the previously used discrete models [9–15], is that
DDFT takes as input the microscopic properties of the particle
interactions and particle dynamics. The approximation for the
equilibrium Helmholtz free-energy functional that we use is
based on the exact free-energy functional for a 1D fluid of
hard rods [34]. The contribution to the free energy due to
the attraction between the particles is then treated using a
simple mean-field approximation [32]. This is based on the
DDFT for aggregating hard rods transported along narrow
channels developed in Refs. [35,36], where the model is used
to study the directed transport of particles through channels
with periodically corrugated walls.

The paper is structured as follows: In Sec. II, we give a brief
overview of the DDFT for attractive hard rods. In Sec. III, we
discuss the bulk system phase behavior, in particular recalling
the aspects of the linear stability analysis of the homogeneous
phase of the model that are relevant to the present study. In
Sec. IV, we discuss how to obtain the eigenfunctions and
eigenvalues corresponding to the two different coarsening
modes discussed above, and we illustrate this with some typical
results. We show that cluster coarsening can be halted by
applying a sufficiently strong pinning potential U (x). The
critical strength of the potential, which is necessary to stop
clustering, greatly depends on the diameter of the particle σ

and in fact diverges in the limit σ → 0. We show that for
small and intermediate amplitudes of the external potential,
the aggregation process is dominated by the Ostwald mode
if the attraction between particles is rather weak. However,
as the attraction strength is increased, the translation mode
becomes dominant, whereas the Ostwald mode becomes
inactive. In Sec. V, we discuss further how a crossover from
one coarsening mode to the other can occur. Finally, in Sec. VI
we make a few concluding remarks.

II. MODEL SYSTEM AND DDFT

Following [35,36], we consider a system of N hard
particles of diameter σ , moving in a channel of length S.
We impose periodic boundary conditions, i.e., the channel
may be considered to be circular. The channel is assumed
to be sufficiently narrow that the particles are confined to a
line and so may be treated as a 1D system of hard rods. The
particles interact with the corrugated channel walls through a
periodic potential U (x), which is of period L = S/n, where n

is an integer. In addition to the hard-core repulsion between the
particles, there is an attractive interaction between the particles
that is described by the potential w(x) = −α exp(−λx), with
the typical interaction range 1/λ and strength α > 0. We
assume that the dynamics of the particles are governed by an
overdamped stochastic equation of motion, and so we may use
DDFT [27–30] to approximate the Fokker-Planck equation for
the time evolution of the one-body density distribution ρ(x,t)
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as follows:

1

�

∂ρ(x,t)

∂t
= ∂

∂x

[
ρ(x,t)

∂

∂x

δF [ρ(x,t)]

δρ(x,t)

]
, (1)

where � is the mobility of a single particle, and the Helmholtz
free-energy functional F [ρ] is given by

F [ρ(x,t)] = kBT

∫ S
2

− S
2

dx ρ(x,t)[ln 	ρ(x,t) − 1]

+
∫ S

2

− S
2

dx U (x,t)ρ(x,t) + Fhc[ρ] + Fat[ρ].

(2)

In Eq. (2) the first term is the ideal-gas contribution to the
free energy, where 	 is the thermal de Broglie wavelength, kB

is Boltzmann’s constant, and T is the temperature. The term
Fat is the excess free-energy contribution due to the attraction
between particles, for which we use the following mean-field
approximation [32]:

Fat[ρ] = 1

2

∫ S
2

− S
2

dx

∫ x+ S
2

x− S
2

dx ′ w(| x − x ′ |)ρ(x)ρ(x ′). (3)

The term Fhc[ρ] in Eq. (2) is the free-energy contribution from
the hard-core interaction between the particles. We use the
Percus exact functional [34] for 1D hard rods of length σ :

Fhc[ρ] = 1

2

∫ S
2

− S
2

dx φ[ρ(x)]

{
ρ

(
x + σ

2

)
+ ρ

(
x − σ

2

)}
, (4)

where φ[ρ(x,t)] = −kBT ln[1 − η(x,t)] and η(x,t) =∫ x+σ/2
x−σ/2 dx ′ ρ(x ′,t).

Any solution of Eq. (1) is subject to periodic boundary
conditions in the interval [−S/2,S/2] and the normalization
condition

∫ S/2
−S/2 ρ(x) dx = N .

To nondimensionalize Eq. (1), we rescale x with the
characteristic length of the attraction potential 1/λ, time t

with 1/λ2�kBT , which represents the characteristic time for
a particle to diffuse a distance 1/λ, and all energy units are
scaled with kBT . For simplicity, we use the same notations for
the rescaled units, implying that nondimensional Eqs. (1)–(4)
are obtained by setting � = 1, λ = 1, and kBT = 1.

We assume for simplicity that the periodic external potential
has the following form:

U (x) = − χ

2π
cos

(
2πx

L

)
. (5)

The amplitude parameter χ governs the height of the potential
barrier between neighboring minima in the potential, and L is
the period of the corrugation potential exerted onto the particles
by the channel walls. Our simple 1D model may also be used
to understand the collective dynamics or particles diffusing
over a rough surface. In this context, χ may be thought of as
a parameter that characterizes the roughness of the surface.
We also study smooth channels, which correspond to the limit
χ → 0. In this case, when U (x) = 0, if the particles condense
to form a cluster or several clusters and so are nonuniformly
distributed with density profile ρ(x). In this situation the free
energy of the system does not change if there is an arbitrary

translation in the system, i.e., when ρ(x) → ρ(x + l), where
l is the arbitrary shift distance. In the numerical treatment of
this case, some care has to be taken because of the translation
symmetry (see the next section).

III. PHASE BEHAVIOR AND STABILITY
OF THE UNIFORM DENSITY STATE

In Ref. [36], the equilibrium phase behavior of the model
system defined in Eqs. (1)–(4) is studied. As the attraction
strength α is increased (or, equivalently, as the temperature T

is decreased), the uniform density state ρ(x) = ρ0 that exists
for χ = 0 becomes unstable for some range of densities ρ0,
and phase separation occurs. While there is no true phase
transition in the system as predicted by the present mean-field
model because the system is one-dimensional (i.e., fluctuations
round the predicted transition), nonetheless a comparison with
Brownian dynamics computer simulations reveals that the
DDFT (1)–(4) does describe well the aggregation of particles
into clusters [36]. A cluster state may form spontaneously if the
uniform state is linearly unstable, or there may be a free-energy
barrier that must be overcome to form clusters, i.e., clusters
must be nucleated [3,36]. A linear stability analysis [29,36]
shows that the trivial steady-state solution ρ(x) = ρ0 of Eq. (1)
can become linearly unstable with respect to two distinct
instability modes: the spinodal mode and the freezing mode,
depending on the value of ρ0. Expanding on the right-hand side
of Eq. (1) in powers of the density, one obtains an equation of
the form

∂tρ = L̂ρ + O(ρ2), (6)

where L̂(x) is a linear operator. In the linear stability analysis,
the density is assumed to be of the form ρ(x,t) = ρ0 +
ε exp[β(k)t + ikx], where the amplitude ε is assumed to be
small. Substituting this into Eq. (6) and then linearizing in ε,
one obtains the dimensionless dispersion relation [36]

β(k) = − k2 − 2ρ0k sin(kσ )

1 − ρ0σ
− 4ρ2

0 sin2(kσ/2)

(1 − ρ0σ )2
+ 2αρ0k

2

k2 + 1
.

(7)

In the case of an infinitely extended system (S → ∞), the
spinodal instability sets in at zero wave number k = 0. In
contrast, the freezing instability sets in with a finite critical
wave number k = kc �= 0. The linear stability analysis allows
for a determination of the regions of the phase diagram where
phase separation occurs and identifies the length scales of
the structures that are formed in the initial stages after a
uniform state is quenched into a linearly unstable parameter
region [29,36]. However, here our focus is not on the linear
short-time dynamics but on the long-time dynamics when
clusters are already present, whether formed by nucleation
or spontaneously after a quench. These clusters coarsen over
time, via one or both of the two mechanisms described in the
Introduction: either the Ostwald ripening mechanism, or via
the motion and coalescence of clusters.

To calculate solution branches of steady cluster density
profiles and their bifurcations numerically, we employ the
method presented in Ref. [36]. Namely, we rewrite our
governing integrodifferential equations as a finite-dimensional
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dynamical system, i.e., as a finite set of ordinary differential
equations in time. To do so, Eq. (1) is Fourier-transformed
truncating at a certain number of modes Mf , resulting for our
gradient dynamics Eq. (1) in Mf real equations for the Fourier
coefficients that form the dynamical system. Throughout the
paper, we set Mf = 400. Its solution and bifurcation behavior
are systematically analyzed combining fast Fourier transforms
with pseudo-arclength path continuation [37–39] as bundled
in the package AUTO07P [40].

The continuation may either be started at a steady state
obtained via a direct time simulation or from analytically
known small-amplitude harmonic solutions that well approxi-
mate nonuniform states close to the primary bifurcations of the
uniform state [36]. However, to numerically obtain S-periodic
steady-state solutions of Eq. (1) in a smooth channel, i.e., the
limit χ → 0, one has to overcome a problem that is related to
the translational invariance of solutions in this case. In practice,
we use the homotopy method to obtain a weakly modulated
steady state with a period equal to the system size, i.e., we
set L = S. We start the continuation with a constant density
ρ(x) = ρ0, which is a steady-state solution when α = σ = 0
(so that Fat = Fhc = 0) and U (x) = 0. We then introduce an
additional homotopy parameter, which multiplies the last three
terms in Eq. (2). In the first continuation run, the homotopy
parameter is increased from 0 to 1, keeping χ , α, and σ at
generic values in the linearly stable parameter region. This
results in a weakly modulated steady state. In the second run,
this steady state is continued as α is increased beyond the
point where condensation sets in and large-amplitude cluster
solutions emerge. In the next run, this large-amplitude solution
is continued when the heterogeneity amplitude χ is decreased
until it becomes vanishingly small (typically χ = 10−5 well
approximates a smooth channel). Thus, the potential U (x) of
nearly vanishing amplitude serves in this situation merely as a
numerical trick to break the degeneracy related to translational
invariance and to fix the steady-state solutions in space.

IV. COARSENING OF CLUSTERS

In this section, we focus on the dynamics of clusters
that have been created either by means of nucleation from
a metastable uniform state, or by linear instability (spinodal
or freezing). In particular, we consider the coalescence of two
clusters into one bigger aggregate. Note that clusters can also
be created in the absence of the attraction between the particles,
by the potential U (x). In this case, the particles form clusters
due to accumulation around the local minima of U (x).

A. Symmetry and coarsening modes

Any steady-state solution of Eq. (1) in a smooth channel,
i.e., with U (x) = 0, has two types of symmetry: (i) a translation
symmetry and (ii) a volume change symmetry. The existence
of these two symmetries for individual clusters gives rise to
the two different coarsening mechanisms discussed above if
they are combined for several clusters. This is sketched for
droplets on a solid substrate in Ref. [21].

For the translation symmetry, one sees that if ρ(x) is a
single-cluster steady-state solution of Eq. (1), then ρ(x + ξ )
with an arbitrary shift ξ is also a solution. For small ξ ,

one can write ρ(x + ξ ) ≈ ρ(x) + ξ∂xρ(x), which implies that
h(x) = ∂xρ(x) is the eigenfunction of the DDFT operator
L̂(x) linearized around the steady state ρ(x), with zero
eigenvalue γ = 0, i.e., L̂(x)∂xρ(x) = 0. In what follows, we
refer to h(x) = ∂xρ(x) as the translation symmetry mode
eigenfunction, which is sometimes called the Goldstone mode
of this continuous symmetry. Combining translation modes
with opposite signs for two adjacent droplets gives the
translation mode of coarsening.

The volume change symmetry is associated with the
normalization (particle conservation) condition of the solution
of Eq. (1). Given a density profile ρ(x), which is a single-
cluster steady-state solution of Eq. (1), with

1

S

∫ S/2

−S/2
ρ(x) dx = ρ0, (8)

we now consider the density profile ρ̃(x) = ρ(x) + δρ(x),
with (1/S)

∫ S/2
−S/2 ρ̃(x) dx = ρ̃0 = ρ0 + δρ0, which is also a

steady-state solution of Eq. (1) for some small δρ0. Since
ρ̃(x) = ρ(x) + δρ(x), we deduce that h(x) = δρ(x) is another
eigenfunction of the operator L̂(x) with zero eigenvalue
γ = 0, i.e., L̂(x)δρ(x) = 0. Consequently, the volume sym-
metry mode δρ(x) corresponds to the derivative with respect
to the density ρ0, i.e., δρ(x) = δρ0∂ρ(x)/∂ρ0, where we define

∂ρ(x)

∂ρ0
≡ lim

δρ0→0

ρ(x; ρ0 + δρ0) − ρ(x; ρ0)

δρ0
. (9)

Combining volume modes with opposite signs for two adjacent
droplets gives the mass transfer mode of coarsening, which
we refer to as the Ostwald ripening mode. Note that one
may alternatively calculate the Ostwald mode eigenfunction
by considering the change δρ(x) from an infinitesimally small
change in the value of the chemical potential, μ0 → μ0 + δμ0.

Thus, any steady-state solution ρ(x) has the two neu-
trally stable symmetry modes. If these respective modes are
combined for pairs or groups of clusters, one obtains the
various coarsening mode eigenfunctions that for homogeneous
systems normally have small positive eigenvalues resulting
from the overlap of the tails of the symmetry modes of the
individual clusters. If one now breaks the translation symmetry
by considering a heterogeneous system with U (x) �= 0, the sta-
bility and characteristics of translation and Ostwald coarsening
modes closely related to the two introduced eigenfunctions still
define the dynamics of coarsening.

To illustrate this discussion, one may examine the simple
situation in which an ideal gas of noninteracting particles (i.e.,
σ = 0 and α = 0) is confined within a parabolic potential
U (x) = ax2, where a determines the strength of the confine-
ment. This is arguably the simplest example of a cluster, where
the particles remain in the cluster due to the confinement of the
external potential. The equilibrium density profile is obtained
from minimizing the grand potential [32],

�[ρ] = F [ρ] − μ

∫ S/2

−S/2
ρ(x)dx, (10)

where the Helmholtz free energy F results from Eq. (2),
and μ is the chemical potential, which is the Lagrange
multiplier enforcing the constraint (8). When S is large,
we obtain the density profile ρ(x) = ρ0 exp(−ax2), where
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ρ0 = 	−1 exp(μ). Thus, the translation mode eigenfunction
is h(x) = ∂xρ(x) = −2xaρ0 exp(−ax2). To determine the
volume mode eigenfunction, we note that ρ(x; ρ0 + δρ0) =
(ρ0 + δρ0) exp(−ax2), and so using Eq. (9) we find that the vol-
ume mode eigenfunction is h(x) = δρ(x)/δρ0 = exp(−ax2).
Note that the translation and volume mode eigenfunctions are
orthogonal. We now consider two such confining potentials
generating two clusters a distance l apart. In this situation,
U (x) = a(x + l/2)2 for x < 0 and U (x) = a(x − l/2)2 for
x > 0. The resulting density profile exhibits two “clusters”
centered at ±l and the density profile

ρ(x) =
{
ρ0 exp[−a(x + l/2)2] for x < 0,

ρ0 exp[−a(x − l/2)2] for x > 0.
(11)

Suppose now that there are slightly more particles (δρ0) in the
left-hand cluster than in the right-hand cluster. In this situation,
the Ostwald mode eigenfunction is

h(x) ≈
{

exp[−a(x + l/2)2] for x < 0,

− exp[−a(x − l/2)2] for x > 0.
(12)

This eigenfunction indicates that there will be a diffusion of
particles from one side to the other. One must calculate the
eigenvalue to determine the direction of this flux, although in
this simple situation one knows already that the symmetric
state is stable, i.e., the eigenvalue must be negative and the
flux is from left to right. One may also examine the translation
mode eigenfunction, although in this simple case this mode
is not relevant. However, when we introduce the attraction
between the particles, this mode can become relevant and the
two clusters can seek to move toward one another.

We now consider a small system of strongly interacting
particles. We display in Fig. 1(a) a single four-particle cluster,
i.e., a period-L steady-state density profile obtained for
σ = 0.75, α = 15, ρ0 = 0.8, and S = L = 5. Due to the
very strong attraction, the four particles are squeezed

0

3

6

ρ(
x)

0

h(
x)

-2 -1 0 1 2
x

0h(
x)

-5 -2.5 0 2.5 5
x

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 1. (a) Density profile for a single cluster that is a period-
L steady-state solution in the smooth channel [U (x) = 0] for ρ0 =
0.8, α = 15, σ = 0.75, and domain size S = L = 5. (b) The volume
symmetry mode and (c) translation symmetry mode eigenfunctions
h(x) for a single cluster with eigenvalues γ = 0. (d) Density profile
for a two-cluster state, i.e., period-L steady-state solution in a domain
of length S = 2L = 10, for parameters as in (a). (e) Ostwald ripening
coarsening mode with γ = −0.8 (stable). (f) Translation coarsening
mode with γ = 3.5 (unstable).

into the compact cluster with four distinct density peaks.
Figures 1(b) and 1(c) show the volume symmetry mode and
the translation symmetry mode eigenfunctions of the steady
state, respectively.

If L is the period of a (neutrally) stable state ρ(x),
then the periodically continued ρ(x) is also a steady-state
periodic solution in a system with the larger size S = nL,
with an arbitrary integer n. In such an extended system,
the solution ρ(x) is still (neutrally) stable with respect to
perturbations with period L, but it may be unstable with respect
to perturbations with period nL/m(m = 1, . . . ,n) that break
the internal discrete symmetry of ρ(x) under translations by
L, i.e., to coarsening modes.

Here we are particularly interested in the case of n = 2, i.e.,
when S = 2L. We refer to the period-L steady state ρ(x) as a
cluster of length L. Then, the case n = 2 corresponds to two
identical clusters of period-L in a system of total size S = 2L.
Figure 1(d) shows the density profile for such a two-cluster
state, i.e., two period-L (L = 5) clusters of four particles each
in a system of size S = 2L = 10. In the following sections,
we describe the coalescence dynamics of the two period-L
clusters that are stable with respect to perturbations with wave-
length L, but may be unstable with respect to perturbations
with wavelength 2L. These (stable or unstable) period-2L

perturbations are the two coarsening modes discussed above.
The mode associated with the Ostwald ripening coarsening
process can be approximated by combining the volume modes
of two individual clusters taken with opposite signs, as shown
in Fig. 1(e). See also Eq. (12). The second mode is the
translation coarsening mode, which is obtained by combining
the translation modes of the individual clusters taken with
opposite signs. This is shown in Fig. 1(f). For the case in Fig. 1,
the eigenvalue for the Ostwald coarsening mode, γ = −0.8,
is negative and so the system is stable against this mode.
However, for the translation mode, γ = 3.5, and so the system
is unstable against this mode. Because this mode is unstable,
the two clusters move toward each other, preserving their shape
until they collide to form a bigger cluster.

B. Purely attracting particles

First, we consider the simplest case of particles with σ = 0,
i.e., with no hard-core interaction. We set ρ0 = 1/L and S =
2L, corresponding to just one particle per period-L, i.e., we
expect “clusters” with either one or two particles. Figure 2(a)
shows the L2 norm of the steady states of Eq. (1) as a function
of α, obtained for L = 5. We see that the period-L solution,
which for α � 6 corresponds to a weakly modulated density
distribution [see the inset Fig. 2(a)], undergoes two primary
pitchfork bifurcations: one at α ≈ 3.3 and the other at α ≈ 3.8,
where two new branches of steady-state period-2L solutions
emerge, as shown by the red dot-dashed line and by the black
solid line in Fig. 2(a). The first one, bifurcating at BP1, consists
of stable period-2L solutions that represent strongly localized
two-particle clusters centered at the minimum of U (x). The
branch that emerges at BP2 consists of unstable localized two-
particle clusters (unstable period-2L solutions) centered at the
maximum of U (x) [see the inset of Fig. 2(a)].

At each pitchfork bifurcation, the period-L becomes un-
stable with respect to one of the coarsening modes, i.e., for
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FIG. 2. (Color online) (a) The L2-norm of the steady-state
solutions of Eq. (1) for χ = 0.5, ρ0 = 1/L, and S = 2L = 10. The
dashed line corresponds to period-L (L = 5) solutions; the dot-
dashed line and the solid line correspond to period-2L solutions. Two
branches of period-2L solutions emerge at the pitchfork bifurcations
BP1 and BP2. The inset shows the channel potential (shaded) and
three density profiles: the period-L solution (dashed line) obtained
for α = 3.5, the period-2L solution on the first branch at α = 3.4
(dot-dashed line), and the period-2L solution on the second branch
(solid line) at α = 3.8. (b) The two leading eigenvalues γ of the
period-L solutions: the Ostwald mode and the translation mode
(trans). All other parameters are as in (a). (c) Stability diagram of
the two coarsening modes in the (χ,α) plane. Period-1L solutions
are stable in the shaded area marked by (s). The translation mode is
stable above the solid line. The Ostwald mode (Ost) is always unstable
outside the area marked by (s). The thick dot-dashed line corresponds
to the estimate for the stability threshold of the translation mode given
by Eq. (13).

α � 3.8, the period-L solution is unstable with respect to the
two coarsening modes described above. At the first branching
point BP1, the system becomes unstable to the Ostwald
ripening mode. Indeed, the centers of the two period-L clusters
induced by the potential U (x) are located in the minima of
U (x). Therefore, the position of the clusters does not change
as one switches to the first branch. In contrast, when moving
from the period-L solution onto the second branch (above its
saddle-node bifurcation), the position of clusters changes from
the minimum to the maximum of U (x), clearly indicating that
the second branching point BP2 corresponds to the onset of
the translation mode of coarsening. Note that at large α, the
norms of the two branches of solutions practically coincide.

The two leading eigenvalues γ of the steady period-L
solutions are shown in Fig. 2(b). They become positive at the
respective pitchfork bifurcation. For α not too far above these
thresholds, the Ostwald mode (dot-dashed line) dominates
over the translation mode (solid line). However, as α is
further increased, the eigenvalue of the Ostwald mode rapidly
decreases, whereas the eigenvalue of the translation mode
increases almost linearly with α. This shows that for strongly

attractive particles, the translation mode dominates the cluster
coalescence process.

The stability diagram in Fig. 2(c) shows the locus of the
two branching points BP1 and BP2 in the (α,χ ) plane. The red
dot-dashed line marks the first bifurcation of the period-L state,
associated with the onset of the Ostwald mode. The black solid
line corresponds to the onset of the translation mode. The left-
hand shaded region corresponds to the linearly stable period-L
state. Note that for any fixed α, one can stabilize the translation
mode by an external potential U (x) with a sufficiently large
amplitude χ . Remarkably, however, the Ostwald mode cannot
be stabilized for any choice of χ , implying that two period-
L clusters will always eventually merge as a result of the
diffusion process that is the basis of the Ostwald coarsening
mechanism. We emphasize, however, that the characteristic
time scale τ ∼ 1/γ associated with the Ostwald mode diverges
exponentially for large α, as can be clearly seen from Fig. 2(b),
where γ is plotted on a logarithmic scale. This means that for
strongly attractive particles, the transfer of material from one
cluster to the other via the Ostwald mode is a very slow process,
as one would expect for particles diffusing over a high potential
barrier.

One can give a rather simple qualitative estimate for the
stability threshold of the translation mode [dashed line in
Fig. 2(c)]. This can be done by relating the peaks in the
density profile to individual particles. Thus, we associate
the period-L cluster with N = ρ0L particles located at the
minima of U (x), as shown by the dashed lines in Fig. 3.
Since the attraction strength between particles decreases
exponentially with distance, we only need to take into account
the interactions between nearest-neighbor particles (clusters).
When two neighboring clusters move toward each other by a
distance δ, then the total interaction energy E(δ) per cluster
can be written as E(δ) = ρ0L{−αe−(L−2δ) + 0.5[U (xmin +
δ) + U (xmin − δ)]}. By setting E′′(0) = 0, we find that the
equilibrium configuration δ = 0 is stable with respect to the
translation mode when

πχ � 2αL2e−L. (13)

The critical amplitude χ from Eq. (13) is displayed as the thick
dot-dashed line in Fig. 2(c), which slightly underestimates the
true stability threshold (solid line) because Eq. (13) is obtained
via purely energetic arguments and does not take into account
entropic contributions.

The physical reason why the Ostwald coarsening process
for particles with no hard core (σ = 0) cannot be stabilized by

δ δ δ δ

x

ρ (
x)

U(x)

FIG. 3. (Color online) Schematic representation of the transla-
tion coarsening mode. The initial clusters (dashed lines) move by a
distance δ toward one of their neighbors. The external potential U (x)
is indicated by the shaded profile at the bottom.
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increasing the amplitude of the pinning potential U (x) to some
threshold value can be explained as follows: Particles with no
hard-core repulsion can always be squeezed into a cluster of
arbitrarily small size. So, initially, strong periodic potentials
U (x) split the particles into dense clusters, each located at a
local minimum of U (x). However, even in the limit χ → ∞,
the question of the stability of the dense clusters that are located
in the minima of U (x) becomes the standard escape problem
of a single particle from a potential well. The effective energy
barrier that a given particle must overcome in order to escape
a cluster is given by the combination of the pinning potential
and the energy associated with the attraction to the cluster. It
is well known that the escape rate always remains nonzero,
no matter how high the potential barrier is. This ensures
that the temperature-driven Ostwald mode diffusive process
remains active even for very strongly pinning potentials U (x).
Intuitively, however, one may expect this mechanism to break
down in the case in which the particles do have a hard core
(σ > 0), as these can no longer be squeezed into a cluster
below the size of σN .

C. Stabilization of clusters by strongly corrugated potentials

Under similar conditions, hard rods with nonzero length
σ �= 0 behave qualitatively different from the pointlike purely
attracting particles considered in Sec. IV B. Even an arbitrarily
small σ has a dramatic effect on the stability diagram displayed
in Fig. 2(c). For any σ �= 0, the Ostwald mode can be stabilized
by a sufficiently strong corrugation potential U (x). Note that,
in the large χ regime, the translation mode is also stable as
shown for σ = 0 in Sec. IV B. As a result, for any σ �= 0
a strong pinning potential can stabilize clusters with a size
sufficiently small to fit within a single potential well of the
channel potential.

To see why large amplitudes χ can lead to the stabilization
of clusters, we consider the strong attraction limit α → ∞,
where the particle picture can be used for qualitative argu-
ments. If there are only N = 2 particles within the system,
one finds four different steady-state solutions of Eq. (1), as
shown schematically in Fig. 4. The two rods are indicated
by rectangles and the corresponding density distributions are
indicated as well. The steady states of these two hard rods
consist of the individual particles either being at the minima
[Fig. 4(a)] or maxima [Fig. 4(b)] of the channel potential U (x),
or they can form a compact two-particle cluster centered at

(a) (b)

(d)(c)

xx

ρ(
x)

ρ(
x)

FIG. 4. (Color online) Schematic diagram of the steady-state
solutions (solid lines) of Eq. (1) with N = 2 strongly attracting hard
rods with ρ0 = 1/L and S = 2L. The shaded area represents U (x).
The rod length is σ = 1.5.
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FIG. 5. (Color online) (a) Stability diagram of the two coarsen-
ing modes for σ = 1.75 with the remaining parameters as in Fig. 2(c).
(b) The coalescence time evolution of two period-L clusters into a
single period-2L cluster mediated by the Ostwald mode, for α = 7.7
and χ = 1. Bottom row: an example of the aggregation dynamics via
the translation mode, in this case for α = 10 and χ = 1.

the minimum [Fig. 4(c)] or maximum [Fig. 4(d)] of U (x).
Clearly, the steady states (b) and (d) are unstable, as any small
deviation from the equilibrium will result in a translation to an
energetically lower state [either (a) or (c)].

The energies of the states (a) and (c) are given
by Ea = 2U (xmin) − αe−L and Ec = U (xmin + σ/2) +
U (xmin − σ/2) − αe−σ , respectively. Consequently, taking
into account that U (x) = −(χ/2π ) cos 2πx/L, the state
(a) corresponds to a global minimum of the energy for
χ > πα(e−σ − e−L)/(1 − cos πσ/L). Therefore, when χ ex-
ceeds this threshold value, the clusters with N = 1 par-
ticles, associated with the period-L solutions, are linearly
stable.

It should be emphasized that the energy-based arguments
cannot be used to accurately predict the linear stability
threshold. Generally, stabilization occurs at a much lower
χ value, due to the fact that a steady state can be linearly
stable even if it has a higher energy than some other steady
state. The border of the region in the (α,χ ) plane, where
linearly stable period-2L solutions exist, is given by the
dashed line in Fig. 5(a), which presents the modification of
the stability diagram in Fig. 2(c) due to a nonzero rod length
σ = 1.75.

In the heavy-shaded region of Fig. 5(a) labeled “trans+Ost,”
both coarsening modes are linearly unstable. The thick red
solid line defines the boundary of the region where the Ostwald
mode is linearly unstable. In the hash-shaded area, only the
translation mode is linearly unstable whereas the Ostwald
mode is linearly stable. Outside of the shaded areas, the
period-L solutions are linearly stable. However, as the primary
bifurcations can be subcritical, the period-2L clusters can
exist outside the shaded area. This occurs to the right of the
nearly vertical dashed blue line, which marks the saddle-node
bifurcation of the stable period-2L solutions. In this region,
labeled “nuc,” the period-2L clusters must be formed via
nucleation. Remarkably, we see from Fig. 5(a) that at nonzero
χ , one can switch between the translation mode for coarsening
and the Ostwald mode by changing α.

Numerically integrating Eq. (1), we obtain the time evo-
lution of the density profile, with the period-L solution as
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the initial condition as displayed in Fig. 5(b). We see that for
α = 7.7 and χ = 1, the dynamics of the coalescence of two
period-L clusters is indeed via the Ostwald mode. As expected
from Fig. 5(a), in this scenario one of the maxima of the density
profile grows at the expense of the other. Increasing α, we find
that the translation mode becomes dominant. In the example
displayed along the bottom row in Fig. 5, which is for α = 10
and χ = 1, we observe a typical coalescence dynamics due to
the translation mode. The two unstable clusters at the potential
minima first both move toward the separating maximum,
where they coalesce into the solution on the BP2 branch. Note
that this solution is itself unstable (on a larger time scale),
as it represents a saddle in function space. However, it acts
as an organizing center for the coarsening process as it first
attracts the time evolution along its stable direction (related
to its stable eigenvalue closest to zero), and then expels it
along its only unstable direction (in function space) on a time
scale controlled by its unstable eigenvalue. As a consequence,
the fused cluster slowly translates into one of the potential
minima, becoming the solution on the BP1 branch. In other
words, the time scale of the coarsening is controlled by the
eigenvalues of the initial two-cluster state and of the unstable
solution on the BP2 branch. Overall, the eigenvalue with the
smallest absolute value gives a good estimate for the time scale
of the coalescence.

D. Larger clusters

Up to this point, we have focused on the coalescence of
two “clusters” which each only consist of N = 1 particle (on
average). The fair question arises as to whether or not the
results summarized in Fig. 5 remain at least qualitatively valid
for bigger clusters of N > 1 particles. The complete answer

to this question depends on the choice of the length scale
parameters such as the rod length σ , the period L of the channel
potential, and the system size S, all expressed in units of 1/λ.
Indeed, by increasing the number of particles in the system,
i.e., by increasing the average density ρ0, one increases the
minimal possible size of the cluster, given by σN . Clearly, one
can expect to uncover a rather different behavior for σN 	 L,
where the cluster size is much smaller than the period of U (x)
and for σN ∼ L, with cluster sizes comparable to the period
of U (x). Furthermore, different dynamical regimes can be
expected for different separation distances between the clusters
as compared to their size.

In view of this, it is clear that a complete account of all the
possible dynamical regimes of the cluster formation is beyond
the scope of the present paper. Here we focus on the simplest
case in which the smallest cluster size σN is much smaller than
both the period of U (x) and the separation distance between
the clusters.

Under such conditions, the energy-based arguments used
above for the case of N = 2, as illustrated in Figs. 3 and
4, remain qualitatively valid for N > 2. This means that the
stabilization of both coarsening modes by a sufficiently strong
potential U (x) can be expected for larger clusters as well.
However, the presented energy-based arguments do not explain
a stabilization of the Ostwald mode observed even in the
case when the channel walls are smooth, i.e., for χ = 0 [see
Figs. 5(a) and 6]. To understand this effect, we set σ = 0.5 and
study the dependence of the coarsening modes on attraction
strength α for different numbers of particles in the system as
controlled by ρ0.

Representative examples are shown in Figs. 6(a) and
6(b), where the eigenvalues of the translation mode and the
Ostwald mode are denoted by the solid and dot-dashed lines,
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FIG. 6. (Color online) Panels (a) and (b) show the dependence on attraction strength α of the eigenvalues of the translation (thick solid
lines) and the Ostwald (dot-dashed lines) coarsening modes of period-L solutions in the case of smooth channels (χ = 0), rodlike particles with
σ = 0.5, and domain size S = 2L = 10. The thin dashed lines correspond to the growth rate β(k) of the uniform density state calculated at
k = π/5. Part (a) gives results for densities ρ0 = 0.4 (i.e., N = 4) and ρ0 = 0.8 (i.e., N = 8), while (b) shows the case ρ0 = 1.2 (i.e., N = 12).
The thick dotted line in (a) is a linear fit to the increasing part of the translation mode eigenvalue. The bottom row illustrates the coalescence
process for the ρ0 = 0.8 case in (a) at α = 10, i.e., two N = 4 clusters coalesce via translation into a single N = 8 cluster.
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FIG. 7. (a) Steady-state period-L density profile for S = 2L

at α = 10 and other parameters as in Fig. 6(b). (b) The unstable
translation coarsening mode with eigenvalue γ = 4. (c) The stable
Ostwald coarsening mode with γ = −0.2.

respectively. Fixing the period L and domain size S = 2L,
one notes that the critical value of the attraction strength,
at which the Ostwald mode becomes stable, depends on
the edge-to-edge separation Y between the clusters. Indeed,
for N = 4 (i.e., for S = 10, an edge-to-edge separation of
Y ≈ L − Nσ = 4), the stabilization occurs at around α ≈ 15,
and for N = 8 (edge-to-edge separation of Y ≈ 3) it occurs
at α ≈ 10. For an even smaller edge-to-edge separation of
Y = 2, the critical attraction strength required for stabilization
is α ≈ 9, as shown in Fig. 6(b). In all cases, the eigenvalue of
the translation mode increases at large α monotonically with α.

The stabilization of the Ostwald mode in the large-α
limit is due to the strong attraction that binds the outer
particles strongly to the cluster so that they cannot diffuse
away, even under the influence of a neighboring cluster.
Thus, for coalescence to occur for large α, it must occur via
the translation mode. A typical coalescence scenario of two
period-L clusters is illustrated for N = 8 and α = 10 by the
snapshots from a time simulation shown in the bottom row
of Fig. 6. At t = 0, the clusters start to move toward each
other due to the dominating unstable translation mode. As
the edge-to-edge distance between the clusters decreases, the
strength of the attractive interaction increases exponentially
[∼ α exp (−Y )]. Initially, the clusters move toward each other
rather slowly, but after a certain time (t = 3) the increasing
attractive forces become rather strong, and the remaining stage
of the coalescence is a very quick process with the typical time
scale of 10−2 as compared to 100 . . . 10−1 for the initial slow
approach. Eventually at t ≈ 3.05, one larger period-2L cluster
is formed with N = 8 particles.

For N = 12, the edge-to-edge separation distance between
the period-L clusters is Y = L − 6σ = 2 < 6σ = 3. The
steady-state solution as well as the unstable translation and
the stable Ostwald coarsening modes are shown for α =
10 in Fig. 7. For small edge-to-edge separations between
clusters, i.e., for Y 	 σN , the Ostwald coarsening process
is suppressed by the close proximity of the clusters.

V. CROSSOVER BETWEEN COARSENING MODES

As shown in the previous section, for a fixed center-to-
center distance between the clusters, the translation mode
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FIG. 8. (Color online) Panels (a)–(c) show for different cluster
distances the two eigenvalues of the coarsening modes for a pair of
four-particle clusters (period L = S/2 solution) in a channel with
smooth walls (χ = 0) as a function of attraction strength α. The
solid lines are for the translation mode and the dot-dashed lines
for the Ostwald mode. The parameters are σ = 0.5 and (a) S = 15,
ρ0 = 8/15; (b) S = 20, ρ0 = 8/20; and (c) S = 25, ρ0 = 8/25. The
filled circles in (c) mark the eigenvalues at α = 5. The dashed lines
are obtained from Eq. (7) for k = 2π/S = π/L. Right panel: time
series of density profiles for the aggregation of two clusters induced
by the dominant Ostwald mode, calculated for S = 25, ρ0 = 8/25,
and α = 5.

dominates the aggregation process for large N and α. Re-
markably, however, the time scale associated with the two
coarsening modes changes dramatically, resulting in a partial
crossover between the Ostwald and the translation mode, if the
separation distance is gradually increased.

To illustrate what we mean by “partial crossover” between
the modes, we consider the case with smooth channel walls
χ = 0 and fix the number of particles in the system to N = 8,
i.e., we look at the coarsening of two clusters of N = 4
particles each. We then follow the branch of period-L solutions
in parameter α for different separation distances that we control
via the domain size S. This implies that for increasing S, we
have a decreasing ρ0 = N/S. The center-to-center distance X

between the two clusters is then given by X = S/2.
The two coarsening eigenvalues are shown in Figs. 8(a)–

8(c) as a function of α for three different separations X.
For X = 7.5 [Fig. 8(a)], the translation mode dominates in
the entire α range where the coarsening modes are active
(α � 3) and there is a strong separation of the time scales
1/γ of the two coarsening modes beyond the minimum
of the eigenvalue of the translation mode at α ≈ 5. The
Ostwald mode stabilizes at α ≈ 10. However, at the larger
distance X = 10 [Fig. 8(b)], the Ostwald mode dominates the
aggregation process for a relatively weak attraction 3 < α < 4,
and a crossover between the coarsening modes occurs at α ≈ 4,
with the translation mode dominating for stronger attraction.
As the separation distance X is further increased [see, e.g.,
X = 12.5 in Fig. 8(c)], the crossover point is shifted toward
ever larger values of α.

An example of the dynamics of coalescence of two N = 4
clusters is shown for S = 25 (X = 12.5) and α = 5 in the
right panel of Fig. 8. There, the Ostwald mode (γ = 0.0011)
acts on a shorter time scale (∼1/γ ) than the translation mode
(γ = 0.0007), as indicated by filled circles in Fig. 8(c). As
coarsening progresses, the positions of the clusters remain
practically unchanged. Due to the diffusion of particles from
one cluster to the other, which characterizes the Ostwald mode,
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one of the clusters shrinks whereas the other one increases
in size. Eventually, one large clusters with N = 8 particles
(period-2L solution) is formed.

To decide which mode is dominant under which conditions,
one can use the following qualitative argument, which is valid
for strongly attracting particles. The time scale associated with
the Ostwald mode can be estimated as follows: The binding
energy wb of a single rod that joins or leaves the cluster is
independent of the number of particles in the cluster, provided
that this number is rather large. Therefore, the escape rate
νesc of the particles at the surface of the cluster is given by
νesc ∼ exp (−wb). Assuming that only one particle can escape
from the cluster at a time, we estimate the characteristic time
tesc
Ost, which is needed for N particles to escape from the cluster,

tesc
Ost ∼ N exp(wb). (14)

After the particle has escaped, it still needs to diffuse the
distance X between the two clusters in order to join the other
cluster. The diffusion time is estimated as tdiff

Ost ∼ X2.
To estimate the time scale associated with the translation

mode, we note that two clusters of N particles each can
move and collide as a result of the attraction between the
clusters. This scenario resembles standard diffusion-limited
aggregation [9–12] with an additional migration of clusters due
to attraction. Thus, if X 
 σN , the attraction force between
the clusters is proportional to N2, i.e., f ∼ −N2 w′(X), where
w′(X) is the derivative of the pair potential. Therefore, the force
per particle is f/N ∼ −N w′(X).

The diffusion coefficient DN of a compact cluster of N

particles is smaller than the diffusion coefficient of a single
particle by a factor of

√
N , i.e., DN = 1/

√
N . Consequently,

the time scale of the translation mode is influenced by the time
scale due to attraction tat

trans and the time scale due to cluster
diffusion tdiff

trans. If they are very different, the smaller one will
dominate. In the overdamped limit, we obtain

tat
trans = X exp(X)

Nα
, tdiff

trans =
√

NX2, (15)

where we have used the exponential pair potential w(X) =
−α exp(−|X|).

The time scale estimates in Eqs. (14) and (15) can now be
compared to the numerical findings reported in Figs. 6 and 8.
It is clear that the dependence on the cluster size is estimated
to tesc

Ost ∼ N 
 tdiff
trans ∼ √

N , explaining why the aggregation is
dominated by the translation mode in Fig. 6. On the other hand,
when the cluster size N is fixed and X is increased, the shortest
time scale for the translation mode is ultimately determined
by clusters diffusion tdiff

trans ∼ X2 	 tat
trans ∼ X exp(X). The X

dependence of the Ostwald mode time scale t
(diff)
Ost (X) ∼ X2

is also quadratic. However, for large clusters N 
 1, we
have t

(diff)
Ost = t

(diff)
trans /

√
N , which explains the dominance of the

Ostwald mode at large separation distances as shown in Fig. 8.
Finally, by examining the dependence on the attraction

strength α, we conclude that the Ostwald mode remains
effectively frozen for strong attraction, because the time
scale associated with the escape from the cluster increases
exponentially with α, i.e., tesc

Ost(α) ∼ eα . The translation mode,
on the other hand, increases its dominance, tat

trans ∼ α−1, due to
increased attraction between the clusters. This linear increase

of the translation mode eigenvalue with α is demonstrated by
thick dotted line in Fig. 6(a).

We note that the qualitative estimates derived above cannot
be used to describe the evaporation-condensation process in
the case when the edge-to-edge separation distance between
two clusters is comparable to or smaller than the cluster size.
As a consequence, the stabilization of the Ostwald mode is not
captured by the approximation.

VI. CONCLUDING REMARKS

Phase separation occurs in order to minimize the total
free energy of the system. A quenched initially uniform
system forms clusters that then tend to merge to form bigger
aggregates, because this reduces the amount of interfaces
between phases and therefore the interfacial contribution to
the free energy. The dynamics of the aggregation process,
also known as coarsening dynamics, crucially depends on the
distance between the clusters, their size, and the attraction
strength. We have studied the coalescence of two equally sized
clusters separated by a distance larger than the cluster size.
The clusters can merge either as a result of their motion and
subsequent collision, or as a result of the Ostwald ripening
process, whereby particles diffuse from one cluster to another.
This process is somewhat akin to an evaporation-condensation
process, i.e., the particles evaporate from the smaller drop and
then travel to condense on the larger drop.

We have shown that both coarsening modes can be
suppressed and, consequently, the clustering can be “frozen”
by a sufficiently strong pinning action of the external potential
U (x), associated with the corrugation of the channel walls. In
the case of the smooth channel walls, we have demonstrated
that the translation mode dominates the aggregation process
for large cluster sizes and for strongly attracting particles. In
fact, the Ostwald mode can be effectively arrested in the strong
attraction limit. Finally, we have demonstrated that there is a
crossover between the coarsening modes, induced by changing
the separation distance between the clusters. Regardless of
how strong the attraction is between the particles, the time
scale associated with the translation mode can be rendered
much larger than the Ostwald mode time scale by increasing
the distance between clusters.

Although our results are for a simple 1D model, we
believe that our overall conclusions about the behavior and the
interplay of the two different coarsening modes should apply
much more generally. We expect two-dimensional clusters
aggregating on surfaces to behave in a qualitatively similar
manner. In this situation, the corrugation potential U (x) in our
system models a rough potential due to the surface, with the
parameter χ characterizing the surface roughness. Similarly,
we expect our results to also be relevant to coarsening of
clusters in three dimensions. To relate our results to these
systems, one should think of the density profiles we calculate as
corresponding to the cross-sectional density profile through a
pair of two- or three-dimensional clusters. In fact, as mentioned
above, because in one dimension there is no true phase
transition, but in two and three dimensions there is a phase
transition, the effect of fluctuations that to some extent have
been neglected in the present mean-field treatment will be less
influential in two and three dimensions.
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