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Abstract. We consider a colony of point-like self-propelled surfactant particles (swimmers) without direct
interactions that cover a thin liquid layer on a solid support. The particles predominantly swim normal
to the free film surface with only a small component parallel to the film surface. The coupled dynamics
of the swimmer density and film height profile is captured in a long-wave model allowing for diffusive and
convective transport of the swimmers (including rotational diffusion). The dynamics of the film height
profile is determined by i) the upward pushing force of the swimmers onto the liquid-gas interface, ii) the
solutal Marangoni force due to gradients in the swimmer concentration, and iii) the rotational diffusion
of the swimmers together with the in-plane active motion. After reviewing and extending the analysis of
the linear stability of the uniform state, we analyse the fully nonlinear dynamic equations and show that
point-like swimmers, which only interact via long-wave deformations of the liquid film, self-organise in
highly regular (standing, travelling, and modulated waves) and various irregular patterns.

1 Introduction

The self-organization of large numbers of microorganisms
and artificial microswimmers and the non-equilibrium
phase transitions that result from their collective be-
haviour are the focus of many recent theoretical and exper-
imental studies [1, 2]. Thus, in experiments with different
types of artificial microswimmers, collective phenomena
such as dynamic clustering, phase separation, and swarm-
ing are reported [3–7]. In experiments with suspensions
of motile living cells (e.g. E. coli and B. subtilis bacteria
or spermatozoa), a variety of regular and irregular large-
and meso-scale density patterns is found [8–19]. With typ-
ical body sizes of several μm, the colonies of motile cells
exhibit arrays of circular vortices, swirls, and meso-scale
turbulence with correlation lengths between ∼ 10μm and
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∼ 100μm. The emergence of large-scale coherent struc-
tures in systems composed of small self-propelled objects
is universal and independent of the mechanism of motility.
Thus, density waves with 50–100μm wavelengths are ob-
served in an assay of 1–10μm long actin filaments, driven
by motor proteins [20]. Stable networks of interconnected
poles and asters are found in systems of microtubuli driven
by kinesin complexes [21]. Similar to the suspensions of sea
urchins spermatozoa [8], highly coherent arrays of circu-
lar vortices are found in motile assays of microtubulus,
propelled by surface-bound motor proteins [22].

To explain the observed large-scale patterns, many
theoretical models of interacting self-propelled particles
are suggested and tested against experiments. One cen-
tral question is to determine the driving force and the
minimal conditions for the emergence of each of the ob-
served patterns. One class of models are the so-called
dry systems that neglect the motion of the embedding
fluid medium [23–26]. In contrast, wet systems incorpo-
rate the motion and influence of the medium (e.g., [27]
and references therein). In dry systems density patterns
form through a linear instability of the trivial homoge-
neous isotropic state. It is caused by the direct interaction
between the particles, which is not mediated or induced
by a solvent. For electrically neutral non-magnetic parti-
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cles, the interactions can be divided into two categories:
steric effects (hard-core repulsion between colliding parti-
cles) [3,28–31] and long-range forces. They are introduced
phenomenologically, like the aligning or anti-aligning in-
teraction in Vicsek-type flocking models, [23, 25, 26] or
are due to hydrodynamic [32, 33] or phoretic interac-
tions [34,35].

Aligning interactions result from collisions between
swimmers with elongated bodies [30, 36] or the bundling
of flagellas of two colliding bacteria [15]. The origin of
long-range anti-aligning interactions is not yet clear. For
wet systems, the motion of the solvent gives rise to hydro-
dynamic interactions between the suspended particles [27]
that at high densities may destabilize the polar order, i.e.,
effectively act as a long-range anti-aligning force [10,37].

Presently, it is understood that the instability of a ho-
mogeneous suspensions of self-propelled particles can be
induced by combining particle motility either with steric
repulsion or with an aligning/anti-aligning interaction. At
sufficiently high particle density, phase separation may
occur in two-dimensional systems of repulsive finite-sized
swimmers or self-propelled discs [3, 28]. This result is ex-
plained by the self-trapping of colliding swimmers, i.e.,
any two swimmers that collide and swim against each
other remain in contact for a certain time until their swim-
ming directions have sufficiently changed. Also a mixture
of short-range aligning and long-range anti-aligning inter-
actions between point-like active Brownian particles leads
to a rich variety of density and velocity patterns in dry
systems with [25] and without [26] memory.

Here, we demonstrate that emergent collective dynam-
ics in the form of persisting regular and irregular meso-
scale density patterns is also found in colonies of self-
propelled particles that do not interact directly. We con-
sider active Brownian surfactant particles that move on
the deformable surface of a thin liquid layer on a solid
substrate. The swimming direction of each particle is as-
sumed to have a non-zero vertical component, thus, lead-
ing to particles pushing against the film surface. Varia-
tions in the particle density give rise to large-scale film
surface deformations that in turn induce flow in the layer
of viscous fluid, which advects even more particles towards
denser regions and also rotates their swimming directions.
We assume that the swimmers act as a surfactant, i.e.,
the local surface tension decreases with swimmer concen-
tration. This results in a soluto-Marangoni effect, i.e.,
Marangoni forces due to concentration gradients act at
the free surface of the liquid film—they are a direct con-
sequence of entropic contributions to the free energy of
the surfactant-covered free surface [38]. As particle diffu-
sion, the Marangoni forces act stabilizing by driving the
liquid away from areas with increased particle concentra-
tion. Thus, in this system the interaction between the par-
ticles is indirect and is transmitted by the dynamics of the
liquid layer.

The first model of swimmers on a liquid carrier layer
was introduced in ref. [39]. There the particles are assumed
to swim exclusively upwards and are not moving along the
film surface by self-propulsion. Then the resulting excess
pressure may cause a long-wave deformational instability

of the film [39]. However, when one allows for lateral active
motion of the swimmers [40] a sufficiently large swimming
velocity and a moderate rotational diffusion strength can
suppress this long-wave instability. Reference [40] confirms
its linear stability results by hybrid (multiscale) discrete-
continuous numerical simulations, while here we present
the first fully nonlinear results for the continuum model.

The paper is organized as follows: In sect. 2 we derive
the coupled long-wave evolution equations for the space-
and time-dependent full swimmer density, which also in-
cludes swimmer orientation (Smoluchowski equation), and
the space- and time-dependent film profile (thin-film equa-
tion). Next, we present a detailed linear-stability analysis
of the trivial steady state. Different instability modes are
discussed and located in a stability diagram spanned by
rotational diffusion and self-propelling velocity. Section 4
discusses spatio-temporal patterns that emerge in the non-
linear regime. In particular, we analyse stable standing
and travelling density waves accompanied by film modu-
lation waves, travelling waves that are modulated by large-
scale structures, and irregular patterns.

2 Motion of active Brownian swimmers at
slowly deforming interfaces

We consider a 10–100μm thin liquid film on a solid plate
with a time-dependent film thickness profile h(x, y, t). The
deformable liquid-gas interface (shortly called “free sur-
face”) is covered by a colony of non-interacting active
Brownian particles. Besides being microswimmers the par-
ticles act as insoluble surfactants [38,41,42] as often found
for small particles [43]. In this way the particles are con-
fined to move along the free surface and their density
influences the interfacial energy of the free surface. The
lower bound for the average film thickness of 10μm is dic-
tated by the typical size of self-propelling mono-cellular
organisms such as E. coli or the African trypanosome [44],
or artificial swimmers such as phoretically driven Janus
particles (see, e.g., [45, 46]). The typical size R of such
swimmers is of the order of R ≈ 1μm although recently
much smaller swimmers of R ≈ 30 nm have also been cre-
ated [47]. We assume a dilute limit, where the average
separation distance between the swimmers is much larger
than their size. In this regime, direct two-particle inter-
actions as well as hydrodynamic interactions can be ne-
glected.

We start by deriving the equations of motion for
an active Brownian particle that moves along a two-
dimensional time-dependent surface profile h(x, y, t), as
shown schematically in fig. 1. The three-dimensional posi-
tion vector of the particle is given by r = (x, y, h(x, y, t)).
The kinematic equation for the velocity reads

ṙ = (ẋ, ẏ, ∂th + ẋ∂xh + ẏ∂yh). (1)

For fixed surface shape, the velocity vector ṙ and the
unit vector normal to the surface n = (−∂xh,−∂yh, 1)/√

1+(∂xh)2+(∂yh)2 are orthogonal to each other: ṙ·n=0.
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Fig. 1. (Color online) Detail of the liquid-gas interface with
height profile h(x, y) and with a single swimmer (filled circle).
The instantaneous swimming direction is given by the vector
p that makes an angle θ with the local normal n. p‖ is the
projection of p onto the (x, y) plane.

In the overdamped limit the total velocity of the par-
ticle moving along the interface h(x, y, t) is given by the
superposition of the local tangential components of the
self-propulsion velocity v0pτ , the local tangential fluid ve-
locity uτ of the film, the tangential component of the grav-
ity force gτ = −g(ez)τ , and thermal noise ητ (t), which
results in diffusion along the free surface

ṙ = v0pτ + uτ + M mgτ + ητ (t). (2)

Here, M denotes the mobility of the particle, m its ef-
fective mass, which is reduced due to buoyancy effects for
partly submerged particles, and the unit vector p indicates
the direction of swimming. Thermal noise is characterized
by a Gaussian random variable with zero mean and cor-
relation function 〈η(t)η(t′)〉 = 2MkBTδ(t − t′)12, where
kB is the Boltzmann constant, T is the absolute tempera-
ture, and 12 is a 2×2 unit matrix. Note that the tangential
component aτ of any vector a is given by

aτ = a − (a · n)n . (3)

Furthermore, the fluid velocity u at the free surface satis-
fies the standard kinematic boundary condition resulting
from continuity [41]

∂th = −ux∂xh − uy∂yh + uz. (4)

We consider particles swimming upward against grav-
ity and pushing against the film surface. This already cre-
ates some polar order with a preferred vertical orientation
of the swimmer bodies at the interface [48]. Further rea-
sons for such a polar order can be bottom-heaviness [49],

the chemotactic response of bacteria swimming towards
the surface in order to take up oxygen [17], or any mech-
anism at the interface that aligns the particles along the
vertical. In the following, we will not present a full deriva-
tion of the orientational distribution at the interface. In-
stead, for the distribution against the surface normal we
will assume that it always adjusts instantaneously com-
pared to the slow dynamics of the film interface (see be-
low).

In what follows, we only take into account the long-
wave deformations of the film surface, thus ε = h0/λ � 1,
with λ the wavelength of the surface deformations and
h0 the average film thickness. By noticing that the in-
plane gradient (∂x, ∂y) is of order ε, we obtain for the
surface normal n = (0, 0, 1) + O(ε) and for any vector a
one has aτ = (ax, ay, 0) + O(azε) + O(axε) + O(ayε), as it
follows from eq. (3). Then, the Langevin equation (2) for
the interfacial particle position becomes to leading order
in ε

ẋ = v0px + ux + ηx(t),

ẏ = v0py + uy + ηy(t). (5)

Note that the tangential component of the gravity field
vanishes in the long-wave limit, i.e. gτ = 0.

The instantaneous orientation of swimmers is indi-
cated by the three-dimensional unit vector p, as shown
in fig. 1. For swimmers in the bulk of the fluid, the time-
evolution of p is well known: it is determined by the ro-
tation due to local fluid vorticity, alignment against some
external field such as gravity, and random rotation as con-
trolled by rotational diffusivity Dr. However, for swim-
mers at a free surface, the rate of change ṗ may be signifi-
cantly modified as compared to bulk swimmers depending
on the nature of the interaction between the swimmers and
the surface. For instance, a surface swimmer only partly
submerged in the fluid and possibly with elongated body
shape is easily rotated by local fluid vorticity within the
film surface. However, the rotation of p against the inter-
face normal is possibly reduced as the interaction energies
strongly change similar to anchoring effects for liquid crys-
tals.

Here, we use the argument from above to decouple the
vertical component p⊥ of the orientation vector p from the
in-plane component p‖. The evolution of the film surface
is slow compared to the equilibration of p to a stationary
distribution Ps(θ) with respect to the vertical. The mean
of p⊥ is then given by

〈p⊥〉 =
∫ π

0

Ps(θ) cos θ sin θ dθ, (6)

whereas p‖ can vary according to the in-plane dynamics of
p, which couples to the temporal film evolution. Note that
Ps(0) > Ps(π), which implies that the swimmers push on
average against the liquid-gas interface.

As a result, the rotation of p‖ is described in terms of
the polar angle φ (see fig. 1)

φ̇ =
1
2
Ωz + χ(t), (7)



Page 4 of 19 Eur. Phys. J. E (2016) 39: 51

where Ωz = ∂xuy − ∂yux is the vertical component of
the local fluid vorticity and χ(t) is rotational noise with
correlations 〈χ(t)χ(t′)〉 = 2Drδ(t − t′). Furthermore, we
introduce the mean in-plane velocity of an active particle,
v‖ = v0[1 − 〈p⊥〉2]1/2 and substitute v0p‖ in eq. (5) by
v‖q = v‖(cos φ, sin φ). Then, the Smoluchowski equation
for the particle probability density ρ(x, y, φ, t), equivalent
to eqs. (5) and (7), reads

∂tρ + ∇ · Jt + ∂φJr = 0, (8)

where ∇ = (∂x, ∂y) and the respective translational (Jt)
and rotational (Jr) probability currents become [40,50,51]

Jt = (v‖q + u‖) ρ − MkBT (∇ρ),

Jr = −Dr∂φρ +
1
2
Ωzρ. (9)

The swimmers and the liquid-gas interface couple through
the local swimmer concentration ρ(x, y, φ, t) that acts
twofold. First, each swimmer exerts the force α =
v0〈p⊥〉/M normal to the surface [39]. So, the total push-
ing force fn per unit area is proportional to the total
(direction-integrated) local concentration of swimmers,
〈ρ〉(x, y, t) =

∫ 2π

0
ρ(x, y, φ, t) dφ, i.e.,

fn(x, y, t) = α〈ρ〉(x, y, t). (10)

Second, the swimmers act as surfactant and change the
local surface tension. Assuming a relatively low swimmer
concentration, the surface tension σ is known to decrease
linearly with 〈ρ〉(x, y, t) [38],

σ = σ0 − Γ 〈ρ〉, (11)

with the reference surface tension σ0 and Γ > 0.
Equations (10) and (11) couple the Smoluchowski

equation (8) and the thin-film equation in the long-wave
approximation [41] for the film thickness h(x, y, t) [39,40],

∂th + ∇ ·
(

h3

3μ
∇ [σ0Δh − ρlgh + α〈ρ〉]

)

− Γ∇ ·
(

h2

2μ
∇〈ρ〉

)
= 0, (12)

where ρl is the density of the fluid and μ is its dynamic
viscosity. The in-plane fluid velocity at the interface, u‖ =
(ux, uy), is determined by the film profile h(x, y, t) [41]

u‖ = −Γ

μ
h∇〈ρ〉 +

h2

2μ
∇ (σ0Δh + α〈ρ〉) , (13)

and the vertical component of the vorticity is obtained as
Ωz = ∂xuy − ∂yux from eq. (13)1. Both, u‖ and Ωz enter

1 Note that Ωz can also be introduced as limz→h(∇ × u)z,
where (∇ × u)z denotes the vertical component of the fluid
vorticity in the bulk of the film. The difference between
limz→h(∇×u)z and ∂xuy −∂yux with (ux, uy) from eq. (13) is
of second order in the parameter ε of the long-wave approxima-
tion, and thus, does not affect the results of the linear stability
of the homogeneous steady state. However, certain aspects of
the nonlinear evolution may vary depending on the definition
of Ωz.

the currents (9) that determine the Smoluchowski equa-
tion (8). Note, that without swimming along the interface
and rotational diffusion, one can integrate this equation
over φ to recover the model in ref. [39] with purely upwards
pushing swimmers. Switching off the active swimming mo-
tion altogether one recovers the classical long-wave model
for a dilute insoluble surfactant on a liquid film that may
be written in a gradient dynamics form [38].

In what follows we focus on the instability induced by
the pushing force generated by swimmers that swim pre-
dominantly upwards. To this end, we neglect the stabilis-
ing effect of the hydrostatic pressure ρlgh0 as compared to
the typical pushing force per unit area ∼ ρ0v0/M . Exper-
imentally, such a regime can be achieved by using, for ex-
ample, bacteria-covered water films with a dense bacterial
coverage. In the dilute limit treated in this manuscript,
one needs conditions of microgravity. To illustrate this
example, we present some estimates. The maximal self-
propulsion force of a unicellular bacterium is known to
be of the order of several pN [52]. The maximal surface
density ρ0 is estimated as ρ0 ≈ R−2, where R ≈ 1μm is
the typical size of the bacterial body. The dilute limit cor-
responds to densities of at least one order of magnitude
below R−2. Consequently, the maximal pushing force per
unit area is estimated as ρ0v0/M ≈ 10−1 (Pa). On the
other hand, ρlgh0 ≈ g 10−2 (Pa) for a 10μm thick water
film. Clearly, ρlgh0 can be neglected against ρ0v0/M in
case of g � 10m/s2.

The possibility to experimentally detect the thin-film
instability due to the pushing force α exerted by self-
phoretic particles is further strengthened by recent exper-
iments with ∼ 30 nm small Janus particles [47]. A much
smaller particle size allows for larger surface particle den-
sities and may give rise to larger excess pressure. In fact,
the maximal density increases as ∼ R−2 for decreasing
particle size R. However, it remains unclear how the push-
ing force α of a single self-phoretic particle scales with its
size. If the decrease of the pushing force with R is slower
than ∼ R2, the resulting excess pressure ∼ ρ0f exerted by
the particles onto the liquid-gas interface can be several
orders of magnitude larger than the value of ≈ 10−1 (Pa)
estimated before in the dilute limit of a bacterial carpet.

For all what follows, we non-dimensionalise the evo-
lution equations for film thickness h(x, y, t) and swimmer
density ρ(x, y, φ, t) employing the scaling as in ref. [40].
Thus, we use h0 as the vertical length scale, h0

√
σ0/Γρ0

as the horizontal length scale, μh0σ0/(Γ 2ρ2
0) as the time

scale, and the direction-averaged density of swimmers in
the homogeneous state ρ0 as the density scale. This gives
the relevant parameters of our model: the dimensionless
in-plane self-propulsion velocity V = v‖μσ

1/2
0 /(Γρ0)3/2,

the dimensionless in-plane rotational diffusivity D =
Drh0μσ0/(Γρ0)2, the translational surface diffusivity d =
kBTMμ/(h0ρ0Γ ), and the excess pressure parameter β =
αh0/Γ . Furthermore, we introduce the effective in-plane
diffusivity

Deff =
V 2

2D
+ d. (14)
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Note that Deff corresponds to the diffusion coefficient of
a single self-propelled Brownian particle moving along a
flat two-dimensional surface [53, 54]. In appendix A we
summarize our non-dimensionalised dynamic equations.

3 Linear stability of homogeneously covered
flat film

3.1 General

We present a more detailed stability analysis of the flat
film than ref. [40] including an analytical treatment. We
linearise the non-dimensionalised eqs. (8) and (12) about
the homogeneous isotropic steady state (h = 1, ρ = 1)
using the ansatz

h(x, y, t) = 1 + δh, ρ(x, y, φ, t) = 1 + δρ, (15)

where δρ, δh � 1. We obtain, respectively,

∂tδρ + ∇ · (V qδρ) + Δ

[(
1
2
β − 1

)
〈δρ〉 +

1
2
Δ(δh)

]
1
2π

−dΔδρ − D∂2
φδρ = 0, (16)

∂t(δh) +
1
3

[
Δ2(δh) + βΔ〈δρ〉

]
− 1

2
Δ〈δρ〉 = 0, (17)

with 〈δρ〉 =
∫ 2π

0
δρ(x, y, φ, t) dφ. The linearised surface ve-

locity (δux, δuy) from eq. (13) reads

δu‖ = −∇〈δρ〉 +
1
2
∇ [Δ(δh) + β〈δρ〉] . (18)

As in ref. [40] we Fourier transform (FT) δh and δρ
by using a continuous FT in space and a discrete FT in
the angle φ. Combining this with an exponential ansatz
for the time dependence we get

δh(r, t) =
∫

ĥ(k)eγ(k)teIkr dk,

δρ(r, φ, t) = lim
N→∞

1
2π

N∑

n=−N

eInφ

∫
Wn(k)eγ(k)teIkr dk,

(19)

with the small dimensionless Fourier amplitudes ĥ(k) and
Wn(k), the wave vector of the perturbation k = (kx, ky),

and the real or complex growth rate γ(k). Substituting
eqs. (19) into eqs. (16), (17), we obtain the eigenvalue
problem

γ(k)H = J (k)H, (20)

with the eigenvector H

H(k) = (ĥ,W0,W1,W−1,W2,W−2, . . .), (21)

and the Jacobi matrix J of banded structure

see eq. (22) above

where k2 = k2
x + k2

y, V (+) = V ky

2 + iV kx

2 , V (−) = −V ky

2 +
iV kx

2 . The (2 × 2) matrix T in the upper left corner of J
is given by

T (k) =

⎛

⎜
⎜⎜
⎝

1
3
k4,

(
1
2
− β

3

)
k2

1
2
k4,

(
1 − 1

2
+ d

)
k2

⎞

⎟
⎟⎟
⎠

. (23)

Note that T coincides with the Jacobi matrix in ref. [39]
that encodes the linear stability in the special case
of purely upwards pushing swimmers. In practice, we
truncate the expansion in the angle φ and only keep
the first N Fourier modes. Then, J is a (2N + 2) ×
(2N + 2) matrix and the truncated eigenvector H =
(ĥ,W0,W1,W−1, . . . ,WN ,W−N ) is (2N +2)-dimensional.
The stability diagram of the homogeneous isotropic state,
as computed for reduced excess pressure β = 4 and trans-
lational diffusivity d = 0.05 from eqs. (20) is shown in
fig. 2(a) in the parameter plane spanned by the reduced
in-plane velocity V and the effective diffusion constant
Deff = V 2/(2D) + d of the surfactants.

We numerically compute the eigenvalues of the trun-
cated Jacobi matrix eqs. (22) for N = 10 and check the
results by doubling to N = 20. The choice β = 4 and
d = 0.05 corresponds to a flat film that is unstable at
V = 0 as β > βc(d) = 2(1 + d), the critical value for the
onset of the long-wave instability [39], e.g., βc = 2.1 for
d = 0.05. In what follows, we characterize the system by
the parameters (V,D) and also indicate Deff . As pointed
out in ref. [40], for β < βc the trivial state is linearly sta-
ble regardless of the values of V and D. Recalling that
β = αh0/Γ , where Γ is the Marangoni coefficient, we con-
clude that the soluto-Marangoni effect acts stabilizing.
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Fig. 2. (Color online) (a) Stability diagram of a flat film with homogeneous distribution of particles for β = 4 and d = 0.05.
In the stable lightly shaded region Re[γ(k)] < 0 for all values of the wave number k. The finite wave number instability sets
in along the line marked by “fw”. The zero-wave-number instability sets in along the vertical dashed line Deff = 1, marked by
“zw”. The inset zooms into the region marked by the rectangle in the main panel: In the strongly shaded area marked “MI”,
the mixed type fw/zw instability occurs. Panels (b-d) show Re[γ(k)] of the two leading eigenvalues for parameters taken (b) at
point 1 (V = 3.5, D = 10, i.e., Deff = 0.66), (c) at point 2 (V = 3.5, D = 1, i.e., Deff = 6.175), and (d) at point 3 (V = 2,
D = 2.4, i.e., Deff = 0.88) in panel (a). Dashed and solid lines indicate complex and real eigenvalues, respectively. The inset in
(d) zooms into the region marked by the rectangle.

For the system with non-zero in-plane velocity (V �=
0), we have earlier reported the existence of two different
instability modes [40]. Namely, for sufficiently large V ,
there exists a wedge-shaped stability region, marked in
fig. 2(a) as “stable” that separates regions where the two
different instability modes occur. The wedge opens at Vc ≈
2.05 towards larger values of V , i.e., at any V > Vc, there
exists a window in the effective diffusivity Deff for which
the flat homogeneously covered film is stable (note that
Vc depends on β and d).

By crossing the two borders of the linearly stable re-
gion, the system changes stability via two distinct insta-
bility modes. The first mode corresponds to an oscilla-
tory instability with a finite wave number at onset, i.e.,
a travelling wave instability. In this case, for parameters
directly on the stability threshold, the leading eigenvalue
γ(k) of the Jacobi matrix from eq. (22) has a negative
real part for all values of the wave number k, except for
the critical wave number kc �= 0, where γ(k) has the form
γ(kc) = ±iWc with some non-zero frequency Wc. We will
refer to this instability mode as the finite wave number

instability (fw). The second mode (zw) corresponds to an
instability with a zero wave number at onset. This mode
is characterized in detail in the next section.

3.2 Zero-wave-number instability: analytic results

In the following we present an approximate analytic ex-
pression for the zero-wave-number instability. We intro-
duce the Fourier transformed fields δ̂h(k, t) and ρ̂(k, φ, t),
according to δh(r) =

∫
eik·r δ̂h(k, t) dk and ρ(r) =∫

eik·rρ̂(k, φ, t) dk, into eq. (16) and obtain

∂tρ̂ + V (ikx cos φ, iky sin φ) ρ̂ +
1
2π

(
1 − β

2

)
k2 ˆ〈ρ〉

+
1
4π

k4(δ̂h) + d k2ρ̂ − D∂2
φρ̂ = 0. (24)

Close to the threshold of the zero-wave-number instability,
the amplitudes of all modes with the wave number k �= 0
rapidly decay with time. Therefore, in the limit k → 0,
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in eq. (24) one may neglect the terms of orders k2 and
k4 as compared to the ones of order k0 and k. In conse-
quence, the density and film height equations decouple.
In fact, to this order the density equation describes a sin-
gle self-propelled particle with rotational diffusivity D and
self-propulsion velocity V but with neglected translational
diffusivity.

To proceed further, we note that on length scales larger
than the persistence length of an active particle, V/D,
the dynamics becomes purely diffusive. To arrive at this
result, one performs a multipole expansion of ρ̂(k, φ, t)
in the angle φ using only the monopol ˆ〈ρ〉 and the dipole
moment [34,55]. The latter can be elimated in the dynamic
equation for ˆ〈ρ〉 and from eq. (24) one arrives at

∂t
ˆ〈ρ〉 +

(
1 − β

2
+ Deff

)
k2 ˆ〈ρ〉 +

1
2
k4δ̂h = 0, (25)

which is coupled to the linearised thin-film equation in
Fourier space

∂t(δ̂h) +
1
3

[
k4δ̂h − βk2 ˆ〈ρ〉

]
+

1
2
k2 ˆ〈ρ〉 = 0. (26)

Equations (25) and (26) are identical to the linearised
equations for purely upwards swimming (V = 0) studied
in ref. [39] when replacing the translational diffusivity by
Deff . The Jacobi matrix J(k) corresponding to eqs. (25)
and (26) is

J = −k2

⎛

⎜
⎜
⎝

k2

3
1
2
− β

3

k2

2
η

⎞

⎟
⎟
⎠ , (27)

where we introduced η = 1 − β/2 + Deff . The two eigen-
values γ1(k) and γ2(k) resulting when introducing the ex-

ponential time dependence are

γ1,2 =
1
2

(
tr(J) ±

√
tr(J)2 − 4 det(J)

)
, (28)

with tr(J) = −k2[k2/3 + η] and det(J) = k6(1/12 +
Deff/3).

In fig. 3 we compare the analytic eigenvalues (eq. (28)
with the two leading numerically obtained eigenvalues of
the full system (eq. (20)). Solid (dashed) lines correspond
to the numerically obtained real (complex) eigenvalues, re-
spectively, dotted lines to eq. (28). Figure 3(a) is obtained
for the parameters corresponding to point 1 in fig. 2(a),
i.e., V = 3.5 and Deff = 0.66, and fig. 3(b) corresponds to
point 3 in fig. 2(b), i.e., V = 2 and Deff = 0.88. In both
cases, the agreement is excellent up to k ≈ 0.4. Next, we
use eq. (28) to classify the zero-wave-number instability
that sets in along the dashed vertical line marked by “zw”
in fig. 2(a). The real part of the leading eigenvalue changes
its sign at η = 0, i.e., at Deff = β/2 − 1. Thus, for β = 4
we obtain Deff = 1, in agreement with fig. 2(a).

In the unstable region (η < 0), the fastest growing
wave number kmax always corresponds to a pair of com-
plex conjugate eigenvalues (fig. 3(a)). By locating the
maximum of tr[J(k)], we determine kmax and its complex
growth rate,

kmax =

√
3
2
|η| , Re[γ(kmax)] =

3
8
η2,

Im[γ(kmax)] = ±|η|
2

√
27
2
|η|

(
1
12

+
Deff

3

)
− 9

16
η2. (29)

For k < krc < kmax, γ1 and γ2 are real. At

krc =

√
3η2

1 + 4Deff − 2η
≈

√
3

1 + 4Deff
|η| (30)
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Fig. 4. (Color online) Transition from the finite wave number to the zero-wave-number instability region. Each panel shows
the critical dispersion curve on the border of the MI region in fig. 2 at Deff < 1. (a) V = 2, (b) V = 2.0275 (corresponding to
the cusp point C in the inset of fig. 2(a)), and (c) V = 2.03.

the two real eigenvalues meet and become a pair of
complex conjugate ones. One notes that this zero-wave-
number instability is peculiar: Directly at onset (η = 0)
the two leading eigenvalues are real, however, already ar-
bitrarily close above onset (η < 0) the band of unstable
wavenumbers contains a region of real modes (close to and
including k = 0) and a region of complex modes (always
including the fastest growing mode). This behaviour is re-
lated to the existence of two conserved fields, h and 〈ρ〉,
that forces two real modes with zero growth rate at k = 0.
The fastest growing wave number kmax tends to zero when
approaching the stability threshold from above. Here, we
call this scenario a zero-wave-number instability.

3.3 Mixed instability

The analytic results obtained in the previous section give
for the zero-wave-number instability the threshold Deff =
1 for β = 4. This perfectly agrees with the numerically
computed threshold (left thick dashed line in fig. 2(a)).
These results remain valid for small V < Vc deep in the
unstable region, i.e., Re[γ(k)] at k ≈ 0 always changes
from positive to negative as Deff is increased past the crit-
ical value Deff = 1 (at β = 4). However, there is always
an instability at a non-zero wave number, as we explain
next.

We observe a mixed-instability region, marked by
“MI” and heavily shaded in the inset of fig. 2(a), where the
system is unstable w.r.t. a finite- and a zero-wavelength in-
stability, i.e., there exist two bands of unstable wave num-
bers: one with k ∈ [0, k1] and another one with k ∈ [k2, k3],
with k3 > k2 > k1 > 0. Dispersion relations for the zero
wave number, the finite wave number, and the mixed in-
stabilities, are shown in figs. 2(b), (c), and (d), respec-
tively. The respective parameters are; point 1: V = 3.5,
D = 10, i.e., Deff = 0.66, point 2: V = 3.5, D = 1,
i.e., Deff = 6.175 in the main panel, and point 3: V = 2,
D = 2.4, i.e. Deff = 0.88 in the inset of fig. 2(a).

The transition from the finite wave number instability
to the zero-wave-number instability can follow two scenar-
ios. We identify them by keeping V constant and gradu-
ally decrease Deff . In the first scenario for V � Vc = 2.05,
the maximum of Re[γ(k)] in fig. 2(c) first becomes nega-
tive, i.e., the finite wave number instability is stabilised

while crossing the “fw” line in the stability diagram. Sub-
sequently, the system crosses the “zw” line and becomes
unstable w.r.t. the zero-wave-number mode. In the second
scenario for V � Vc = 2.05, the system first crosses the
line Deff = 1 and enters the mixed instability region. Then
the dispersion curve as in fig. 2(d) gradually transforms
into the dispersion curve of the zero-wave-number insta-
bility, while leaving the region MI. Note that the mixed
instability region stretches from V = Vc down to V = 0.
However, its horizontal width is negligibly small for V < 1.

The second scenario is visualised in fig. 4, where each
panel shows the critical dispersion curve on the border
of the MI region in fig. 2 at a certain value of Deff < 1.
For V = 2, the transition from the mixed instability to the
zero-wave-number instability occurs through the elevation
of the local minimum of the dispersion curve, so that a sin-
gle band of unstable wave numbers emerges from the fu-
sion of two such bands as shwon in fig. 4(a) for Deff = 0.83.
At the cusp marked by “C” in the inset of fig. 2(a), i.e.,
at V = 2.0275, the transition occurs through the simulta-
neous elevation of the local minimum and the depression
of the local maximum of the dispersion curve, as shown in
fig. 4(b) for Deff = 0.81. For V = 2.03 the transition oc-
curs through the depression of the right local maximum of
the dispersion curve (fig. 4(c) for Deff = 0.84), so that the
single band of unstable wave numbers emerges through
the shrinking and vanishing of the second band.

4 Nonlinear evolution

4.1 Numerical approach and solution measures

Next we address the nonlinear evolution equations for
film height h(x, y, t) and density ρ(x, y, φ, t), which we
give in non-dimensional form in eqs. (A.1) and (A.2)
in appendix A. To solve them numerically, we discretize
both fields on a square domain for the spatial coordinates
(x ∈ [−L/2, L/2]) × (y ∈ [−L/2, L/2]) and ρ additionally
in the interval φ ∈ [0, 2π] for the orientation angle always
using periodic boundary conditions (BC). We use N = 100
or N = 128 mesh points for each spatial direction to dis-
cretise space and 20 Fourier modes for the φ-dependence.
We adopt a semi-implicit pseudo-spectral method for the
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Fig. 5. (Color online) Standing wave pattern, obtained for V = 3.5, D = 1, d = 0.05, i.e., Deff = 6.175 (the corresponding
dispersion curve is shown in fig. 2(c)). The snapshots are taken at t = 190: (a) average density 〈ρ〉(x, y) (grey scale map) with
average orientation field (red arrows) and (b) the film thickness h(x, y). Ψ is the angle between the main lattice direction and
the horizontal axis. Plotted versus time are: (c) The mode type M from eq. (31), (d) zoom of the region in (c) marked by the
red rectangle, and (e) local film thickness h(t) at a randomly chosen point on the surface.

time integration, as outlined in appendix A and verify se-
lected results by using a fully explicit Euler scheme with
Δt = 10−4 or 10−5. Note that the semi-implicite pseudo-
spectral method remains stable for a significantly larger
time step Δt = 10−3.

To quantify the spatio-temporal patterns in film height
and density, we introduce three global measures: the mode
type

M = L−2

∫∫
(h(x, y, t) − 1)(〈ρ〉(x, y, t) − 1)dxdy (31)

determines if spatial modulations of h(x, y, t) and
〈ρ〉(x, y, t) are predominantly in-phase (M > 0) or anti-
phase (M < 0). The space-averaged fluid flux

J̄h = L−2

∫∫ (
h3

3
∇ [Δh + β〈ρ〉] − 1

2
(
h2∇〈ρ〉

))
dxdy

(32)
distinguishes between standing waves (J̄h = 0) and trav-
elling or modulated waves (J̄h �= 0). Finally, the space-
averaged translational flux of the swimmers

J̄t = L−2

∫∫ (
V 〈ρq〉 + U‖〈ρ〉

)
dxdy, (33)

indicates global surface motion of the swimmers. In the
following we indicate the richness in the dynamics of our

system by giving examples of evolving patterns for specific
parameter sets located in the stability diagram of fig. 2(a).
Mapping out a full state diagram is beyond our present
scope.

4.2 Regular standing wave pattern

We first study the parameters V = 3.5 and D = 1
(Deff = 6.175) at point 2 in the unstable region of the
phase diagram fig. 2(a), close to the finite wave number
instability threshold. The corresponding dispersion curve
is shown in fig. 2(c). The system size L = 20 is set to be
several times larger than the fastest growing wave length
2π/kmax = 3.43. By numerically integrating eqs. (A.1),
we study the temporal evolution of the system from the
trivial state (h = 1, ρ = 1/(2π)). The initial conditions
are h = 1 + δh(x, y) and ρ = 1/(2π) + δρ(x, y, φ), where
the small perturbations δh(x, y) and δρ(x, y, φ) represent
two independent sources of white noise.

We find that after a transient of ≈ 100 to 200 time
units, the system settles onto a stable standing wave, that
oscillates between different square and stripe patterns as
Movie-1 in the Supplementary material shows. The mean
fluid flux is zero, J̄h = 0. Figures 5(a) and (b) show a
snapshot at time t = 190 of 〈ρ〉(x, y) in gray scale together
with the average orientation field 〈q〉 = (〈cos φ〉, 〈sin φ〉)
as red arrows and h(x, y), respectively. The patterns are
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Fig. 6. (Color online) Standing stripe patterns with periodically changing directions for the same parameters as in fig. 5. Shown
is a small portion of the square domain in fig. 5 over one oscillation cycle with period T = 1.15. Five snapshots of the film
thickness h(x, y, t) (in grey scale map) are plotted together with a contour plot of the average density 〈ρ〉 at the level of 〈ρ〉 = 1.
Arrows indicated the shift vector of the pattern during the four phases of one oscillation cycle.

highly dynamic, with h and 〈ρ〉 changing periodically in
time, as analyzed in fig. 6. Figure 5(b) captures a moment
in time during the change in stripe orientation from one
diagonal to the other. In this phase individual maxima
in h(x, y, t) occur, that are arranged in a perfect square
lattice, tilted by the angle Ψ ≈ π/4 w.r.t. the x-axis.

The time evolution of the mode type M is plotted in
fig. 5(c). After 150 time units M starts to oscillate pe-
riodically about the average M = 0.02, as indicated in
fig. 5(d), where a zoom of fig. 5(c) is shown. As M > 0,
the oscillations of h and 〈ρ〉 are in-phase. The temporal
period T of the standing wave is determined by observing
the perfectly periodic oscillations of h(t) at a randomly
chosen point (fig. 5(e)). The period is T = 1.15.

Remarkably, the oscillations of M in fig. 5(d) are four
times faster than the oscillations in film thickness. This
is due to the fact that a complete period of the standing
wave consists of four phases, where the same spatial pat-
tern reappears four times, each time shifted along one side
of a square and rotated by 90◦. As M is invariant under ro-
tation and translation of the pattern, its oscillation period
is a quarter of the period of the standing wave. The four
shifted and rotated patterns are clearly seen in Movie-1
in the Supplementary material when concentrating on the
square lattice of side length lw formed by the maxima in
the height profile. In fig. 6 we illustrate the four phases
by snapshots of the transient stripe patterns. During the
first phase, the maxima of 〈ρ〉 and h shift along a straight
line by a distance lw/2. Each shift occurs along the direc-
tion orthogonal to the previous shift. After completing all
four phases, the maxima have traveled along the sides of
a square of side length lw/2 back to their initial position.
Between the square patterns the film thickness assumes
patterns of parallel ridges that then decay into the square
pattern and reappear rotated by π/2. One may say that
during one cycle the pattern oscillates through several ac-
cessible patterns that are well known solutions for pattern
forming systems on a square. In particular, they are known
to occur as (stable or unstable) steady states in thin-film
equations that describe “passive” liquid layers, ridges and
drops on homogeneous solid substrates [56]. Appendix B
gives further details regarding the measurement of the side
length of the square pattern and the possible tilting angles
Ψ of the pattern.

4.3 Strongly perturbed square pattern

Next, we study persisting patterns that emerge from the
trivial state far from the stability threshold using V = 3.5,
Deff = 600 (point (4) in fig. 2(a)). The trivial state is lin-
early unstable w.r.t. the finite wave number instability
with a dispersion relation similar to fig. 2(c). In a simu-
lation in the square domain (L = 20) after a transient of
about 20 time units, a state evolves which is highly dy-
namic and represents an underlying square pattern that is
strongly perturbed by irregular temporal and spatial vari-
ations (see Movie-2 in the Supplementary material). Snap-
shots in fig. 7 show h(x, y) and 〈ρ〉(x, y) at t = 100. The
latter varies between 〈ρ〉min = 0.1 and 〈ρ〉max = 4.5, in a
much larger range than for the regular pattern in fig. 5.
One recognizes the underlying square pattern in 〈ρ〉(x, y)
but the main lattice directions are tilted against each
other. The profile h(x, y) seems even stronger perturbed
although the elevated regions (drops) are still approxi-
mately arranged on a square lattice. Movie-2 of the Sup-
plementary material shows how the tilted lattice planes in
〈ρ〉(x, y) seem to split up and merge with their neighbors.
The snapshot in fig. 7 shows this scenario when going from
left to right.

The evolution of the pattern is visualized in fig. 8(a)–
(d). The mode type M in plot (a) is positive and oscil-
lates randomly about M̄ ≈ 0.08. In fig. 8(b) we plot the
spectral density S(ν) of M(t) calculated on the interval
t ∈ [20, 100]. We find a clear maximum at the frequency
νmax ≈ 1.87 with small width Δν/νmax ≈ 0.1, which cor-
responds to a period of T = 1/νmax ≈ 0.53. The frequency
νmax belongs to the pulsating pattern clearly recognizable
in Movie-2. A second, broader peak is located at νmax ≈
2.3 with width Δν/νmax ≈ 0.2. In addition, there exists a
continuous background in S(ν), which gives the pattern its
random dynamic appearance. Random oscillations of the
magnitude of the fluid flux, |J̄h| =

√
(J̄h)2x + (J̄h)2y, (see

fig. 8(c)) and of the magnitude of the translational flux of

the swimmers, |J̄t| =
√

(J̄t)2x + (J̄t)2y, (see fig. 8(d)), indi-
cate persistent global propagation of the pattern. How-
ever, we find that the propagation direction randomly
changes with time without preferred direction.



Eur. Phys. J. E (2016) 39: 51 Page 11 of 19

(x,y)

-10 -5  0  5  10
x

-10

-5

 0

 5

 10

y

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5

(x,y)

-10 -5  0  5  10
x

-10

-5

 0

 5

 10

y

-10 -5  0  5  10
x

-10

-5

 0

 5

 10

y

 0.5
 0.6
 0.7
 0.8
 0.9
 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

h(x,y)

Fig. 7. (Color online) Example of a strongly perturbed square pattern at V = 3.5 and D = 0.01, i.e., Deff = 600 for a domain
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q
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(J̄t)2x + (J̄t)2y, and (e) the time-averaged power spectral density

of the height profile obtained with eq. (B.2) by averaging over the interval t ∈ [50, 100].

Finally, to reveal the periodic structure of the pat-
tern, we show in fig. 8(e) the time-averaged power spec-
tral density (for t ∈ [50, 100]) introduced in eq. (B.2)
of appendix B. It has two major broad peaks: one at
(kx = 2πm/L = 1.57, ky = 2πk/L = 0), i.e. m = 5,
k = 0, and one at (kx = 2πm/L = 0, ky = 2πk/L = 1.57),
i.e. m = 0 and k = 5. They correspond to a square pat-
tern with the main lattice directions aligned along the
coordinate axes, i.e. Ψ = 0 or Ψ = π/2. The dominat-
ing wave length or lattice constant lw of the pattern is
lw = L/

√
m2 + k2 = 20/5 = 4. The third peak with much

smaller intensity at (kx = 2πm/L = 1.25, ky = 2πk/L =
1.88), i.e., m = 4 and k = 6, can be interpreted as a con-
tribution from the sum of the two dominant wave vectors
spanning the reciprocal lattice.

4.4 Multistability

To systematically study the occurrence and stability of
the two discussed patterns we follow them in parameter
space using a primitive “continuation method”. Namely,
we take a snapshot of a converged (time-dependent) state
at some parameter value and use it as initial condition for
a simulation at a nearby parameter value. This technique
allows us to follow states which are linearly stable and
thereby to identify multistable regions in parameter space.
Depending on the initial condition different stable spatio-
temporal stable patterns are obtained. For an overview of
proper continuation methods, which are also able to follow
unstable steady states and therefore to determine the com-
plete bifurcation diagram, see refs. [64,65]. However, these
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Shown are (b) the mode number M and (c) the modulus of the fluid flux
q

(J̄h)2x + (J̄h)2y in dependence of time. The time axis

is reversed.

methods are not readily available for time-periodic solu-
tions of our PDE system. First, we start with the regular
standing wave pattern, explored in sect. 4.2. We follow the
standing wave solution along the line connecting points 2
and 4 in fig. 2(a) by decreasing D (increasing Deff) in
steps, namely, Deff = 6.175 → 20 → 70 → 200 → 600.
At each point, we let the system settle into a stable state,
which we identify by monotoring M(t) and J̄h. The re-
sulting time evolution of mode type M during the con-
tinuation schedule is shown in fig. 9(a). We find that the
standing wave pattern keeps its main characteristics up
to the largest value Deff = 600 (point 4 in fig. 2(a)). In
particular, M shows regular oscillations. M̄ (red solid line
in fig. 9(a)) and the oscillation amplitude of M increase
with Deff . They reach their respective maximal values of
0.1 and 0.06 at around Deff = 200, where the density and
height variations are more pronounced than in fig. 5. Fur-
thermore, the oscillation period monotonically increases
with Deff (not shown). The spatial period remains un-
changed.

Next, we start with the strongly perturbed square pat-
tern from sect. 4.3 and follow the same path in fig. 2(a)
but this time backward from point 4 to point 2. For consis-
tency, we use the same values of Deff as in fig. 9(a). The
time evolutions of M and |J̄h| are plotted in figs. 9(b)
and (c) with reversed time axis. Remarkably, the system
reaches the regular standing wave pattern only for pa-
rameters close to the stability threshold, i.e., when Deff is
decreased to the value in point 2 in fig. 2(a). There, after

a transient dynamics, from t = 400 to 1100 the system
settles on the stable standing wave pattern.

For larger values of Deff , i.e., further away from the
threshold, we found that the system is multistable. At
Deff > 20 stable regular standing waves still exist but also
patterns similar to the strongly perturbed square pattern
in fig. 7 are stable. However, at Deff = 20, the dynam-
ics of the square pattern becomes more regular but still
keeps the feature of lattice planes splitting and merging
with their neighbors. This is demonstrated by Movie-3
in the Supplementary material and by the snapshots in
fig. 10(a) and (b), taken at t = 400. Figure 10(c) shows the
x and y components of the translational flux of the swim-
mers. One clearly recognizes directed motion, on average,
into the negative x and positive y direction. The compo-
nents of J̄h(t) behave similarly. Furthermore, both flux
components show a fast oscillation with a superimposed
weak slow modulation. By taking the Fourier transforms
of |J̄h(t)| (fig. 10(d)), one identifies a dominant peak at
ν = 3.5 corresponding to a period of T = 0.28 of the fast
oscillations. They result from the pulsation in the square
pattern as Movie-3 demonstrates. The weak modulation
generates a small peak in the power spectrum with fre-
quency ν = 0.36 or period T = 2.8. The continuous part
of the spectrum as observed in fig. 8(b) for the strongly
perturbed square pattern is missing here since the square
pattern has a more regular dynamics.

Finally, the time-averaged power spectral density Sh,
for t ∈ [350, 400], is given in fig. 10(e). The two major
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Fig. 10. (Color online) (a,b) Persisting dynamic state at V = 3.5 and Deff = 20, during the numerical continuation of the
patterns with intermittent symmetry in fig. 9. Snapshot taken at t = 400. (c) The components of the translational surface flux
J̄t. (d) The spectral density of |J̄h|(t). (e) Time-averaged power spectral density of the pattern, obtained with eq. (B.2) by
averaging over the interval t ∈ [350, 400].

peaks correspond to the square pattern with spatial period
of L/6 aligned along the coordinate axes. The third, much
weaker peak at kx = ky = 2πm/L = 1.57 with m = 5
again corresponds to a contribution of the two major wave
vectors spanning the reciprocal lattice.

4.5 Persisting traveling patterns

In the triangular mixed instability region in fig. 2 one
finds persisting travelling waves characterized by a time-
independent mode type and a constant non-zero fluid flux.
Figures 11(a) and (b) give snapshots obtained at point 3
in fig. 2(a) for L = 20 and t = 900. Movie-4 in the Supple-
mentary material shows the pattern travels approximately
along the diagonal with a propagation speed approxi-
mately equal to the self-propulsion velocity V = 2. The
maxima of h form a rectangular lattice. Perturbations run
along the lattice lines and shift the maxima by roughly half
a lattice constant; presumably, to match the periodic BC.
The time evolutions of M , (Jh)x and (Jh)y are shown in
fig. 11(c) and (d), respectively. The height modulation at
an arbitrary point plotted in fig. 11(e) looks rather irregu-
lar. Its power spectrum in fig. 11(f) has a peak at ν = 0.32,

which corresponds to single shift motions of a bump in
the height profile. Frequencies at ν = 0.1 and 0.17 belong
to longer cycles of two or three shifts. The power spectral
density for the spatial modulations in the film height, aver-
aged over the interval t ∈ [800, 900], is plotted in fig. 11(g).
In the snapshot in fig. 11(b) one can clearly see a rectan-
gular pattern with the aspect ratio of ≈ 1.3. Remarkably,
it is not compatible with the periodic BC of the square do-
main. Nontheless, the pattern fits into the domain due to
the presence of a defect-like modulation, seen at the center
of the snapshot. It disturbes the rectangular lattice dy-
namically, as it continuously moves along the lattice lines
and shifts the elevations in the height profile (see Movie-
4). As a result, in the power spectrum in fig. 11(g) we find
two major peaks located at {k(1)

x = 0.62, k
(1)
y = 1.25} and

{k(2)
x = −0.94, k

(2)
y = 0.62} and one smaller peak located

at {k(3)
x = −0.94, k

(3)
y = 0.31}. The remaining two weaker

peaks are again higher order contributions.

4.6 Random patterns

When studying the nonlinear behaviour for V = 3.5 and
Deff = 0.66 (point 1 in fig. 2(a)), we find truly random
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Fig. 11. (Color online) (a,b) Snapshots of the persisting traveling pattern, which emerges from the mixed instability type for
V = 2, D = 2.4, (Deff = 0.88), L = 20 (see point 3 in fig. 2(a)). The corresponding dispersion curve is shown in fig. 2(d). (c)
Mode type M , (d) x and y component of the space averaged fluid flux J̄h, (e) the film height h(t) at a randomly chosen point
on the film surface, and (f) its power spectrum Sh. (g) Power spectrum for the spatial modulation of the height profile (see
eq. (B.2)) averaged over the interval t ∈ [800, 900].

patterns emerging from the zero-wave-number instability.
The corresponding dispersion curve is shown in fig. 2(b)
and gives lmax ≈ 9. We set L = 60, N = 128 and start the
simulations at the trivial state. After a transient, the sys-
tem settles onto an irregular spatio-temporal pattern that
oscillates randomly and locally travels in random direc-
tions. Typical snapshots are shown in fig. 12 and movie-5
in the Supplementary material illustrates the irregular dy-
namics.

The randomness is clearly visible in the time evolution
of M and |J̄h|, shown in figs. 13(a) and (b), respectively.
The time-averaged power spectral density Sn in fig. 13(a)
is radially symmetric (implying that spatial correlations
in the pattern only depend on the distance r between any
two points) and has a pronounced maximum at |k| = 0.7.
Otherwise, it is continuous as expected for a random pat-
tern. Via the convolution theorem, Sn is directly related

to the spatial height correlation function

C(r) =
C0

t2 − t1

∫ t2

t1

dt

∫
[h(r+w)−1][h(w)−1]dw, (34)

where t1 = 150 and t2 = 350 and the constant C0 is
chosen such that C(0) = 1. We plot the normalised ra-
dially symmetric correlation function C(r) in fig. 13(f).
C(r) rapidly decreases with r and drops by two orders of
magnitude over the distance of r = 10, as shown in the
inset of fig. 13(f). Correlations become negligibly small
at distances larger than 10 and the pattern looks random.
The oscillation at small distances corresponds to the max-
imum in the power spectral density. They are caused by
wave fronts traveling in random directions, which one rec-
ognizes in the orientation-averaged swimmer density in
movie-5. Finally, the film height at an arbitrary position
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(f) Normalised radial autocorrelation function C(r). Inset shows zoomed graph of C(r) around zero.

changes randomly in time, as shown in fig. 13(d). How-
ever, the spectral density Sh plotted in fig. 13(e) has a
clear peak at ν = 0.055. This implies that the temporal
dynamics of the patterns cannot be regarded as purely
random.

5 Discussion and conclusion

We have investigated the collective behaviour of a
colony of point-like non-interacting self-propelled particles
(micro-swimmers) that swim at the free surface of a thin
liquid layer on a solid support. In contrast to ref. [39],
where the motion of the swimmers was considered to
be purely orthogonal to the free surface, here we have
also allowed for active motion parallel to the film surface.
The resulting coupled dynamics of the swimmer density
ρ(x, y, φ, t) and the film thickness profile h(x, y, t) is cap-
tured in a long-wave model in the form of a Smoluchowski
equation for the one-particle density ρ(x, y, φ, t) and a

thin-film equation for h(x, y, t) that allows for i) diffu-
sive and convective transport of the swimmers (including
rotational diffusion), ii) capillarity effects (Laplace pres-
sure) including a Marangoni force caused by gradients in
the swimmer density, iii) and a vertical pushing force of
the swimmers that acts onto the liquid-gas interface.

First, we have extended the linear stability analysis of
the homogeneous and isotropic state of ref. [40] focusing
on the characteristics of the two distinct instability modes
(zero- and finite-wave-number mode). We have found that
the onset and dispersion relation of the zero-wave-number
mode do not fit well into the classification scheme of Cross
and Hohenberg [60]. The long-wave instability occurs at
k = 0, where the two leading eigenvalues are always real.
However, arbitrarily close above onset, the fastest growing
mode is oscillatory. Moreover, the unstable band of wave
numbers, 0 < k < kc, does always contain a range at small
k < krc ∼ |η| (with η measuring the distance from the
stability threshold), where the two leading eigenvalues are
real (one ∼ k2 and one ∼ k4), and a range krc < k < kc,
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where they form a complex conjugate pair. This indicates
that this zero-wave-number instability is similar to a zero-
frequency Hopf bifurcation in dynamical systems [64] and
in the context of the instabilities of spatially extended
systems, it might be called a zero-frequency type II0 in-
stability.

The behaviour at about k = 0 has also important im-
plications for a weakly nonlinear theory for the short-wave
instability at k = kc. Such a theory would need to take
into account that the slow complex modes around k = kc

couple to the two stable or unstable long-wave modes
at k ≈ 0 with real eigenvalues. We believe that such a
coupling is responsible for the observed wave behaviour,
where a travelling wave is perturbed by a long-wave mod-
ulation, as in fig. 10. The two long-wave modes are a di-
rect consequence of the existing two conserved quantities
in the system: the mean film height and the orientation-
averaged mean swimmer concentration. Simpler cases with
one long-wave mode (resulting from a single conserved
quantity) that couples to a short-wave mode have been
considered in refs. [73–75]. Such an analysis is not fea-
sible in our case, where the evolution equations capture
the dynamics in two spatial dimensions and account for
a fully φ-dependent density ρ(x, y, φ, t). However, a one-
dimensional model system, where instead of rotational dif-
fusion the swimmers can only flip between swimming to
the left or right shows similar transitions and lends itself
to a weakly nonlinear analysis. Such a simplified system
is under investigation and will be presented elsewhere.

We have employed numerical simulations of the time
evolution eqs. (8) and (12) to give an overview of the rich
variety of persisting dynamic states. In particular, for pa-
rameters close to the stability threshold of the finite wave
number instability, we have found a regular standing wave
pattern that oscillates between square and stripe patterns.
Spatial variations of the film thickness profile and the
orientation-averaged density profile are in-phase implying
that high density spots sit approximately on top of the
droplets. The orientation of swimmers in each high den-
sity spot shows strong polar order with a hedgehog defect
right at the center. The space-averaged fluid flux of the
square wave is always zero.

In systems of active matter, stable square patterns
have previously been found in Vicsek-type models with
memory. It was shown that in the case of a ferromag-
netic alignment between the self-propelled particles with
memory in the orientational ordering the system settles
to a perfectly symmetric state with a checkerboard ar-
rangement of clockwise and anti-clockwise vortices [25].
Using our classification, this checkerboard lattice corre-
sponds to a square pattern with the main axis tilted by
Ψ = π/4 w.r.t. the coordinate axes. Rectangular (nearly
quadratic) positional order has also been reported as a
state of collective dynamics in an active particle model
with competing alignment interaction [26, 57]. A similar
oscillation between stripe and square patterns as found
here was reported for a mesoscopic continuum model for
an active filament-molecular motor system where the oscil-
lation is described as alternating wave between aster-like

states that form a square lattice and stripe states [58]. A
related analysis of steady stripe and aster states is pre-
sented in [59].

Experiments with active matter often find hexagonal
patterns. For instance, a hexagonal lattice of vortices was
observed in suspensions of highly concentrated sperma-
tozoa of sea urchins [8]. Phenomenologically, the exis-
tence of hexagonal patterns is often studied using a Swift-
Hohenberg (SH) equation for scalar fields [60,61]. For such
model equations it is known that hexagonal structures
can only be stable if the model equations are not invari-
ant under inversion of the scalar field and that higher-
order gradient terms are needed to stabilize square pat-
terns [62, 63]. In our case, inversion symmetry is broken,
i.e., eqs. (8) and (12) are not invariant under the simul-
taneous transformations h → −h and ρ → −ρ. Never-
theless, in our numerical simulations we have not found
stable hexagonal patterns but find that square patterns
dominate. This could imply that higher order terms play
an important role. Alternatively it may indicate that a SH
equation is not the appropriate order parameter equation
for our model that in contrast to the standard variational
SH equation has no gradient dynamics structure (see dis-
cussion in sect. 2 below eq. (12)).

Furthermore, we have employed a “primitive” con-
tinuation method and have followed the standing wave
patterns through parameter space and have shown that
standing wave patterns exist and are stable possibly in
the entire region, where the homogeneous state is linearly
unstable w.r.t. the finite wave number instability (i.e. for
Deff > 1). A strongly perturbed square pattern, where lat-
tice lines continuously split and merge with their neigh-
bors emerges from the trivial state at large Deff . This state
also persists for an extended range of Deff resulting in a
range of multistability.

Multistability of several persisting dynamic states un-
der identical external conditions was also found in other
systems. For example, in experiments on groups of school-
ing fish [66] it was observed that depending on the start-
ing conditions and/or the nature of perturbations, as well
as the group size, a fish swarm may exhibit two differ-
ent dynamic states: the so-called milling state, which is
characterized by fish swimming in a large circle, and the
polarised state, which corresponds to fish swimming pre-
dominantly in one direction.

In the mixed-instability region, we find a persisting
traveling wave pattern characterised by constant space-
averaged fluid flux. Elevations in the film surface are ar-
ranged in a rectangular lattice that travels in one direction
with the speed of the order of the self-propulsion veloc-
ity, while perturbations continuously shift the hight eleva-
tions. At their positions the swimmers form high-density
spots with strong polar order around a hedgehog defect
similar to the regular standing wave. Finally, choosing pa-
rameters from the region with the zero-wave-number in-
stability, one finds a random spatio-temporal pattern with
a correlation length much smaller than the system size.

Persisting propagating structures are well known for
other active matter systems. Thus, traveling density waves
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were found in experiments with an assay of actin filaments,
driven by motor proteins [20]. At the leading edge (lamel-
lipodium) of a crawling cell, the alignment of actin fila-
ments along the substrate leads to the forward translation
of lamellipodium and thus, to cell motility [67]. Moving
density stripes and propagating isolated density clusters
have been found in microscopic Vicsek-type models and
in continuum models of self-propelled particles [68–70].
Highly dynamic random spatio-temporal patterns of ac-
tive matter are known as quasi or mesoscale turbulence.
Irregular turbulent states have been found in experiments
with dense bacterial suspensions [10–16, 19] and in active
microtubuli networks [71].

Our findings clearly show that a rich variety of persist-
ing regular and irregular dynamic states can be found in
an active matter system of self-propelled particles without
direct interactions. In our model, the interaction between
the swimmers occurs on a coarse-grained level and is medi-
ated by large-scale deformations of the liquid film. Similar
types of dynamic states were previously observed in other
active matter systems of interacting particles as indicated
above. It is fascinating that active particles acting as sur-
factants at the surface of a thin liquid film provide a model
system, where all these different dynamic patterns can be
realized by tuning appropriate parameters.

Possible extensions of the model include the incorpora-
tion of wettability effects by adding the Derjaguin (disjoin-
ing) pressure to study swimmer carpets not only on films
but also on shallow droplets and, in particular, interac-
tions with (moving) contact lines. One may also go beyond
the approximation of point-like non-interacting particles
by introducing finite size effects (short-range interactions
between particles) as well as long-range (hydrodynamic)
interactions. The resulting Smoluchowski equation would
then contain non-local terms as in dynamical density func-
tional theories for the diffusive dynamics of interacting
colloids, polymers, and macromolecules [76,77]. For a con-
sistent model also the film height equation would require
additional terms that may be determined via the gradient
dynamics formulation [38] that has to be recovered in the
limit of passive surfactant particles/molecules.

Appendix A. Semi-implicit numerical scheme
for eqs. (12), (8)

In the employed dimensionless quantities, the resulting
coupled system consists of the reduced Smoluchowski
equation and the thin-film equation. It reads

∂th + ∇ · Jh = 0,

∂tρ + ∇ · Jt + ∂φJφ = 0, (A.1)

with the dimensionless fluid flux Jh, the translational and
rotational probability currents Jt and Jφ, the surface fluid

velocity U‖ and the vorticity of the fluid flow Ωz

Jh =
h3

3
∇ [Δh + β〈ρ〉] − 1

2
(
h2∇〈ρ〉

)
,

Jt =
(
V q + U‖ − d∇

)
ρ,

Jφ =
1
2
Ωzρ − D∂φρ,

U‖ = −h∇〈ρ〉 +
h2

2
∇ (Δh + β〈ρ〉) ,

Ωz = ∂xUy − ∂yUx. (A.2)

The coupled eqs. (A.1) are solved numerically using the
following version of the semi-implicit spectral method.
First, we average the density equation over the orienta-
tion angle φ. This yields

∂t〈ρ〉 + ∇ · 〈Jtrans〉 = 0, (A.3)

with the average translational current 〈Jtrans〉 = V 〈qρ〉+
(U −d∇)〈ρ〉 and q = (cos φ, sin φ). It is worthwhile notic-
ing that the only term in eq. (A.3) that depends on the
three-dimensional density ρ(x, y, φ, t) is the average orien-
tation vector 〈qρ〉. All other terms in eq. (A.3), including
the surface fluid velocity U explicitly depend on the av-
erage density 〈ρ〉. Next, we group the thin-film equation
together with eq. (A.3)

∂th + ∇ · Jh = 0,
∂t〈ρ〉 + ∇ · 〈Jtrans〉 = 0, (A.4)

with the fluid flux Jh = h3

3 ∇[Δh + β〈ρ〉]− 1
2∇(h2∇〈ρ〉).

At the next step, we single out the linear parts in all the
terms in eqs. (A.4) that explicitly depend on the average
density 〈ρ〉. This is done by linearising the current Jt and
the fluid flux Jh about the trivial steady state given by
h = 1 and 〈ρ〉 = 1. Finally, following the standard im-
plicit time-integration scheme, we replace ∂th and ∂t〈ρ〉
by (ht+dt −ht)/dt and by (〈ρ〉t+dt −〈ρ〉t)/dt, respectively
and take all linear terms at time t + dt and all nonlinear
terms, including the term V 〈qρ〉, at time t. Upon these
transformations eqs. (A.4) become

ht+dt − ht

dt
+

1
3
Δ2ht+dt +

(
β

3
− 1

2

)
Δ〈ρ〉t+dt

+∇ · (NLh)t = 0,

〈ρ〉t+dt − 〈ρ〉t
dt

+
1
2
Δ2ht+dt +

(
β

2
− 1 − d

)
Δ〈ρ〉t+dt

+∇ · (〈NLtrans〉)t = 0, (A.5)

with the nonlinear parts given by

(NLh)t =
[
h3 − 1

3
∇ [Δh + β〈ρ〉]

− 1
2
∇

(
[h2 − 1]∇〈ρ〉

)]t

,

(〈NLtrans〉)t =
[
V 〈qρ〉 + (U)〈ρ〉 − 1

2
∇(Δh)

−
(

β

2
− 1

)
∇〈ρ〉

]t

. (A.6)
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After taking the discrete Fourier transforms of eqs. (A.5),
we find the updated fields ht+dt and 〈ρ〉t+dt at the time
step t + dt. With the update average density 〈ρ〉t+dt and
the film thickness ht+dt at hand, we find the updated
surface fluid velocity U t+dt and the updated vorticity
Ωt+dt. These functions are then substituted into the three-
dimensional density equation

ρt+dt − ρt

dt
+ ∇ · Jtrans + ∂φJrot = 0, (A.7)

with the translational current Jtrans = V (qρ)t +
(U t+dt)ρt − d∇ρt+dt and the rotational current Jφ =
(1/2)Ωt+dtρt−D(∂φρt+dt). After taking the Fourier trans-
form of eq. (A.7) both, in space as well as in the angle φ,
we find the updated three-dimensional density ρt+dt.

Appendix B. Analysis of square pattern

The spatial period lw of the standing wave discussed in
sect. 4.2 can be determined in real space by measuring
the distance between two nearest maxima (minima) of the
square pattern in the height profile h(x, y). The maximal
error in this procedure is of the order of

√
2L/N where N is

the number of discretization points along the x and y axis
and the factor

√
2 reflects that the wave is directed along

the diagonal of the domain. We obtain lw = 3.5± 0.14 for
the square pattern in fig. 5 using L = 20 and N = 100 to
estimate the error.

Due to the periodic BC the measured lw is slightly dif-
ferent from the linear fastest growing wave length lmax =
2π/kmax = 3.43 (fig. 2(b)) as explained next. To fulfill
periodic boundary conditions in a square domain of size
L, the periods of a wave projected, respectively, on the x
and y axis are L/k and L/m, where m and k are some
integers. This restricts the possible rotation angles Ψ of a
periodic pattern relative to the x axis (see fig. 5). They
have to satisfy

cos Ψ =
m√

k2 + m2
, sin Ψ =

k√
k2 + m2

(B.1)

and the wave length of the pattern becomes lw =
L/

√
k2 + m2. Thus, for the parameters used in fig. 5, the

random initial conditions select the possible rotation angle
Ψ = π/4. This choice corresponds to m = k in eq. (B.1).
Next, the integer m = 4 is chosen in such a way that the re-
sulting wave length of the pattern, lw = L/(m

√
2) = 3.53,

is close to the fastest growing wave length of lmax = 3.43.
For later use, we mention that the spatial period lw

and the angle Ψ of a simulated periodic pattern can be
determined by computing the time-averaged power spec-
tral density of the film thickness profile h(x, y, t) according
to

Sh(k) =
1
T

∫ t+T

t

|ĥ(k)|2 dt, (B.2)

where T is the temporal period of oscillations and ĥ(k)
denotes the discrete Fourier transform of h(x, y, t). The

periodic boundary conditions for the square domain only
allow for a discrete set of possible wave vectors forming a
square lattice with lattice constant Δk = 2π/L ≈ 0.31.
Any periodic pattern in the height modulation h(x, y)
gives a major peak of the power spectrum in eq. (B.2),
which is located at kx = 2πm/L, ky = 2πk/L, with the
same integers m and k as in eq. (B.1). Depending on the
surface profile, secondary peaks (higher harmonics) might
be present, but their strengths are typically orders of mag-
nitude smaller compared to the major peak.
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